
X
pe

rt
s.

O
ne

 [E
ng

in
ee

rin
g]

 1
8

Ju
ly

 2
02

5

An introduction to neural networks

An introduction to neural networks

Kevin Gurney
University of Sheffield

London and New York

© Kevin Gurney 1997

 This book is copyright under the Berne Convention.
No reproduction without permission.

All rights reserved.

 First published in 1997 by UCL Press

 UCL Press Limited
11 New Fetter Lane
London EC4P 4EE

2

 UCL Press Limited is an imprint of the Taylor & Francis Group

 This edition published in the Taylor & Francis e-Library, 2004.

 The name of University College London (UCL) is a registered trade mark used
by UCL Press with the consent of the owner.

 British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library.

 ISBN 0-203-45151-1 Master e-book ISBN

ISBN 0-203-45622-X (MP PDA Format)

 ISBNs: 1-85728-673-1 (Print Edition) HB

 1-85728-503-4 (Print Edition) PB

 Copyright © 2003/2004 Mobipocket.com. All rights reserved.

Reader's Guide

 This ebook has been optimized for MobiPocket PDA.

 Tables may have been presented to accommodate this Device's Limitations.

 Table content may have been removed due to this Device's Limitations.

 Image presentation is limited by this Device's Screen resolution.

 All possible language characters have been included within the Font handling
ability of this Device.

3

Contents

 Preface

 1 Neural networks—an overview

 1.1 What are neural networks?

 1.2 Why study neural networks?

 1.3 Summary

 1.4 Notes

 2 Real and artificial neurons

 2.1 Real neurons: a review

 2.2 Artificial neurons: the TLU

 2.3 Resilience to noise and hardware failure

 2.4 Non-binary signal communication

 2.5 Introducing time

 2.6 Summary

 2.7 Notes

 3 TLUs, linear separability and vectors

 3.1 Geometric interpretation of TLU action

 3.2 Vectors

 3.3 TLUs and linear separability revisited

 3.4 Summary

 3.5 Notes

4

 4 Training TLUs: the perceptron rule

 4.1 Training networks

 4.2 Training the threshold as a weight

 4.3 Adjusting the weight vector

 4.4 The perceptron

 4.5 Multiple nodes and layers

 4.6 Some practical matters

 4.7 Summary

 4.8 Notes

 5 The delta rule

 5.1 Finding the minimum of a function: gradient descent

 5.2 Gradient descent on an error

 5.3 The delta rule

 5.4 Watching the delta rule at work

 5.5 Summary

 6 Multilayer nets and backpropagation

 6.1 Training rules for multilayer nets

 6.2 The backpropagation algorithm

 6.3 Local versus global minima

 6.4 The stopping criterion

 6.5 Speeding up learning: the momentum term

 6.6 More complex nets

5

 6.7 The action of well-trained nets

 6.8 Taking stock

 6.9 Generalization and overtraining

 6.10 Fostering generalization

 6.11 Applications

 6.12 Final remarks

 6.13 Summary

 6.14 Notes

 7 Associative memories: the Hopfield net

 7.1 The nature of associative memory

 7.2 Neural networks and associative memory

 7.3 A physical analogy with memory

 7.4 The Hopfield net

 7.5 Finding the weights

 7.6 Storage capacity

 7.7 The analogue Hopfield model

 7.8 Combinatorial optimization

 7.9 Feedforward and recurrent associative nets

 7.10 Summary

 7.11 Notes

 8 Self-organization

6

 8.1 Competitive dynamics

 8.2 Competitive learning

 8.3 Kohonen's self-organizing feature maps

 8.4 Principal component analysis

 8.5 Further remarks

 8.6 Summary

 8.7 Notes

 9 Adaptive resonance theory: ART

 9.1 ART's objectives

 9.2 A hierarchical description of networks

 9.3 ART1

 9.4 The ART family

 9.5 Applications

 9.6 Further remarks

 9.7 Summary

 9.8 Notes

 10 Nodes, nets and algorithms: further alternatives

 10.1 Synapses revisited

 10.2 Sigma-pi units

 10.3 Digital neural networks

 10.4 Radial basis functions

 10.5 Learning by exploring the environment

7

 10.6 Summary

 10.7 Notes

 11 Taxonomies, contexts and hierarchies

 11.1 Classifying neural net structures

 11.2 Networks and the computational hierarchy

 11.3 Networks and statistical analysis

 11.4 Neural networks and intelligent systems: symbols versus neurons

 11.5 A brief history of neural nets

 11.6 Summary

 11.7 Notes

 A The cosine function

 References

 Index

8

Preface

 This book grew out of a set of course notes for a neural networks module given as
part of a Masters degree in "Intelligent Systems". The people on this course came
from a wide variety of intellectual backgrounds (from philosophy, through
psychology to computer science and engineering) and I knew that I could not count
on their being able to come to grips with the largely technical and mathematical
approach which is often used (and in some ways easier to do). As a result I was
forced to look carefully at the basic conceptual principles at work in the subject
and try to recast these using ordinary language, drawing on the use of physical
metaphors or analogies, and pictorial or graphical representations. I was pleasantly
surprised to find that, as a result of this process, my own understanding was
considerably deepened; I had now to unravel, as it were, condensed formal
descriptions and say exactly how these were related to the "physical" world of
artificial neurons, signals, computational processes, etc. However, I was acutely
aware that, while a litany of equations does not constitute a full description of
fundamental principles, without some mathematics, a purely descriptive account
runs the risk of dealing only with approximations and cannot be sharpened up to
give any formulaic prescriptions. Therefore, I introduced what I believed was just
sufficient mathematics to bring the basic ideas into sharp focus.

 To allay any residual fears that the reader might have about this, it is useful to
distinguish two contexts in which the word "maths" might be used. The first refers
to the use of symbols to stand for quantities and is, in this sense, merely a
shorthand. For example, suppose we were to calculate the difference between a
target neural output and its actual output and then multiply this difference by a
constant learning rate (it is not important that the reader knows what these terms
mean just now). If t stands for the target, y the actual output, and the learning rate is
denoted by a (Greek "alpha") then the output-difference is just (t-y) and the verbose
description of the calculation may be reduced to (t-y). In this example the symbols
refer to numbers but it is quite possible they may refer to other mathematical
quantities or objects. The two instances of this used here are vectors and function
gradients. However, both these ideas are described at some length in the main
body of the text and assume no prior knowledge in this respect. In each case, only
enough is given for the purpose in hand; other related, technical material may have
been useful but is not considered essential and it is not one of the aims of this book
to double as a mathematics primer.

 The other way in which we commonly understand the word "maths" goes one step
further and deals with the rules by which the symbols are manipulated. The only
rules used in this book are those of simple arithmetic (in the above example we
have a subtraction and a multiplication). Further, any manipulations (and there

9

aren't many of them) will be performed step by step. Much of the traditional "fear
of maths" stems, I believe, from the apparent difficulty in inventing the right
manipulations to go from one stage to another; the reader will not, in this book, be
called on to do this for him- or herself.

 One of the spin-offs from having become familiar with a certain amount of
mathematical formalism is that it enables contact to be made with the rest of the
neural network literature. Thus, in the above example, the use of the Greek letter
may seem gratuitous (why not use a, the reader asks) but it turns out that learning
rates are often denoted by lower case Greek letters and a is not an uncommon
choice. To help in this respect, Greek symbols will always be accompanied by
their name on first use.

 In deciding how to present the material I have started from the bottom up by
describing the properties of artificial neurons (Ch. 2) which are motivated by
looking at the nature of their real counterparts. This emphasis on the biology is
intrinsically useful from a computational neuroscience perspective and helps
people from all disciplines appreciate exactly how "neural" (or not) are the
networks they intend to use. Chapter 3 moves to networks and introduces the
geometric perspective on network function offered by the notion of linear
separability in pattern space. There are other viewpoints that might have been
deemed primary (function approximation is a favourite contender) but linear
separability relates directly to the function of single threshold logic units (TLUs)
and enables a discussion of one of the simplest learning rules (the perceptron rule)
i n Chapter 4. The geometric approach also provides a natural vehicle for the
introduction of vectors. The inadequacies of the perceptron rule lead to a
discussion of gradient descent and the delta rule (Ch. 5) culminating in a
description of backpropagation (Ch. 6). This introduces multilayer nets in full and
is the natural point at which to discuss networks as function approximators, feature
detection and generalization.

 This completes a large section on feedforward nets. Chapter 7 looks at Hopfield
nets and introduces the idea of state-space attractors for associative memory and its
accompanying energy metaphor. Chapter 8 is the first of two on self-organization
and deals with simple competitive nets, Kohonen self-organizing feature maps,
linear vector quantization and principal component analysis. Chapter 9 continues
the theme of self-organization with a discussion of adaptive resonance theory
(ART). This is a somewhat neglected topic (especially in more introductory texts)
because it is often thought to contain rather difficult material. However, a novel
perspective on ART which makes use of a hierarchy of analysis is aimed at helping
the reader in understanding this worthwhile area. Chapter 10 comes full circle and
looks again at alternatives to the artificial neurons introduced in Chapter 2. It also
briefly reviews some other feedforward network types and training algorithms so

10

that the reader does not come away with the impression that backpropagation has a
monopoly here. The final chapter tries to make sense of the seemingly disparate
collection of objects that populate the neural network universe by introducing a
series of taxonomies for network architectures, neuron types and algorithms. It also
places the study of nets in the general context of that of artificial intelligence and
closes with a brief history of its research.

 The usual provisos about the range of material covered and introductory texts
apply; it is neither possible nor desirable to be exhaustive in a work of this nature.
However, most of the major network types have been dealt with and, while there
are a plethora of training algorithms that might have been included (but weren't) I
believe that an understanding of those presented here should give the reader a firm
foundation for understanding others they may encounter elsewhere.

11

Chapter One
Neural networks—an overview

 The term "Neural networks" is a very evocative one. It suggests machines that are
something like brains and is potentially laden with the science fiction connotations
of the Frankenstein mythos. One of the main tasks of this book is to demystify neural
networks and show how, while they indeed have something to do with brains, their
study also makes contact with other branches of science, engineering and
mathematics. The aim is to do this in as non-technical a way as possible, although
some mathematical notation is essential for specifying certain rules, procedures and
structures quantitatively. Nevertheless, all symbols and expressions will be
explained as they arise so that, hopefully, these should not get in the way of the
essentials: that is, concepts and ideas that may be described in words.

 This chapter is intended for orientation. We attempt to give simple descriptions of
what networks are and why we might study them. In this way, we have something in
mind right from the start, although the whole of this book is, of course, devoted to
answering these questions in full.

12

1.1 What are neural networks?

 Let us commence with a provisional definition of what is meant by a "neural
network" and follow with simple, working explanations of some of the key terms in
the definition.

 A neural network is an interconnected assembly of simple processing elements, units or nodes, whose
functionality is loosely based on the animal neuron. The processing ability of the network is stored in the interunit
connection strengths, or weights, obtained by a process of adaptation to, or learning from, a set of training
patterns.

 To flesh this out a little we first take a quick look at some basic neurobiology. The
human brain consists of an estimated 1011 (100 billion) nerve cells or neurons, a
highly stylized example of which is shown in Figure 1.1. Neurons communicate via
electrical signals that are short-lived impulses or "spikes" in the voltage of the cell
wall or membrane. The interneuron connections are mediated by electrochemical
junctions called synapses, which are located on branches of the cell referred to as
dendrites. Each neuron typically receives many thousands of connections from

Figure 1.1 Essential components of a neuron shown in stylized form.

other neurons and is therefore constantly receiving a multitude of incoming signals,
which eventually reach the cell body. Here, they are integrated or summed together
in some way and, roughly speaking, if the resulting signal exceeds some threshold
then the neuron will "fire" or generate a voltage impulse in response. This is then
transmitted to other neurons via a branching fibre known as the axon.

 In determining whether an impulse should be produced or not, some incoming
signals produce an inhibitory effect and tend to prevent firing, while others are
excitatory and promote impulse generation. The distinctive processing ability of
each neuron is then supposed to reside in the type—excitatory or inhibitory—and
strength of its synaptic connections with other neurons.

13

 It is this architecture and style of processing that we hope to incorporate in neural
networks and, because of the emphasis on the importance of the interneuron
connections, this type of system is sometimes referred to as being connectionist
and the study of this general approach as connectionism. This terminology is often
the one encountered for neural networks in the context of psychologically inspired
models of human cognitive function. However, we will use it quite generally to
refer to neural networks without reference to any particular field of application.

 The artificial equivalents of biological neurons are the nodes or units in our
preliminary definition and a prototypical example is shown in Figure 1.2. Synapses
are modelled by a single number or weight so that each input is multiplied by a
weight before being sent to the equivalent of the cell body. Here, the weighted
signals are summed together by simple arithmetic addition to supply a node
activation. In the type of node shown in Figure 1.2—the so-called threshold logic
unit (TLU)—the activation is then compared with a threshold; if the activation
exceeds the threshold, the unit produces a high-valued output (conventionally "1"),
otherwise it outputs zero. In the figure, the size of signals is represented by

Figure 1.2 Simple artificial neuron.

14

Figure 1.3 Simple example of neural network.

the width of their corresponding arrows, weights are shown by multiplication
symbols in circles, and their values are supposed to be proportional to the symbol's
size; only positive weights have been used. The TLU is the simplest (and
historically the earliest (McCulloch & Pitts 1943)) model of an artificial neuron.

 The term "network" will be used to refer to any system of artificial neurons. This
may range from something as simple as a single node to a large collection of nodes
in which each one is connected to every other node in the net. One type of network
is shown in Figure 1.3. Each node is now shown by only a circle but weights are
implicit on all connections. The nodes are arranged in a layered structure in which
each signal emanates from an input and passes via two nodes before reaching an
output beyond which it is no longer transformed. This feedforward structure is only
one of several available and is typically used to place an input pattern into one of
several classes according to the resulting pattern of outputs. For example, if the
input consists of an encoding of the patterns of light and dark in an image of
handwritten letters, the output layer (topmost in the figure) may contain 26 nodes—
one for each letter of the alphabet—to flag which letter class the input character is
from. This would be done by allocating one output node per class and requiring that
only one such node fires whenever a pattern of the corresponding class is supplied
at the input.

 So much for the basic structural elements and their operation. Returning to our
working definition, notice the emphasis on learning from experience. In real
neurons the synaptic strengths may, under certain circumstances, be modified so that
the behaviour of each neuron can change or adapt to its particular stimulus input. In
artificial neurons the equivalent of this is the modification of the weight values. In
terms of processing information, there are no computer programs here—the
"knowledge" the network has is supposed to be stored in its weights, which evolve
by a process of adaptation to stimulus from a set of pattern examples. In one
training paradigm called supervised learning, used in conjunction with nets of the
type shown in Figure 1.3, an input pattern is presented to the net and its response
then compared with a target output. In terms of our previous letter recognition
example, an "A", say, may be input and the network output compared with the
classification code for A. The difference between the two patterns of output then
determines how the weights are altered. Each particular recipe for change
constitutes a learning rule, details of which form a substantial part of subsequent
chapters. When the required weight updates have been made another pattern is
presented, the output compared with the target, and new changes made. This
sequence of events is repeated iteratively many times until (hopefully) the
network's behaviour converges so that its response to each pattern is close to the

15

corresponding target. The process as a whole, including any ordering of pattern
presentation, criteria for terminating the process, etc., constitutes the training
algorithm.

 What happens if, after training, we present the network with a pattern it hasn't seen
before? If the net has learned the underlying structure of the problem domain then it
should classify the unseen pattern correctly and the net is said to generalize well. If
the net does not have this property it is little more than a classification lookup table
for the training set and is of little practical use. Good generalization is therefore
one of the key properties of neural networks.

16

1.2 Why study neural networks?

 This question is pertinent here because, depending on one's motive, the study of
connectionism can take place from differing perspectives. It also helps to know
what questions we are trying to answer in order to avoid the kind of religious wars
that sometimes break out when the words "connectionism" or "neural network" are
mentioned.

 Neural networks are often used for statistical analysis and data modelling, in which
their role is perceived as an alternative to standard nonlinear regression or cluster
analysis techniques (Cheng & Titterington 1994). Thus, they are typically used in
problems that may be couched in terms of classification, or forecasting. Some
examples include image and speech recognition, textual character recognition, and
domains of human expertise such as medical diagnosis, geological survey for oil,
and financial market indicator prediction. This type of problem also falls within the
domain of classical artificial intelligence (AI) so that engineers and computer
scientists see neural nets as offering a style of parallel distributed computing,
thereby providing an alternative to the conventional algorithmic techniques that
have dominated in machine intelligence. This is a theme pursued further in the final
chapter but, by way of a brief explanation of this term now, the parallelism refers to
the fact that each node is conceived of as operating independently and concurrently
(in parallel with) the others, and the "knowledge" in the network is distributed over
the entire set of weights, rather than focused in a few memory locations as in a
conventional computer. The practitioners in this area do not concern themselves
with biological realism and are often motivated by the ease of implementing
solutions in digital hardware or the efficiency and accuracy of particular
techniques. Haykin (1994) gives a comprehensive survey of many neural network
techniques from an engineering perspective.

 Neuroscientists and psychologists are interested in nets as computational models of
the animal brain developed by abstracting what are believed to be those properties
of real nervous tissue that are essential for information processing. The artificial
neurons that connectionist models use are often extremely simplified versions of
their biological counterparts and many neuroscientists are sceptical about the
ultimate power of these impoverished models, insisting that more detail is
necessary to explain the brain's function. Only time will tell but, by drawing on
knowledge about how real neurons are interconnected as local "circuits",
substantial inroads have been made in modelling brain functionality. A good
introduction to this programme of computational neuroscience is given by
Churchland & Sejnowski (1992).

 Finally, physicists and mathematicians are drawn to the study of networks from an

17

interest in nonlinear dynamical systems, statistical mechanics and automata theory.1

It is the job of applied mathematicians to discover and formalize the properties of
new systems using tools previously employed in other areas of science. For
example, there are strong links between a certain type of net (the Hopfield net—see
Ch. 7) and magnetic systems known as spin glasses. The full mathematical
apparatus for exploring these links is developed (alongside a series of concise
summaries) by Amit (1989).

 All these groups are asking different questions: neuroscientists want to know how
animal brains work, engineers and computer scientists want to build intelligent
machines and mathematicians want to understand the fundamental properties of
networks as complex systems. Another (perhaps the largest) group of people are to
be found in a variety of industrial and commercial areas and use neural networks to
model and analyze large, poorly understood datasets that arise naturally in their
workplace. It is therefore important to understand an author's perspective when
reading the literature. Their common focal point is, however, neural networks and
is potentially the basis for close collaboration. For example, biologists can usefully
learn from computer scientists what computations are necessary to enable animals
to solve particular problems, while engineers can make use of the solutions nature
has devised so that they may be applied in an act of "reverse engineering".

 In the next chapter we look more closely at real neurons and how they may be
modelled by their artificial counterparts. This approach allows subsequent
development to be viewed from both the biological and engineering-oriented
viewpoints.

18

1.3 Summary

 Artificial neural networks may be thought of as simplified models of the networks
of neurons that occur naturally in the animal brain. From the biological viewpoint
the essential requirement for a neural network is that it should attempt to capture
what we believe are the essential information processing features of the
corresponding "real" network. For an engineer, this correspondence is not so
important and the network offers an alternative form of parallel computing that
might be more appropriate for solving the task in hand.

 The simplest artificial neuron is the threshold logic unit or TLU. Its basic operation
is to perform a weighted sum of its inputs and then output a "1" if this sum exceeds
a threshold, and a "0" otherwise. The TLU is supposed to model the basic
"integrate-and-fire" mechanism of real neurons.

19

1.4 Notes

 1. It is not important that the reader be familiar with these areas. It suffices to understand that neural networks
can be placed in relation to other areas studied by workers in these fields.

20

Chapter Two
Real and artificial neurons

 The building blocks of artificial neural nets are artificial neurons. In this chapter
we introduce some simple models for these, motivated by an attempt to capture the
essential information processing ability of real, biological neurons. A description
of this is therefore our starting point and, although our excursion into
neurophysiology will be limited, some of the next section may appear factually
rather dense on first contact. The reader is encouraged to review it several times to
become familiar with the biological "jargon" and may benefit by first re-reading the
précis of neuron function that was given in the previous chapter. In addition, it will
help to refer to Figure 2.1 and the glossary at the end of the next section.

21

2.1 Real neurons: a review

 Neurons are not only enormously complex but also vary considerably in the details
of their structure and function. We will therefore describe typical properties
enjoyed by a majority of neurons and make the usual working assumption of
connectionism that these provide for the bulk of their computational ability.
Readers interested in finding out more may consult one of the many texts in
neurophysiology; Thompson (1993) provides a good introductory text, while more
comprehensive accounts are given by Kandel et al. (1991) and Kuffler et al.
(1984).

 A stereotypical neuron is shown in Figure 2.1, which should be compared with the
simplified diagram in Figure 1.1. The cell body or soma contains the usual
subcellular components or organelles to be found in most cells throughout the body
(nucleus, mitochondria, Golgi body, etc.) but these are not shown in the diagram.
Instead we focus on what differentiates neurons from other cells allowing the
neuron to function as a signal processing device. This ability stems largely from the
properties of the neuron's surface covering or membrane, which supports a wide
variety of electrochemical processes. Morphologically the main difference lies in
the set of fibres that emanate from the cell body. One of these fibres—the axon—is
responsible for transmitting signals to other neurons and may therefore be
considered the neuron output. All other fibres are dendrites, which carry signals
from other neurons to the cell body, thereby acting as neural

Figure 2.1 Biological neuron.

inputs. Each neuron has only one axon but can have many dendrites. The latter often
appear to have a highly branched structure and so we talk of dendritic arbors. The

22

axon may, however, branch into a set of collaterals allowing contact to be made
with many other neurons. With respect to a particular neuron, other neurons that
supply input are said to be afferent, while the given neuron's axonal output,
regarded as a projection to other cells, is referred to as an efferent. Afferent axons
are said to innervate a particular neuron and make contact with dendrites at the
junctions called synapses. Here, the extremity of the axon, or axon terminal, comes
into close proximity with a small part of the dendritic surface—the postsynaptic
membrane. There is a gap, the synoptic cleft, between the presynaptic axon
terminal membrane and its postsynaptic counterpart, which is of the order of 20
nanometres (2×10-8m) wide. Only a few synapses are shown in Figure 2.1 for the
sake of clarity but the reader should imagine a profusion of these located over all
dendrites and also, possibly, the cell body. The detailed synaptic structure is shown
in schematic form as an inset in the figure.

 So much for neural structure; how does it support signal processing? At
equilibrium, the neural membrane works to maintain an electrical imbalance of
negatively and positively charged ions. These are atoms or molecules that have a
surfeit or deficit of electrons, where each of the latter carries a single negative
charge. The net result is that there is a potential difference across the membrane
with the inside being negatively polarized by approximately 70mV1 with respect to
the outside. Thus, if we could imagine applying a voltmeter to the membrane it
would read 70mV, with the inside being more negative than the outside. The main
point here is that a neural membrane can support electrical signals if its state of
polarization or membrane potential is dynamically changed. To see this, consider
the case of signal propagation along an axon as shown in Figure 2.2. Signals that
are propagated along axons, or action potentials, all have the same characteristic
shape, resembling sharp pulse-like spikes. Each graph shows a snapshot of the
membrane potential along a segment of axon that is currently transmitting a single
action potential, and the lower panel shows the situation at some later time with
respect to the upper one. The ionic mechanisms at work to produce this process
were first worked out by Hodgkin & Huxley (1952). It relies

23

Figure 2.2 Action-potential propagation.

on the interplay between each of the ionic currents across the membrane and its
mathematical description is complex. The details do not concern us here, but this
example serves to illustrate the kind of simplification we will use when we model
using artificial neurons; real axons are subject to complex, nonlinear dynamics but
will be modelled as a passive output "wire". Many neurons have their axons
sheathed in a fatty substance known as myelin, which serves to enable the more
rapid conduction of action potentials. It is punctuated at approximately 1 mm
intervals by small unmyelinated segments (nodes of Ranvier in Fig. 2.1), which act
rather like "repeater stations" along a telephone cable.

 We are now able to consider the passage of signals through a single neuron, starting
with an action potential reaching an afferent axon terminal. These contain a
chemical substance or neurotransmitter held within a large number of small
vesicles (literally "little spheres"). On receipt of an action potential the vesicles
migrate to the presynaptic membrane and release their neurotransmitter across the
synaptic cleft. The transmitter then binds chemically with receptor sites at the
postsynaptic membrane. This initiates an electrochemical process that changes the
polarization state of the membrane local to the synapse. This postsynaptic
potential (PSP) can serve either to depolarize the membrane from its negative
resting state towards 0 volts, or to hyperpolarize the membrane to an even greater
negative potential. As we shall see, neural signal production is encouraged by
depolarization, so that PSPs which are positive are excitatory PSPs (EPSPs) while
those which hyperpolarize the membrane are inhibitory (IPSPs). While action
potentials all have the same characteristic signal profile and the same maximum
value, PSPs can take on a continuous range of values depending on the efficiency of
the synapse in utilizing the chemical transmitter to produce an electrical signal. The
PSP spreads out from the synapse, travels along its associated dendrite towards the
cell body and eventually reaches the axon hillock—the initial segment of the axon

24

where it joins the soma. Concurrent with this are thousands of other synaptic events
distributed over the neuron. These result in a plethora of PSPs, which are
continually arriving at the axon hillock where they are summed together to produce
a resultant membrane potential.

 Each contributory PSP at the axon hillock exists for an extended time (order of
milliseconds) before it eventually decays so that, if two PSPs arrive slightly out of
synchrony, they may still interact in the summation process. On the other hand,
suppose two synaptic events take place with one close to and another remote from
the soma, by virtue of being at the end of a long dendritic branch. By the time the
PSP from the distal (remote) synapse has reached the axon hillock, that originating
close to the soma will have decayed. Thus, although the initiation of PSPs may take
place in synchrony, they may not be effective in combining to generate action
potentials. It is apparent, therefore, that a neuron sums or integrates its PSPs over
both space and time. Substantial modelling effort—much of it pioneered by Rail
(1957, 1959)—has gone into describing the conduction of PSPs along dendrites and
their subsequent interaction although, as in the case of axons, connectionist models
usually treat these as passive wires with no temporal characteristics.

 The integrated PSP at the axon hillock will affect its membrane potential and, if this
exceeds a certain threshold (typically about -50mV), an action potential is
generated, which then propagates down the axon, along any collaterals, eventually
reaching axon terminals resulting in a shower of synaptic events at neighbouring
neurons "downstream" of our original cell. In reality the "threshold" is an emergent
or meta-phenomenon resulting from the nonlinear nature of the Hodgkin-Huxley
dynamics and, under certain conditions, it can be made to change. However, for
many purposes it serves as a suitable high-level description of what actually
occurs. After an action potential has been produced, the ionic metabolites used in
its production have been depleted and there is a short refractory period during
which, no matter what value the membrane potential takes, there can be no initiation
of another action potential.

 It is useful at this stage to summarize what we have learnt so far about the
functionality of real neurons with an eye to the simplification required for
modelling their artificial counterparts.

 – Signals are transmitted between neurons by action potentials, which have a
stereotypical profile and display an "all-or-nothing" character; there is no such
thing as half an action potential.

 – When an action potential impinges on a neuronal input (synapse) the effect is a
PSP, which is variable or graded and depends on the physicochemical properties
of the synapse.

25

 – The PSPs may be excitatory or inhibitory.

 – The PSPs are summed together at the axon hillock with the result expressed as its
membrane potential.

 – If this potential exceeds a threshold an action potential is initiated that proceeds
along the axon.

 Several things have been deliberately omitted here. First, the effect that synaptic
structure can have on the value of the PSP. Factors that may play a role here include
the type and availability of neurotransmitter, the postsynaptic receptors and
synaptic geometry. Secondly, the spatio-temporal interdependencies of PSPs
resulting from dendritic geometry whereby, for example, synapses that are remote
from each other may not effectively combine. Finally, we have said nothing about
t h e dynamics of action-potential generation and propagation. However, our
summary will serve as a point of departure for defining the kind of artificial
neurons described in this book. More biologically realistic models rely on solving
Hodgkin-Huxley-type dynamics and modelling dendrites at the electrical circuit
level; details of these methods can be found in the review compilation of Koch &
Segev (1989).

 2.1.1 Glossary of terms

 Those terms in italics may be cross-referenced in this glossary.

 action potential The stereotypical voltage spike that constitutes an active output
from a neuron. They are propagated along the axon to other neurons.

 afferent With respect to a particular neuron, an axon that impinges on (or
innervates) that neuron.

 arbor Usually used in the context of a dendritic arbor—the tree-like structure
associated with dendritic branching.

 axon The fibre that emanates from the neuron cell body or soma and that conducts
action potentials to other neurons.

 axon hillock The junction of the axon and cell body or soma. The place where
action potentials are initiated if the membrane potential exceeds a threshold.

 axon terminal An axon may branch into several collaterals, each terminating at an

26

axon terminal, which constitutes the presynaptic component of a synapse.

 chemical binding The process in which a neurotransmitter joins chemically with a
receptor site thereby initiating a PSP.

 collateral An axon may divide into many collateral branches allowing contact with
many other neurons or many contacts with one neuron.

 dendrite One of the branching fibres of a neuron, which convey input information
via PSPs.

 depolarization The membrane potential of the neuron has a negative resting or
equilibrium value. Making this less negative leads to a depolarization. Sufficient
depolarization at the axon hillock will give rise to an action potential.

 efferent A neuron sends efferent axon collaterals to other neurons.

 EPSP Excitatory Postsynaptic Potential. A PSP that acts to depolarize the neural
membrane.

 hyperpolarization The membrane potential of the neuron has a negative resting or
equilibrium value. Making this more negative leads to a hyperpolarization and
inhibits the action of EPSPs, which are trying to depolarize the membrane.

 innervate Neuron A sending signals to neuron B is said to innervate neuron B.

 IPSP Inhibitory Postsynaptic Potential. A PSP that acts to hyperpolarize the neural
membrane.

 membrane potential The voltage difference at any point across the neural
membrane.

 neurotransmitter The chemical substance that mediates synaptic activity by
propagation across the synaptic cleft.

 organelle Subcellular components that partake in metabolism, etc.

 postsynaptic membrane That part of a synapse which is located on the dendrite
and consists of the dendritic membrane together with receptor sites.

 potential difference The voltage difference across the cell membrane.

 presynaptic membrane That part of a synapse which is located on the axon

27

terminal.

 PSP Postsynaptic Potential. The change in membrane potential brought about by
activity at a synapse.

 receptor sites The sites on the postsynaptic membrane to which molecules of
neurotransmitter bind. This binding initiates the generation of a PSP.

 refractory period The shortest time interval between two action potentials.

 soma The cell body.

 synapse The site of physical and signal contact between neurons. On receipt of an
action potential at the axon terminal of a synapse, neurotransmitter is released
into the synaptic cleft and propagates to the postsynaptic membrane. There it
undergoes chemical binding with receptors, which, in turn, initiates the production
of a postsynaptic potential (PSP).

 synaptic cleft The gap between the pre- and postsynaptic membranes across which
chemical neurotransmitter is propagated during synaptic action. vesicles The
spherical containers in the axon terminal that contain neurotransmitter. On receipt
of an action potential at the axon terminal, the vesicles release their
neurotransmitter into the synaptic cleft.

28

2.2 Artificial neurons: the TLU

 Our task is to try and model some of the ingredients in the list above. Our first
attempt will result in the structure described informally in Section 1.1.

 The "all-or-nothing" character of the action potential may be characterized by using
a two-valued signal. Such signals are often referred to as binary or Boolean2 and
conventionally take the values "0" and "1". Thus, if we have a node receiving n
input signals x1, x2,…, xn, then these may only take on the values "0" or "1". In line
with the remarks of the previous chapter, the modulatory effect of each synapse is
encapsulated by simply multiplying the incoming signal with a weight value, where
excitatory and inhibitory actions are modelled using positive and negative values
respectively. We therefore have n weights w1, w2,…, wn and form the n products
w1x1, w2x2,…, wnxn. Each product is now the analogue of a PSP and may be
negative or positive, depending on the sign of the weight. They should now be
combined in a process which is supposed to emulate that taking place at the axon
hillock. This will be done by simply adding them together to produce the activation
a (corresponding to the axon-hillock membrane potential) so that

(2.1)

As an example, consider a five-input unit with weights (0.5, 1.0, -1.0, -0.5, 1.2),
that is w1=0.5, w2=1.0,…, w5=1.2, and suppose this is presented with inputs (1, 1,
1, 0, 0) so that x1=1, x2=1,…, x5=0. Using (2.1) the activation is given by

To emulate the generation of action potentials we need a threshold value (Greek
theta) such that, if the activation exceeds (or is equal to) then the node outputs a
"1" (action potential), and if it is less than then it emits a "0". This may be
represented graphically as shown in Figure 2.3 where the output has been
designated the symbol y. This relation is sometimes called a step function or hard-
limiter for obvious reasons. In our example, suppose that =0.2; then, since a>0.2
(recall a=0.5) the node's output y is 1. The entire node structure is shown in Figure
2.4 where the weights have been depicted by encircled multiplication signs. Unlike
Figure 1.1, however, no effort has been made to show the size of the weights or

29

signals. This type of artificial neuron is known as a threshold logic unit (TLU) and
was originally proposed by McCulloch and Pitts (McCulloch & Pitts 1943).

 It is more convenient to represent the TLU functionality in a symbolic rather than a
graphical form. We already have one form for the activation as supplied by (2.1).
However, this may be written more compactly using a notation that makes use of the
way we have written the weights and inputs. First, a word on

Figure 2.3 Activation-output threshold relation in graphical form.

Figure 2.4 TLU.

the notation is relevant here. The small numbers used in denoting the inputs and
weights are referred to as subscripts. If we had written the numbers near the top
(e.g. x1) they would have been superscripts and, quite generally, they are called
indices irrespective of their position. By writing the index symbolically (rather
than numerically) we can refer to quantities generically so that xi, for example,
denotes the generic or ith input where it is assumed that i can be any integer
between 1 and n. Similar remarks apply to the weights wi. Using these ideas it is
possible to represent (2.1) in a more compact form

30

(2.2)

where E (upper case Greek sigma) denotes summation. The expressions above and
below E denote the upper and lower limits of the summation and tell us that the
index i runs from 1 to n. Sometimes the limits are omitted because they have been
defined elsewhere and we simply indicate the summation index (in this case i) by
writing it below the E.

 The threshold relation for obtaining the output y may be written

(2.3)

Notice that there is no mention of time in the TLU; the unit responds instantaneously
to its input whereas real neurons integrate over time as well as space. The
dendrites are represented (if one can call it a representation) by the passive
connecting links between the weights and the summing operation. Action-potential
generation is simply represented by the threshold function.

31

2.3 Resilience to noise and hardware failure

 Even with this simple neuron model we can illustrate two of the general properties
of neural networks. Consider a two-input TLU with weights (0, 1) and threshold
0.5. Its response to all four possible input sets is shown in Table 2.1.

Now suppose that our hardware which implements the TLU is faulty so that the
weights are not held at their true values and are encoded instead as (0.2, 0.8). The
revised TLU functionality is given in Table 2.2. Notice that, although the activation
has changed, the output is the same as that for the original TLU. This is because
changes in the activation, as long as they don't cross the threshold, produce no
change in output. Thus, the threshold function doesn't care whether the activation is
just below or is very much less than ; it still outputs a 0. Similarly, it doesn't
matter by how much the activation exceeds , the TLU always supplies a 1 as
output.

This behaviour is characteristic of nonlinear systems. In a linear system, the output
is proportionally related to the input: small/large changes in the input always
produce corresponding small/large changes in the output. On the other hand,
nonlinear relations do not obey a proportionality restraint so the magnitude of the
change in output does not necessarily reflect that of the input. Thus, in our TLU
example, the activation can change from 0 to 0.2 (a difference of 0.2) and make no
difference to the output. If, however, it were to change from 0.49 to 0.51 (a
difference of 0.02) the output would suddenly alter from 0 to 1.

 We conclude from all this that TLUs are robust in the presence of hardware failure;

32

if our hardware breaks down "slightly" the TLU may still function perfectly well as
a result of its nonlinear functionality.

Suppose now that, instead of the weights being altered, the input signals have
become degraded in some way, due to noise or a partial power loss, for example,
so that what was previously "1" is now denoted by 0.8, and "0" becomes 0.2. The
resulting TLU function is shown in Table 2.3. Once again the resulting TLU
function is the same and a similar reasoning applies that involves the nonlinearity
implied by the threshold. The conclusion is that the TLU is robust in the presence of
noisy or corrupted signal inputs. The reader is invited to examine the case where
both weights and signals have been degraded in the way indicated here. Of course,
if we increase the amount by which the weights or signals have been changed too
much, the TLU will eventually respond incorrectly. In a large network, as the
degree of hardware and/or signal degradation increases, the number of TLU units
giving incorrect results will gradually increase too. This process is called
"graceful degradation" and should be compared with what happens in conventional
computers where alteration to one component or loss of signal strength along one
circuit board track can result in complete failure of the machine.

33

2.4 Non-binary signal communication

 The signals dealt with so far (for both real and artificial neurons) have taken on
only two values. In the case of real neurons these are the action-potential spiking
voltage and the axon-membrane resting potential. For the TLUs they were
conveniently labelled "1" and "0" respectively. Real neurons, however, are
believed to encode their signal values in the patterns of action-potential firing
rather than simply by the presence or absence of a single such pulse. Many
characteristic patterns are observed (Conners & Gutnick 1990) of which two
common examples are shown in Figure 2.5.

 Part (a) shows a continuous stream of action-potential spikes while (b) shows

Figure 2.5 Neural firing patterns.

a pattern in which a series of pulses is followed by a quiescent period, with this
sequence repeating itself indefinitely. A continuous stream as in (a) can be
characterized by the frequency of occurrence of action potential in pulses per
second and it is tempting to suppose that this is, in fact, the code being signalled by
the neuron. This was convincingly demonstrated by Hartline (1934, 1940) for the
optic neurons of the Horseshoe crab Limulus in which he showed that the rate of
firing increased with the visual stimulus intensity. Although many neural codes are
available (Bullock et al. 1977) the frequency code appears to be used in many
instances.

 If f is the frequency of neural firing then we know that f is bounded below by zero
and above by some maximum value fmax, which is governed by the duration of the
interspike refractory period. There are now two ways we can code for f in our
artificial neurons. First, we may simply extend the signal representation to a
continuous range and directly represent f as our unit output. Such signals can
certainly be handled at the input of the TLU, as we remarked in examining the

34

effects of signal degradation. However, the use of a step function at the output
limits the signals to be binary so that, when TLUs are connected in networks (and
they are working properly), there is no possibility of continuously graded signals
occurring. This may be overcome by "softening" the step function to a continuous
"squashing" function so that the output y depends smoothly on the activation a. One
convenient form for this is the logistic sigmoid (or sometimes simply "sigmoid")
shown in Figure 2.6.

 As a tends to large positive values the sigmoid tends to 1 but never actually reaches
this value. Similarly it approaches—but never quite reaches—0 as a tends to large
negative values. It is of no importance that the upper bound is not fmax, since we can
simply multiply the sigmoid's value by fmax if we wish to interpret y as a real firing
rate. The sigmoid is symmetric about the y-axis value of 0.5;

Figure 2.6 Example of squashing function—the sigmoid.

the corresponding value of the activation may be thought of as a reinterpretation of
the threshold and is denoted by . The sigmoid function is conventionally
designated by the Greek lower case sigma, , and finds mathematical expression
according to the relation

(2.4)

where e 2.7183 is a mathematical constant3, which, like , has an infinite decimal
expansion. The quantity (Greek rho) determines the shape of the function, large
values making the curve flatter while small values make the curve rise more
steeply. In many texts, this parameter is omitted so that it is implicitly assigned the
value 1. By making progressively smaller we obtain functions that look ever
closer to the hard-limiter used in the TLU so that the output function of the latter can

35

be thought of as a special case. The reference to as a threshold then becomes
more plausible as it takes on the role of the same parameter in the TLU.

 Artificial neurons or units that use the sigmoidal output relation are referred to as
being of the semilinear type. The activation is still given by Equation (2.2) but now
the output is given by (2.4). They form the bedrock of much work in neural nets
since the smooth output function facilitates their mathematical description. The term
"semilinear" comes from the fact that we may approximate the sigmoid by a
continuous, piecewise-linear function, as shown in Figure 2.7. Over a significant
region of interest, at intermediate values of the activation, the output function is a
linear relation with non-zero slope.

 As an alternative to using continuous or analogue signal values, we may emulate
the real neuron and encode a signal as the frequency of the occurrence of a "1" in a
pulse stream as shown in Figure 2.8.

 Time is divided into discrete "slots" and each slot is filled with either a 0 (no
pulse) or a 1 (pulse). The unit output is formed in exactly the same way as before
but, instead of sending the value of the sigmoid function directly, we interpret it as
the probability of emitting a pulse or "1". Processes that are governed by
probabilistic laws are referred to as stochastic so that these nodes might be dubbed
stochastic semilinear units, and they produce signals quite close in general

Figure 2.7 Piecewise-linear approximation of sigmoid.

Figure 2.8 Stream of output pulses from a stochastic node.

36

appearance to those of real neurons. How are units downstream that receive these
signals supposed to interpret their inputs? They must now integrate over some
number, N, of time slots. Thus, suppose that the afferent node is generating pulses
with probability y. The expected value of the number of pulses over this time is yN
but, in general, the number actually produced, N1, will not necessarily be equal to
this. The best estimate a node receiving these signals can make is the fraction,
N1/N, of 1s during its integration time. The situation is like that in a coin tossing
experiment. The underlying probability of obtaining a "head" is 0.5, but in any
particular sequence of tosses the number of heads Nh is not necessarily one-half of
the total. As the number N of tosses increases, however, the fraction Nh/N will
eventually approach 0.5.

37

2.5 Introducing time

 Although time reared its head in the last section, it appeared by the back door, as it
were, and was not intrinsic to the dynamics of the unit—we could choose not to
integrate, or, equivalently, set N=1. The way to model the temporal summation of
PSPs at the axon hillock is to use the rate of change of the activation as the
fundamental defining quantity, rather than the activation itself. A full treatment
requires the use of a branch of mathematics known as the calculus but the resulting
behaviour may be described in a reasonably straightforward way. We shall,
however, adopt the calculus notation dx/dt, for the rate of change of a quantity x. It
cannot be overemphasized that this is to be read as a single symbolic entity,
"dx/dt", and not as dx divided by dt. To avoid confusion with the previous notation
it is necessary to introduce another symbol for the weighted sum of inputs, so we
define

(2.5)

The rate of change of the activation, da/dt, is then defined by

(2.6)

where (alpha) and (beta) are positive constants. The first term gives rise to
activation decay, while the second represents the input from the other units. As
usual the output y is given by the sigmoid of the activation, y= (a). A unit like this
is sometimes known as a leaky integrator for reasons that will become apparent
shortly.

 There is an exact physical analogue for the leaky integrator with which we are all
familiar. Consider a tank of water that has a narrow outlet near the base and that is
also being fed by hose or tap as shown in Figure 2.9 (we might think of a bathtub,
with a smaller drainage hole than is usual). Let the rate at which the water is
flowing through the hose be s litres per minute and let the depth of water be a. If the
outlet were plugged, the rate of change of water level would be proportional to s,

38

or da/dt= s where is a constant. Now suppose there is no inflow, but the outlet is
working. The rate at which water leaves is directly proportional to the water
pressure at the outlet, which is, in turn, proportional to the depth of water in the
tank. Thus, the rate of water emission may be written as a litres per minute where

 is some constant. The water level is now decreasing so that its rate of change is
now negative and we have da/dt=- a. If both hose and outlet are functioning then
da/dt is the sum of contributions from both, and its governing equation is just the
same as that for the neural activation in (2.6). During the subsequent discussion it
might be worth while referring back to this analogy if the reader has any doubts
about what is taking place.

Figure 2.9 Water tank analogy for leaky integrators.

 Returning to the neural model, the activation can be negative or positive (whereas
the water level is always positive in the tank). Thus, on putting s=0, so that the unit
has no external input, there are two cases:

 (a) a>0. Then da/dt<0. That is, the rate of change is negative, signifying a decrease
of a with time.

 (b) a<0. Then da/dt>0. That is, the rate of change is positive, signifying an increase
of a with time.

 These are illustrated in Figure 2.10, in which the left and right sides correspond to
cases (a) and (b) respectively In both instances the activity gradually approaches
its resting value of zero. It is this decay process that leads to the "leaky" part of the
unit's name. In a TLU or semilinear node, if we withdraw input, the activity
immediately becomes zero. In the new model, however, the unit has a kind of short-
term memory of its previous input before it was withdrawn. Thus, if this was
negative, the activation remains negative for a while afterwards, with a
corresponding condition holding for recently withdrawn positive input.

39

Figure 2.10 Activation decay in leaky integrator.

Suppose now that we start with activation zero and no input, and supply a constant
input s=1 for a time t before withdrawing it again. The activation resulting from this
is shown in Figure 2.11. The activation starts to increase but does so rather
sluggishly. After s is taken down to zero, a decays in the way described above. If s
had been maintained long enough, then a would have eventually reached a constant
value. To see what this is we put da/dt=0, since this is a statement of there being no
rate of change of a, and a is constant at some equilibrium value aeqm. Putting
da/dt=0 in (2.6) gives

(2.7)

that is, a constant fraction of s. If = then aeqm=s. The speed at which a can
respond to an input change may be characterized by the time taken to reach some
fraction of aeqm (0.75aeqm, say) and is called the rise-time.

Figure 2.11 Input pulse to leaky integrator.

Suppose now that a further input pulse is presented soon after the first has been
withdrawn. The new behaviour is shown in Figure 2.12. Now the activation starts
to pick up again as the second input signal is delivered and, since a has not had

40

time to decay to its resting value in the interim, the peak value obtained this time is
larger than before. Thus the two signals interact with each other and there is
temporal summation or integration (the "integrator" part of the unit's name). In a
TLU, the activation would, of course, just be equal to s. The value of the constants

 and govern the decay rate and rise-time respectively and, as they are increased,
the decay rate increases and the rise-time falls. Keeping = and letting both
become very large therefore allows a to rise and fall very quickly and to reach
equilibrium at s. As these constants are increased further, the resulting behaviour of
a becomes indistinguishable from that of a TLU, which can therefore be thought of
as a special case of the leaky integrator with very large constants , (and, of
course, very steep sigmoid).

 Leaky integrators find their main application in self-organizing nets (Ch. 8) . They
have been studied extensively by Stephen Grossberg who provides a review in
Grossberg (1988). What Grossberg calls the "additive STM model" is essentially
the same as that developed here, but he also goes on to describe another—the
"shunting STM" neuron—which is rather different.

 This completes our first foray into the realm of artificial neurons. It is adequate for
most of the material in the rest of this book but, to round out the story, Chapter 10
introduces some alternative structures.

Figure 2.12 Leaky-integrator activation (solid line) for two square input pulses (dashed line).

41

2.6 Summary

 The function of real neurons is extremely complex. However, the essential
information processing attributes may be summarized as follows. A neuron
receives input signals from many other (afferent) neurons. Each such signal is
modulated (by the synaptic mechanism) from the voltage spike of an action
potential into a continuously variable (graded) postsynaptic potential (PSP). PSPs
are integrated by the dendritic arbors over both space (many synaptic inputs) and
time (PSPs do not decay to zero instantaneously). PSPs may be excitatory or
inhibitory and their integrated result is a change in the membrane potential at the
axon hillock, which may serve to depolarize (excite or activate) or hyperpolarize
(inhibit) the neuron. The dynamics of the membrane under these changes are
complex but may be described in many instances by supposing that there is a
membrane-potential threshold, beyond which an action potential is generated and
below which no such event takes place. The train of action potentials constitutes the
neural "output". They travel away from the cell body along the axon until they reach
axon terminals (at synapses) upon which the cycle of events is initiated once again.
Information is encoded in many ways in neurons but a common method is to make
use of the frequency or rate of production of action potentials.

 The integration of signals over space may be modelled using a linear weighted sum
of inputs. Synaptic action is then supposed to be equivalent to multiplication by a
weight. The TLU models the action potential by a simple threshold mechanism that
allows two signal levels (0 or 1). The rate of firing may be represented directly in
a semilinear node by allowing a continuous-valued output or (in the stochastic
variant) by using this value as a probability for the production of signal pulses.
Integration over time is catered for in the leaky-integrator model. All artificial
neurons show robust behaviour under degradation of input signals and hardware
failure.

42

2.7 Notes

 1. The millivolt (mV) is one-thousandth of a volt.

 2. After George Boole who developed a formal logic with two values denoting "True" and "False".

 3. Scientific calculators should have this as one of their special purpose buttons.

43

Chapter Three
TLUs, linear separability and vectors

 The simplest artificial neuron presented in the last chapter was the threshold logic
unit or TLU. In this chapter we shall discuss a geometric context for describing the
functionality of TLUs and their networks that has quite general relevance for the
study of all neural networks. In the process it will be necessary to introduce some
mathematical concepts about vectors. These are also of general importance and so
their properties are described in some detail. Readers already familiar with this
material may still wish to skim Section 3.2 to become acquainted with our notation.

44

3.1 Geometric interpretation of TLU action

 In summary, a TLU separates its input patterns into two categories according to its
binary response ("0" or "1") to each pattern. These categories may be thought of as
regions in a multidimensional space that are separated by the higher dimensional
equivalent of a straight line or plane.

 These ideas are now introduced step by step and in a way that should help put to
rest any concerns about "higher dimensionality" and "multidimensional spaces".

 3.1.1 Pattern classification and input space

 Consider a two-input TLU with weights w1=1, w2=1 and threshold 1.5, as shown in
Figure 3.1. The responses to the four possible Boolean inputs are shown in Table
3.1. The TLU may be thought of as classifying its input patterns into two groups:
those that give output "1" and those that give output "0". Each input pattern has two
components, x1, x2. We may therefore represent these patterns in a two-dimensional
space as shown in Figure 3.2.

 Each pattern determines a point in this so-called pattern space by using its

Figure 3.1 Two-input TLU.

45

Figure 3.2 Two-input patterns in pattern space.

component values as space co-ordinates—just as grid references can locate points
in physical space on a normal geographical map. In general, for n inputs, the pattern
space will be n dimensional. Clearly, for n>3 the pattern space cannot be drawn or
represented in physical space. This is not a problem. The key is that all
relationships between patterns can be expressed either geometrically, as i n Figure
3.2, or algebraically using the notion of vectors. We can then gain insight into
pattern relationships in two dimensions (2D), reformulate this in vector form and
then simply carry over the results to higher dimensions. This process will become
clearer after it has been put to use later. All the necessary tools for using vectors
are introduced in this chapter; their appreciation will significantly increase any
understanding of neural nets.

 We now develop further the geometric representation of our two-input TLU.

 3.1.2 The linear separation of classes

 Since the critical condition for classification occurs when the activation equals the
threshold, we will examine the geometric implication of this. For two inputs,
equating and a gives

(3.1)

Subtracting w1x1 from both sides

46

(3.2)

and dividing both sides by w2 gives

(3.3)

This is of the general form

(3.4)

where a and b are constants. This equation describes a straight line with slope a
and intercept b on the x2 axis. This is illustrated in Figure 3.3 where the graph of
the equation y=ax+b has been plotted for two sets of values of a, b. In each case
the slope is given by the change y that occurs in y when a positive change x is
made in x (" " is Greek upper case delta and usually signifies a change in a

Figure 3.3 Straight line graphs.

quantity). As an example, in motoring, to describe a hill as having a "one-in-ten"
slope implies you have to travel 10 metres to go up 1 metre and the hill therefore
has a slope of magnitude 1/10. In the notation introduced here, there is a x of 10
associated with a y of 1. In the left hand part of the figure, y is increasing with x.
Therefore, y>0 when a positive change x is made, and so the slope a is positive.
The right hand part of the figure shows y decreasing with x so that y<0 when x is

47

increased, resulting in a negative slope.

 For the TLU example, inserting the values of w1, w2, in (3.3) we obtain a=-1,
b=1.5 as shown in Figure 3.4, which also shows the output of the TLU for each
pattern. The two classes of TLU output are separated by the line produced in this
way so that the 1s (there is only one of them) and 0s lie on opposite sides of the
line; we therefore talk of this as the decision line. Clearly, it is always possible to
partition the two classes in 2D by drawing some kind of line—the point here is that
the line is a straight one having no kinks or bends. It turns out that this is not just a
fortuitous result made possible by our choice of weights and threshold. It holds true
for any two-input TLU. This distinction is clearer in 3D where, quite generally, we
can define a decision surface that may have to be highly convoluted but a TLU will
necessarily be associated with a flat decision plane.

Figure 3.4 Decision line in two-input example.

Further, it is possible to generalize this result (in its algebraic form) to TLUs with
an arbitrary number, n say, of inputs; that is, it is always possible to separate the
two output classes of a TLU by the n-dimensional equivalent of a straight line in 2D
or, in 3D, a plane. In n dimensions this is referred to as the decision hyperplane.
(The "hyper-" is sometimes dropped even when n>3). Because TLUs are intimately
related to linear relations like (3.3) (and their generalization) we say that TLUs are
linear classifiers and that their patterns are linearly separable. The converse of
our result is also true: any binary classification that cannot be realized by a linear
decision surface cannot be realized by a TLU.

 We now try to demonstrate these results using the machinery of vectors. These
ideas will also have general applicability in our discussion of nets throughout.

48

3.2 Vectors

 Vectors are usually introduced as representations of quantities that have magnitude
and direction. For example, the velocity of the wind is defined by its speed and
direction. On paper we may draw an arrow whose direction is the same as that of
the wind and whose length is proportional to its speed. Such a representation is the
basis for some of the displays on televised weather reports, and we can
immediately see when there will be high winds, as these are associated with large
arrows. A single vector is illustrated in Figure 3.5, which illustrates some notation.

Figure 3.5 A vector.

Vectors are usually denoted in printed text by bold face letters (e.g. v), but in
writing them by hand we can't use bold characters and so make use of an underline
as in v. The magnitude (or length) of v will be denoted by ||v|| but is also sometimes
denoted by the same letter in italic face (e.g. v). In accordance with our geometric
ideas a vector is now defined by the pair of numbers (||v||,) where is the angle
the vector makes with some reference direction. Vectors are to be distinguished
from simple numbers or scalars, which have a value but no direction.

 In order to generalize to higher dimensions, and to relate vectors to the ideas of
pattern space, it is more convenient to describe vectors with respect to a
rectangular or cartesian co-ordinate system like the one used for the TLU example
in 2D. That is, we give the projected lengths of the vector onto two perpendicular
axes as shown in Figure 3.6.

 The vector is now described by the pair of numbers v1, v2. These numbers are its
components in the chosen co-ordinate system. Since they completely determine the
vector we may think of the vector itself as a pair of component values and write
v=(v1, v2). The vector is now an ordered list of numbers. Note that the ordering is
important, since (1, 3) is in a different direction from (3, 1). It is this algebraic
definition that immediately generalizes to more than 2D. An n-dimensional vector is
simply an ordered list of n numbers, v=(v1, v2,…, vn). They become of interest
when rules are defined for combining them and multiplying them by numbers or

49

scalars (see below). To motivate the following technical material, we note that
there are two vectors of immediate concern to us—the weight vector (w1, w2,…,
wn) and the input vector (x1, x2,…, xn) for artificial neurons.

Figure 3.6 Vector components.

3.2.1 Vector addition and scalar multiplication

 Multiplying a vector by a number (scalar) k simply changes the length of the vector
by this factor so that if k=2, say, then we obtain a vector of twice the length.
Multiplying by a negative number results in a reversal of vector direction and a
change in length required by the number's magnitude—see Figure 3.7. In component
terms, if a vector in 2D, v=(v1, v2), is multiplied by k, then the result1 v' has
components (kv1, kv2). This can be seen in the right hand side of Figure 3.7 where
the original vector v is shown stippled. Generalizing to n dimensions we define
vector multiplication by kv=(kv1, kv2,…, kvn).

 Geometrically, two vectors may be added in 2D by simply appending one to

Figure 3.7 Scalar multiplication of a vector.

50

Figure 3.8 Vector addition.

the end of the other as shown in Figure 3.8. Notice that a vector may be drawn
anywhere in the space as long as its magnitude and direction are preserved. In
terms of the components, if w=u+v, then w1=u1+v1, w2=u2+v2. This lends itself to
generalization in n dimensions in a straightforward way. Thus, if u, v are now
vectors in n dimensions with sum w, w=(u1+v1, u2+v2,…, un+vn). Note that
u+v=v+u.

 Vector subtraction is defined via a combination of addition and scalar
multiplication so that we interpret u-v as u+(-1)v, giving the addition of u and a
reversed copy of v (see Fig. 3.9). The left hand side of the figure shows the original
vectors u and v. The construction for subtraction is shown in the centre and the right
hand side shows how, by making use of the symmetry of the situation, the resulting
vector w may be drawn as straddling u and v themselves.

Figure 3.9 Vector subtraction.

3.2.2 The length of a vector

51

 For our prototype in 2D, the length of a vector is just its geometrical length in the
plane. In terms of its components, this is given by applying Pythagoras's theorem to
the triangle shown in Figure 3.10, so that

(3.5)

In n dimensions, the length is defined by the natural extension of this, so that

(3.6)

where the exponent of outside the square brackets is a convenient way of denoting
the operation of square root.

Figure 3.10 Obtaining the length of a vector.

3.2.3 Comparing vectors—the inner product

 In several situations in our study of networks it will be useful to have some
measure of how well aligned two vectors are—that is, to know whether they point
in the same or opposite directions. The vector inner product allows us to do just

52

this. This section relies on the trigonometric function known as the cosine and so,
for those readers who may not be familiar with this, it is described in an appendix.

 Inner product—geometric form

 Suppose two vectors v and w are separated by an angle ø. Define the inner product
v·w of the two vectors by the product of their lengths and the cosine of ø; that is,

(3.7)

This is pronounced "v dot w" and is also known as the scalar product since its
result is a number (rather than another vector). Note that v·w=w·v.

 What is the significance of this definition? Essentially (as promised) it tells us
something about the way two vectors are aligned with each other, which follows
from the properties of the cosine function. To see this, fix w but allow v to vary its
direction (but not its lengths) as shown in Figure 3.11. Then, if the lengths are fixed,
v·w can only depend on cosø. When 0<ø<90°, the cosine is positive and so too,
therefore, is the inner product. However, as the angle approaches 90°, the cosine
diminishes and eventually reaches zero. The inner product follows in sympathy
with this and, when the two vectors are at right angles they are said to be
orthogonal with v·w=0. Thus, if the vectors are well aligned or point in roughly
the same direction, the inner product is close to its largest positive value of ||v|| ||w||.
As they move apart (in the angular sense) their inner product decreases until it is
zero when they are orthogonal. As ø becomes greater than 90°, the cosine becomes
progressively more negative until it reaches -1. Thus, ||v|| ||w|| also behaves in this
way until, when ø=180°, it takes on its largest negative value of -||v|| ||w||. Thus, if
the vectors are pointing in roughly opposite directions, they will have a relatively
large negative inner product.

Figure 3.11 Inner product examples.

53

Note that we only need to think of angles in the range 0<ø<180° because a value of
ø between 180° and 360° is equivalent to an angle given by 360-ø.

 Inner product—algebraic form

 Consider the vectors v=(1, 1) and w=(0, 2) shown in Figure 3.12 where the angle
between them is 45°. An inset in the figure shows a right-angled triangle with its
other angles equal to 45°. The hypotenuse, h, has been calculated from Pythagoras's
theorem to be and, from the definition of the cosine (A.1), it can then
be seen that . To find the inner product

Figure 3.12 Vectors at 45°.

of the two vectors in Figure 3.12, we note that so that

. We now introduce an equivalent, algebraic definition of the
inner product that lends itself to generalization in n dimensions.

 Consider the quantity v O w defined in 2D by

(3.8)

The form on the right hand side should be familiar—substituting x for v we have the
activation of a two-input TLU. In the example above, substituting the component
values gives v O w=2 which is the same as v·w. The equivalence of what we have
called v O w and the geometrically defined inner product is not a chance

54

occurrence resulting from the particular choice of numbers in our example. It is a
general result (Rumelhart et al. 1986b) (which will not be proved here) and it
means that we may write v·w=v1w1+v2w2 for any vectors v, w in 2D. The form in
(3.8) immediately lends itself to generalization in n dimensions so that we define
the dot product of two n-dimensional vectors v, w as

(3.9)

We shall interpret the value obtained in this way just as we did in 2D. Thus, if it is
positive then the two vectors are, in some sense, roughly "lined up" with each
other, if it is negative then they are "pointing away from" each other and, if it is
zero, the vectors are at "right angles". No attempt should be made to visualize this
i n n dimensions; rather, think of its analogue in 2D as a schematic or cartoon
representation of what is happening. The situation is a little like using pictures in
2D to represent scenes in 3D—the picture is not identical to the objects it depicts
in 3D, but it may help us think about their geometrical properties.

 Finally, what happens if v=w? Then we have

(3.10)

so that the square length of vector is the same as the inner product of the vector with
itself.

 Vector projection

 There is one final concept that we will find useful. Consider the two vectors v, w in
Figure 3.13 and suppose we ask the question—how much of v lies in the direction
of w? Formally, if we drop a perpendicular from v onto w what is the length of the
line segment along w produced in this way? This segment is called the projection
vw of v onto w and, using the definition of cosine, we have vw=||v||cosø. We can
reformulate this, using the inner product, in a way suitable for generalization. Thus,
we write

55

(3.11)

Figure 3.13 Vector projections.

56

3.3 TLUs and linear separability revisited

 Our discussion of vectors was motivated by the desire to prove that the connection
between TLUs and linear separability is a universal one, independent of the
dimensionality of the pattern space. We are now in a position to show this, drawing
on the ideas developed in the previous section. Using the definition of the inner
product (3.9) the activation a of an n-input TLU may now be expressed as

(3.12)

The vector equivalent to (3.1) now becomes

(3.13)

As in the example in 2D, we expect deviations either side of those x that satisfy this
relation to result in different output for the TLU. We now formalize what is meant
by "either side" a little more carefully. Our strategy is to examine the case in 2D
geometrically to gain insight and then, by describing it algebraically, to generalize
to n dimensions.

 In general, for an arbitrary x, the projection of x onto w is given by

(3.14)

If, however, we impose the constraint implied by (3.13), we have

(3.15)

57

So, assuming w and are constant, the projection xw is constant and, in 2D, x must
actually lie along the perpendicular to the weight vector, shown as a dashed line in
Figure 3.14. Therefore, in 2D, the relation w·x= defines a straight line. However,
since we have used algebraic expressions that are valid in n dimensions throughout,
we can generalize and use this to define the n-dimensional equivalent

Figure 3.14 Projection of x as decision line.

of a straight line—a hyperplane—which is perpendicular to the weight vector w.
When x lies on the hyperplane, w·x= , and the TLU output rule states that y=1; it
remains to see what happens on each side of the line.

 Suppose first that xw> /||w||; then the projection is longer than that in Figure 3.14
and x must lie in region A (shown by the shading). Comparison of (3.14) and (3.15)
shows that, in this case, w·x> , and so y=1. Conversely, if xw< /||w||, the projection
is shorter than that in Figure 3.14 and x must lie in region B. The implication is
now that w·x< , and so y=0. The diagram can only show part of each region and it
should be understood that they are, in fact, of infinite extent so that any point in the
pattern space is either in A or B. Again these results are quite general and are
independent of the number n of TLU inputs.

 To summarize: we have proved two things:

 (a) The relation w·x= defines a hyperplane (n-dimensional "straight line") in
pattern space which is perpendicular to the weight vector. That is, any vector
wholly within this plane is orthogonal to w.

 (b) On one side of this hyperplane are all the patterns that get classified by the TLU
as a "1", while those that get classified as a "0" lie on the other side of the
hyperplane.

58

 To recap on some points originally made in Section 3.1.2, the hyperplane is the
decision surface for the TLU. Since this surface is the n-dimensional version of a
straight line the TLU is a linear classifier. If patterns cannot be separated by a
hyperplane then they cannot be classified with a TLU.

 One assumption has been made throughout the above that should now be made
explicit. Thus, Figure 3.14 shows a positive projection xw, which implies a
positive threshold. For a negative threshold , the projection constraint (3.15) now
implies that xw<0, since ||w|| is always positive. Therefore w·x<0 for

Figure 3.15 Projection with negative threshold.

those x that lie on the decision line and they must point away from w as shown in
the left half of Figure 3.15. A typical instance of the use of a negative threshold is
shown in the right hand part of the figure. Notice that the weight vector always
points towards the region of 1s, which is consistent with the TLU rule: w·x>0
implies y=1.

59

3.4 Summary

 The function of a TLU may be represented geometrically in a pattern space. In this
space, the TLU separates its inputs into two classes (depending on the output "1" or
"0"), which may be separated by a hyperplane (the n-dimensional equivalent of a
straight line in 1D or a plane in 2D). The formal description of neuron behaviour in
pattern space is greatly facilitated by the use of vectors, which may be thought of as
the generalization of directed arrows in 2D or 3D. A key concept is that of the dot
product w·x of two vectors w and x. If the lengths of the two vectors are held fixed,
then the dot product tells us something about the "angle" between the vectors.
Vector pairs that are roughly aligned with each other have a positive inner product,
if they point away from each other the inner product is negative, and if they are at
right angles (orthogonal) it is zero. The significance of all this is that the activation
of a TLU is given by the dot product of the weight and input vectors, a=w·x, so that
it makes sense to talk about a neuron computing their relative alignment. Our first
application of this was to prove the linear separability of TLU classes. However,
the geometric view (and the dot product interpretation of activation) will, quite
generally, prove invaluable in gaining insight into network function.

60

3.5 Notes

 1. The small dash symbol is pronounced "prime" so one reads v' as "v-prime".

61

Chapter Four
Training TLUs: the perceptron rule

62

4.1 Training networks

 This chapter introduces the concept of training a network to perform a given task.
Some of the ideas discussed here will have general applicability, but most of the
time refer to the specifics of TLUs and a particular method for training them. In
order for a TLU to perform a given classification it must have the desired decision
surface. Since this is determined by the weight vector and threshold, it is necessary
to adjust these to bring about the required functionality. In general terms, adjusting
the weights and thresholds in a network is usually done via an iterative process of
repeated presentation of examples of the required task. At each presentation, small
changes are made to weights and thresholds to bring them more in line with their
desired values. This process is known as training the net, and the set of examples
as the training set. From the network's viewpoint it undergoes a process of
learning, or adapting to, the training set, and the prescription for how to change the
weights at each step is the learning rule. In one type of training (alluded to in Ch.
1) the net is presented with a set of input patterns or vectors {xi} and, for each one,
a corresponding desired output vector or target {ti}. Thus, the net is supposed to
respond with tk, given input xk for every k. This process is referred to as
supervised training (or learning) because the network is told or supervised at each
step as to what it is expected to do.

 We will focus our attention in this chapter on training TLUs and a related node, the
perceptron, using supervised learning. We will consider a single node in isolation
at first so that the training set consists of a set of pairs {v, t}, where v is an input
vector and t is the target class or output ("1" or "0") that v belongs to.

63

4.2 Training the threshold as a weight

 In order to place the adaptation of the threshold on the same footing as the weights,
there is a mathematical trick we can play to make it look like a weight. Thus, we
normally write w·x as the condition for output of a "1". Subtracting from both
sides gives w·x- 0 and making the minus sign explicit results in the form w·x+(-
1) 0. Therefore, we may think of the threshold as an extra weight that is driven by
an input constantly tied to the value -1. This leads to the negative of the threshold
being referred to sometimes as the bias. The weight vector, which was initially of
dimension n for an n-input unit, now becomes the (n+1)-dimensional vector w1, w2,
…, wn, . We shall call this the augmented weight vector, in contexts where
confusion might arise, although this terminology is by no means standard. Then for
all TLUs we may express the node function as follows1:

(4.1)

Putting w·x=0 now defines the decision hyperplane, which, according to the
discussion in Chapter 3, is orthogonal to the (augmented) weight vector. The zero-
threshold condition in the augmented space means that the hyperplane passes
through the origin, since this is the only way that allows w·x=0. We now illustrate
how this modification of pattern space works with an example in 2D, but it is quite
possible to skip straight to Section 4.3 without any loss of continuity.

 Consider the two-input TLU that outputs a "1" with input (1, 1) and a "0" for all
other inputs so that a suitable (non-augmented) weight vector is (1/2, 1/2) with
threshold 3/4. This is shown in Figure 4.1 where the decision line and weight
vector have been shown quantitatively. That the decision line goes through the
points x1=(1/2, 1) and x2=(1, 1/2) may be easily verified since according to (3.8)
w·x1=w·x2=3/4= . For the augmented pattern space we have to go to 3D as shown
in Figure 4.2. The previous two components x1, x2 are now drawn in the horizontal
plane while a third component x3 has been introduced, which is shown as the
vertical axis. All the patterns to the TLU now have the form (x1, x2, -1) since the
third input is tied to the constant value of -1. The augmented weight vector now has
a third component equal to the threshold

64

Figure 4.1 Two-dimensional TLU example.

Figure 4.2 Two-dimensional example in augmented pattern space.

and is perpendicular to a decision plane that passes through the origin. The old
decision line in 2D is formed by the intersection of the decision plane and the plane
containing the patterns.

65

4.3 Adjusting the weight vector

 We now suppose we are to train a single TLU with augmented weight vector w
using the training set consisting of pairs like v, t. The TLU may have any number of
inputs but we will represent what is happening in pattern space in a schematic way
using cartoon diagrams in 2D.

 Suppose we present an input vector v to the TLU with desired response or target
t=1 and, with the current weight vector, it produces an output of y=0. The TLU has
misclassified and we must make some adjustment to the weights. To produce a "0"
the activation must have been negative when it should have been positive—see
(4.1). Thus, the dot product w·v was negative and the two vectors were pointing
away from each other as shown on the left hand side of Figure 4.3.

 In order to correct the situation we need to rotate w so that it points more in the
direction of v. At the same time, we don't want to make too drastic a change as this
might upset previous learning. We can achieve both goals by adding a

Figure 4.3 TLU misclassification 1–0.

fraction of v to w to produce a new weight vector w', that is

(4.2)

where 0< <1, which is shown schematically on the right hand side of Figure 4.3.

 Suppose now, instead, that misclassification takes place with the target t=0 but y=1.
This means the activation was positive when it should have been negative as shown
on the left in Figure 4.4. We now need to rotate w away from v, which may be

66

effected by subtracting a fraction of v from w, that is

(4.3)

as indicated on the left of the figure.

 Both (4.2) and (4.3) may be combined as a single rule in the following way:

(4.4)

This may be written in terms of the change in the weight vector w=w'-w as
follows:

(4.5)

or in terms of the components

(4.6)

Figure 4.4 TLU misclassification 0–1.

where wn+1= and vn+1=-1 always. The parameter is called the learning rate
because it governs how big the changes to the weights are and, hence, how fast the
learning takes place. All the forms (4.4, 4.5, 4.6) are equivalent and define the

67

perceptron training rule . It is called this rather than the TLU rule because,
historically, it was first used with a modification of the TLU known as the
perceptron, described in Section 4.4. The learning rule can be incorporated into the
overall scheme of iterative training as follows.

 repeat

 for each training vector pair (v, t)

 evaluate the output y when v is input to the TLU

 if y t then

 form a new weight vector w' according to (4.4)

 else

 do nothing

 end if

 end for

 until y = t for all vectors

 The procedure in its entirety constitutes the perceptron learning algorithm. There
is one important assumption here that has not, as yet, been made explicit: the
algorithm will generate a valid weight vector for the problem in hand, if one exists.
Indeed, it can be shown that this is the case and its statement constitutes the
perceptron convergence theorem:

 If two classes of vectors X, Y are linearly separable, then application of the perceptron training algorithm will
eventually result in a weight vector w0 such that w0 defines a TLU whose decision hyperplane separates X and
Y.

 Since the algorithm specifies that we make no change to w if it correctly classifies
its input, the convergence theorem also implies that, once w0 has been found, it
remains stable and no further changes are made to the weights. The convergence
theorem was first proved by Rosenblatt (1962), while more recent versions may be
found in Haykin (1994) and Minsky & Papert (1969).

 One final point concerns the uniqueness of the solution. Suppose w0 is a valid
solution to the problem so that w0·x=0 defines a solution hyperplane. Multiplying
both sides of this by a constant k preserves the equality and therefore defines the
same hyperplane. We may absorb k into the weight vector so that, letting w'0=kw0,

68

we have w'0·x=kw0·x=0. Thus, if w0 is a solution, then so too is kw0 for any k and
this entire family of vectors defines the same solution hyperplane.

 We now look at an example of the training algorithm in use with a two-input TLU
whose initial weights are 0, 0.4, and whose initial threshold is 0.3. It has to learn
the function illustrated in Figure 4.1; that is, all inputs produce 0 except for the
vector (1, 1). The learning rate is 0.25. Using the above algorithm, it is possible to
calculate the sequence of events that takes place on presentation of all four training
vectors as shown in Table 4.1.

Each row shows the quantities required for a single vector presentation. The
columns labelled w1, w2, show the weights and threshold just prior to the
application of the vector with components in columns x1, x2. The columns marked a
and y show the activation and output resulting from input vector (x1, x2). The target t
appears in the next column and takes part in the calculation of the quantity (t-y),
which is used in the training rule. If this is non-zero then changes are effected in the
weights dw1, dw2, and threshold d . Notice that the lower case version of delta, d,
may also be used to signify a change in a quantity as well as its upper case
counterpart, . These changes should then be added to the original values in the
first three columns to obtain the new values of the weights and threshold that appear
in the next row. Thus, in order to find the weight after all four vectors have been
presented, the weight changes in the last row should be added to the weights in the
fourth row to give w1=0.25, w2=0.4, =0.3.

69

4.4 The perception

 This is an enhancement of the TLU introduced by Rosenblatt (Rosenblatt 1962) and
is shown in Figure 4.5. It consists of a TLU whose inputs come from a set of
preprocessing association units or simply A-units. The input pattern is supposed to
be Boolean, that is a set of 1s and 0s, and the A-units can be assigned any arbitrary
Boolean functionality but are fixed—they do not learn. The depiction of the input
pattern as a grid carries the suggestion that the input may be derived from a visual
image, which is the subject of Section 4.6. The rest of the node functions just like a
TLU and may therefore be trained in exactly the same way. The TLU may be
thought of as a special case of the perception with a trivial set of A-units, each
consisting of a single direct connection to one of the inputs. Indeed, sometimes the
term "perceptron" is used to mean what we have defined as a TLU. However,
whereas a perceptron always performs a linear separation with respect to the
output of its A-units, its function of the input space may not be linearly separable if
the A-units are non-trivial.

Figure 4.5 The perception.

70

4.5 Multiple nodes and layers

 4.5.1 Single-layer nets

 Using the perception training algorithm, we are now in a position to use a single
perception or TLU to classify two linearly separable classes A and B. Although the
patterns may have many inputs, we may illustrate the pattern space in a schematic
or cartoon way as shown in Figure 4.6. Thus the two axes are not labelled, since
they do not correspond to specific vector components, but are merely indicative
that we are thinking of the vectors in their pattern space.

 It is possible, however, to train multiple nodes on the input space to achieve a set
of linearly separable dichotomies of the type shown in Figure 4.6. This might

Figure 4.6 Classification of two classes A, B.

Figure 4.7 Single-layer net.

occur, for example, if we wish to classify handwritten alphabetic characters where

71

26 dichotomies are required, each one separating one letter class from the rest of
the alphabet—"A"s from non-" A"s, "B"s from non-"B"s, etc. The entire collection
of nodes forms a single-layer net as shown in Figure 4.7. Of course, whether each
of the above dichotomies is linearly separable is another question. If they are, then
the perceptron rule may be applied successfully to each node individually.

 4.5.2 Nonlinearly separable classes

 Suppose now that there are four classes A, B, C, D and that they are separable by
two planes in pattern space as shown in Figure 4.8. Once again, this diagram is a
schematic representation of a high-dimensional space. It would be futile trying to
use a single-layer net to separate these classes since class A, for example, is not
linearly separable from the others taken together. However, although the problem
(identifying the four classes A, B, C, D) is not linearly separable, it is possible to
solve it by "chopping" the pattern space into linearly separable regions and looking
for particular combinations of overlap within these regions.

Figure 4.8 Pattern space for classification of four classes A, B, C, D.

The initial process of pattern space division may be accomplished with a first layer
of TLUs and the combinations evaluated by a subsequent layer. This strategy is now
explained in detail.

 We start by noting that, although no single class (such as A, for example) is linearly
separable from the others, the higher order class consisting of A and B together is
linearly separable from that consisting of C and D together. To facilitate talking
about these classes, let AB be the class consisting of all patterns that are in A or B.
Similarly, let CD be the class containing all patterns in C or D, etc. Then our
observation is that AB and CD are linearly separable as are AD and BC.

 We may now train two units U1, U2 with outputs y1, y2 to perform these two

72

dichotomies as shown in Table 4.2.

Suppose now a member of the original class A is input to each of U1, U2. From the
table, this results in outputs y1=y2=1. Conversely, suppose an unknown vector x is
input and both outputs are 1. As far as U1 is concerned x is in AB, and U2 classifies
it as in AD. The only way it can be in both is if it is in A. We conclude therefore that
y1=1 and y2=1 if, and only if, the input vector x is in A. Proceeding with the other
three possibilities, we obtain a unique code, in terms o f y1, y2, for each of the
classes, as shown in Table 4.3.

These codes may now be decoded by a set of four two-input TLUs, each connected
to both U1 and U2 as shown in Figure 4.9. Thus, to signal class A we construct a
two-input TLU that has output "1" for input (1, 1) and output "0" for all other inputs.
To signal class B the TLU must output "1" only when presented with (1, 0), and so
on for C and D. These input-output relations are certainly linearly separable since
they each consist, in pattern space, of a line that "cuts away" one of the corners of
the square (refer back to Fig. 3.4 for an example that corresponds to the A-class
node). Notice that only one of the four TLU output

73

Figure 4.9 Two-layer net for four-class classification

units is "on" (output "1") at any one time so that the classification is signalled in an
unambiguous way.

 Two important points need to be made here. First, the output units were not trained;
each one has been assigned the appropriate weights by inspection of their pattern
space. Secondly, if we had chosen to use the groupings AC or DB then we would
have failed, since neither of these can take part in a linearly separable dichotomy.
There were therefore two pieces of information required in order to train the two
units.

 (a) The four classes may be separated by two hyperplanes.

 (b) AB was linearly separable from CD and AD was linearly separable from BC.

 It would be more satisfactory if we could dispense with (b) and train the entire
two-layer architecture in Figure 4.9 as a whole ab initio. The less information we
have to supply ourselves, the more useful a network is going to be. In order to do
this, it is necessary to introduce a new training algorithm based on a different
approach, which obviates the need to have prior knowledge of the pattern space.

 Incidentally, there is sometimes disagreement in the literature as to whether the
network in Figure 4.9 is a two- or three-layer net. Most authors (as I do) would call
it a two-layer net because there are two layers of artificial neurons, which is
equivalent to saying there are two layers of weights. Some authors, however,
consider the first layer of input distribution points as units in their own right, but
since they have no functionality it does not seem appropriate to place them on the
same footing as the TLU nodes.

74

4.6 Some practical matters

 We have spoken rather glibly so far about training sets without saying how they
may originate in real applications. The training algorithm has also been introduced
in the abstract with little heed being paid to how it, and the network, are
implemented. This is a suitable point to take time out from the theoretical
development and address these issues.

 4.6.1 Making training sets

 We will make this concrete by way of an example which assumes a network that is
being used to classify visual images. The sequence of events for making a single
training pattern in this case is shown in Figure 4.10.

Figure 4.10 Making training sets from images.

Part (a) shows the original scene in monochrome. Colour information adds another
level of complexity and the image shown here was, in fact, obtained by first
converting from a colour picture. Our goal is somehow to represent this image in a
way suitable for input to a TLU or perceptron. The first step is shown in part (b) in
which the image has been divided into a series of small squares in a grid-like
fashion. Within each square, the luminance intensity is averaged to produce a single
grey level. Thus, if a square is located in a region that is mainly dark, it will
contain a uniform dark grey, whereas squares in lighter regions will contain
uniform areas of pale grey. Each square is called a pixel and may now be assigned
a number, based on the darkness or lightness of its grey content. One popular
scheme divides or quantizes the grey-scale into 256 discrete levels and assigns 0
to black and 255 to white. In making the assignment of scale values to pixels, we
have to take the value closest to the pixel's grey level. This will result in small
quantization errors, which will not be too large, however, if there are enough

75

levels to choose from.

 If we know how many pixels there are along each side of the picture the rows (or
columns) of the grid may now be concatenated to obtain a vector of numbers. This
is adequate as it stands for input to a TLU, which does not necessarily need
Boolean vectors, but is not suitable for the perceptron. To convert to a Boolean
vector we must use only two values of grey, which may be taken to be black and
white. This conversion is accomplished by thresholding at some given grey level.
For example, if we set the threshold at 50 per cent and are using the 0–255
labelling scheme, all pixels with values between 0 and 127 will be assigned the
value 0 (white), while all those between 128 and 255 will be given the label 1
(black). This has been done in part (c) of the figure, which shows the binarized
version of the image with threshold 50 per cent. The rows (or columns) may now
be concatenated to produce a Boolean vector suitable for use as input to the
perceptron. Another way of thinking of the binarized image is that it is a direct
result of grey-level quantization but with only two (instead of 256) grey levels.
Image vectors like those in Figure 4.10b, c may be stored for later use in computer
memory or framestore, or on disk in a file.

 Before leaving our example, we can use it to help illustrate a typical task that our
network may be expected to perform. In Figure 4.10d is shown a copy of the
original binarized image of part (c) but with some of the pixels having their values
inverted. This may have occurred, for example, because the image became
corrupted by noise when it was transmitted from a source to a destination machine.
Alternatively, we might imagine a more structured alteration in which, for example,
the child has moved slightly or has changed facial expression. We would expect a
well-trained network to be able to classify these slightly altered images along with
the original, which is what we mean by its ability to generalize from the training
set.

 4.6.2 Real and virtual networks

 When we build a neural network do we go to our local electronic hardware store,
buy components and then assemble them? The answer, in most cases, is "no".
Usually we simulate the network on a conventional computer such as a PC or
workstation. What is simulation? The entries in Table 4.1 could have been filled
out by pencil and paper calculation, by using a spreadsheet, or by writing a special
purpose computer program. All these are examples of simulations of the TLU,
although the first method is rather slow and is not advised for general use. In the
parlance of computer science, when the net is being simulated on a general purpose
computer, it is said to exist as a virtual machine (Tanenbaum 1990). The term
"virtual reality" has been appropriated for describing simulations of spatial

76

environments—however, the virtual machines came first.

 Instead of writing a computer program from scratch, one alternative is to use a
general purpose neural network simulator that allows network types and algorithms
to be chosen from a set of predetermined options. It is also often the case that they
include a set of visualization tools that allow one to monitor the behaviour of the
net as it adapts to the training set. This can be extremely important in understanding
the development and behaviour of the network; a machine in which the information
is distributed in a set of weights can be hard to understand. Examples of this type of
simulator are available both commercially and as freely distributed software that
may be downloaded via an Internet link. For a survey, see Murre (1995).

 Large neural networks can often require many thousands of iterations of their
training algorithm to converge on a solution, so that simulation can take a long time.
The option, wherever possible, should be to use the most powerful computer
available and to limit the network to a size commensurate with the available
computing resources. For example, in deciding how large each pixel should be in
Figure 4.10, we have to be careful that the resulting vector is not so large that there
are too many weights to deal with in a reasonable time at each iteration of the
learning algorithm.

 In Chapter 1, one of the features of networks that was alluded to was their ability to
compute in parallel. That is, each node may be regarded as a processor that
operates independently of, and concurrently with, the others. Clearly, in simulation
as a virtual machine, networks cannot operate like this. The computation being
performed by any node has to take place to the exclusion of the others and each one
must be updated in some predefined sequence. In order to take advantage of the
latent parallelism, the network must be realized as a physical machine with
separate hardware units for each node and, in doing this, there are two aspects that
need attention. First, there needs to be special purpose circuitry for implementing
the node functionality, which includes, for example, multiplying weights by inputs,
summing these together and a nonlinearity output function. Secondly, there needs to
be hardware to execute the learning algorithm. This is usually harder to achieve and
many early physical network implementations dealt only with node functionality.
However, it is the learning that is computer intensive and so attention has now
shifted to the inclusion of special purpose learning hardware.

 Distinction should also be made between network hardware accelerators and truly
parallel machines. In the former, special circuitry is devoted to executing the node
function but only one copy exists so that, although there may be a significant speed-
up, the network is still operating as a virtual machine in some way. Intermediate
structures are also possible in which there may be several node hardware units,
allowing for some parallelism, but not sufficient for an entire network. Another

77

possibility is to make use of a general purpose parallel computer, in which case the
node functionality and training may be shared out amongst individual processors.
Some accounts of special purpose chips for neural networks may be found in two
special issues of the IEEE Transactions on Neural Nets (Sánchez-Sinencio &
Newcomb 1992a, b).

78

4.7 Summary

 By building on the insights gained using the geometric approach introduced in the
last chapter, we have demonstrated how TLU-like nodes (including perceptrons)
can adapt their weights (or learn) to classify linearly separable problems. The
resulting learning rule is incorporated into a training algorithm that iteratively
presents vectors to the net and makes the required changes. The threshold may be
adapted on the same basis using a simple trick that makes it appear like a weight.
We have seen how nonlinearly separable problems may be solved in principle
using a two-layer net, but the method outlined so far relies heavily on prior
knowledge and the hand crafting of weights. More satisfactory schemes are the
subject of subsequent chapters. Finally, the general idea of a "training vector" was
made more concrete with reference to an example in vision, and issues concerning
the implementation of networks in software and hardware were discussed.

79

4.8 Notes

 1. The symbol => is read as "implies".

80

Chapter Five
The delta rule

 At the end of the last chapter we set out a programme that aimed to train all the
weights in multilayer nets with no a priori knowledge of the training set and no
hand crafting of the weights required. It turns out that the perceptron rule is not
suitable for generalization in this way so that we have to resort to other techniques.
An alternative approach, available in a supervised context, is based on defining a
measure of the difference between the actual network output and target vector. This
difference is then treated as an error to be minimized by adjusting the weights.
Thus, the object is to find the minimum of the sum of errors over the training set
where this error sum is considered to be a function of (depends on) the weights of
the network. This paradigm is a powerful one and, after introducing some basic
principles and their application to single-layer nets in this chapter, its
generalization to multilayer nets is discussed in Chapter 6.

81

5.1 Finding the minimum of a function: gradient
descent

 Consider a quantity y that depends on a single variable x—we say that y is a
function of x and write y=y(x). Suppose now that we wish to find the value x0 for
which y is a minimum (so that y(x0) y(x) for all x) as shown in Figure 5.1. Let x*
be our current best estimate for x0; then one sensible thing to do in order to obtain a
better estimate is to change x so as to follow the function "downhill"

Figure 5.1 Function minimization.

as it were. Thus, if increasing x (starting at x*) implies a decrease in y then we
make a small positive change, x>0, to our estimate x*. On the other hand, if
decreasing x results in decreasing y then we must make a negative change, x<0.
The knowledge used to make these decisions is contained in the slope of the
function at x*; if increasing x increases y, the slope is positive, otherwise it is
negative.

 We met the concept of slope in Section 3.1.2 in connection with straight lines. The
extension to general functions of a single variable is straightforward, as shown in
Figure 5.2. The slope at any point x is just the slope of a straight line, the tangent,
which just grazes the curve at that point. There are two ways to find the slope.
First, we may draw the function on graph paper, draw the tangent at the required
point, complete the triangle as shown in the figure and measure the sides x and
y. It is possible, however, to calculate the slope from y(x) using a branch of
mathematics known as the differential calculus. It is not part of our brief to
demonstrate or use any of the techniques of the calculus but it is possible to
understand what is being computed, and where some of its notation comes from.

 Figure 5.3 shows a closeup of the region around point P in Figure 5.2. The slope at
P has been constructed in the usual way but, this time, the change x used to

82

construct the base of the triangle is supposed to be very small. If dy is

Figure 5.2 Slope of y(x).

Figure 5.3 Small changes used in computing the slope of y(x).

the change in the value of the function y due to x then, if the changes are small
enough, dy is approximately equal to y. We write this symbolically as dy y.

 Now, dividing y by x and then multiplying by x leaves y unchanged. Thus we
may write

(5.1)

This apparently pointless manipulation is, in fact, rather useful, for the fraction on
the the right hand side is just the slope. Further since dy y we can now write

(5.2)

83

We now introduce a rather more compact and suggestive notation for the slope and
write

(5.3)

We have already come across this kind of symbol used to denote the "rate of
change" of a quantity. Informally, the ideas of "rate of change" and "slope" have a
similar meaning since if a function is rapidly changing it has a large slope, while if
it is slowly varying its slope is small. This equivalence in ordinary language is
mirrored in the use of the same mathematical object to mean both things. It should
once again be emphasized that dy/dx should be read as a single symbol—although
its form should not now be so obscure since it stands for something that may be
expressed as a ratio. The key point here is that there are techniques for calculating
dy/dx, given the form of y(x), so that we no longer have to resort to graphical
methods. By way of terminology dy/dx is also known as the differential or
derivative of y with respect to x.

 Suppose we can evaluate the slope or derivative of y and put

(5.4)

where >0 and is small enough to ensure dy y; then, substituting this in (5.3),

(5.5)

Since taking the square of anything gives a positive value the - term on the right
hand side of (5.5) ensures that it is always negative and so dy<0; that is, we have
"travelled down" the curve towards the minimal point as required. If we keep

84

repeating steps like (5.5) iteratively, then we should approach the value x0
associated with the function minimum. This technique is called, not surprisingly,
gradient descent and its effectiveness hinges, of course, on the ability to calculate,
or make estimates of, the quantities like dy/dx.

 We have only spoken so far of functions of one variable. If, however, y is a
function of more than one variable, say y=y(x1, x2, …, xn), it makes sense to talk
about the slope of the function, or its rate of change, with respect to each of these
variables independently. A simple example in 2D is provided by considering a
valley in mountainous terrain in which the height above sea level is a function that
depends on two map grid co-ordinates x1 and x2. If x1, say, happens to be parallel
to a contour line at some point then the slope in this direction is zero; by walking in
this direction we just follow the side of the valley. However, the slope in the other
direction (specified by x2) may be quite steep as it points to the valley floor (or the
top of the valley face). The slope or derivative of a function y with respect to the
variable xi is written dy/dxi and is known as the partial derivative. Just as for the
ordinary derivatives like dy/dx, these should be read as a single symbolic entity
standing for something like "slope of y when xi alone is varied". The equivalent of
(5.4) is then

(5.6)

There is an equation like this for each variable and all of them must be used to
ensure that dy<0 and there is gradient descent. We now apply gradient descent to
the minimization of a network error function.

85

5.2 Gradient descent on an error

 Consider, for simplicity, a "network" consisting of a single TLU. We assume a
supervised regime so that, for every input pattern p in the training set, there is a
corresponding target tp. The behaviour of the network is completely characterized
by the augmented weight vector w, so that any function E, which expresses the
discrepancy between desired and actual network output, may be considered a
function of the weights, E=E(w1, w2,…, wn+1). The optimal weight vector is then
found by minimizing this function by gradient descent as shown schematically in
Figure 5.4. By applying (5.6) in this case we obtain

(5.7)

It remains now to define a suitable error E. One way to proceed is to assign equal
importance to the error for each pattern so that, if ep is the error for training pattern
p, the total error E is just the average or mean over all patterns

(5.8)

where there are N patterns in the training set. Clearly, just as for E, any ep will also
be completely determined by the weights. As a first attempt to define ep we might
simply use the difference, ep=tp-yp, where yp is the TLU output in response to p.
This definition falls within the general remit since yp, and hence ep, may be written
as a function of the weights.

86

Figure 5.4 Gradient descent for a network.

The problem here, however, is that the error is then smaller for the combination
tp=0, yp=1, than it is for tp=1, yp=0, whereas both are as "wrong" as each other.
The way around this is to work with the purely positive quantity obtained by
squaring the difference, so an improvement is

(5.9)

There remains, however, a more subtle problem. In applying gradient descent, it is
assumed that the function to be minimized depends on its variables in a smooth,
continuous fashion. In the present context, we require ep to be a smooth function of
the weights wi. To see how ep depends on the weights, it is necessary to substitute
for the output yp in terms of the weights and inputs. This occurs in two stages. First,
the activation ap is simply the weighted sum of inputs, which is certainly smooth
and continuous. Secondly, however, the output depends on ap via the discontinuous
step function. This weak link in the chain of dependencies therefore prevents ep, in
its current form, from being a suitable candidate for gradient descent. One way to
remedy the situation is simply to remove this part of the causal chain so that the
error is defined with respect to the activation

(5.10)

We must be careful now how we define the targets. So far they have been
referenced to the unit output, which is either 1 or 0. It is necessary, however, in

87

using (5.10), to reference them to the activation. Recall that, when using the
augmented weight vector, the output changes as the activation changes sign; a
0=>y=1. Therefore, as long as the activation takes on the correct sign, the target
output is guaranteed and we are free to choose two arbitrary numbers, one positive
and one negative, as the activation targets. It is often conventional, however, to use
1 and -1, which is the choice adopted here. One last finesse that is usually added to
the expression for the error is a factor of 1/2 and has to do with the simplification
of the resulting slopes or derivatives. Thus our final form for ep looks like

(5.11)

The full error E is then given by substituting this in (5.8).

88

5.3 The delta rule

 Since E depends on all the patterns, the same can be said for its derivatives, so that
the whole training set needs to be presented in order to evaluate the gradients

. This batch training results in true gradient descent but is rather
computationally intensive. It can be avoided by adapting the weights based on the
gradients found on presentation of each pattern individually. That is, we present the
net with a pattern p, evaluate and use this as an estimate of the true gradient

. Using (5.11) and expressing ap in terms of the weights wi and inputs , it
can be shown that

(5.12)

where is the ith component of pattern p. Although a proof of this will not be given
here, it is possible to make this result plausible in the following way. First, the
gradient must depend in some way on the discrepancy (tp-ap); the larger this is, the
larger we expect the gradient to be and, if this difference is zero, then the gradient
should also be zero, since then we have found the minimum value of ep and are at
the bottom of the curve in the error function. Secondly, the gradient must depend on
the input for, if this is zero, then the ith input is making no contribution to the
activation for the pth pattern and cannot affect the error—no matter how wi changes
it makes no difference to ep. Conversely, if is large then the ith input is
correspondingly sensitive to the value of wi.

 Using the gradient estimate of (5.12) in (5.7) we obtain the new learning rule

(5.13)

The resulting training now works in a so-called pattern training regime in which
weight changes are made after each vector presentation. Because we are using
estimates for the true gradient, the progress in the minimization of E is noisy so that
weight changes are sometimes made which effect an increase in E. On average,
however, the result is a systematic decrease in the error—a phenomenon that is
explored further in Section 5.4.

89

 Training based on (5.13) was first proposed by Widrow & Hoff (1960), who used
it to train nodes called ADALINEs (ADAptive LINear Elements), which were
identical to TLUs except that they used input and output signals of 1, -1 instead of 1,
0. The training rule in (5.13) was therefore originally known as the Widrow-Hoff
rule. More recently it is more commonly known as the delta rule (or d-rule) and the
term (tp-ap) is referred to as "the d" (since this involves a difference). The original
reference for the delta rule (Widrow & Hoff 1960) is a very brief summary by a
third party reporting on a conference meeting and is largely of historical interest.
More complete accounts are available in Widrow et al. (1987) and Widrow &
Stearns (1985).

 To see the significance of using the signal labels ±1 (read "plus or minus 1") in
ADALINEs, consider what happens when, in the normal Boolean representation,
=0. Then, from (5.13), the change in the weight is zero. The use of -1 instead of 0
enforces a weight change, so that inputs like this influence the learning process on
the same basis as those with value 1. This symmetric representation will crop up
again in Chapter 7.

 It can be shown (Widrow & Stearns 1985) that if the learning rate is sufficiently
small, then the delta rule leads to convergent solutions; that is, the weight vector
approaches the vector w0 for which the error is a minimum, and E itself approaches
a constant value. Of course, a solution will not exist if the problem is not linearly
separable, in which case w0 is the best the TLU can do and some patterns will be
incorrectly classified. This is one way in which the delta and perceptron rules
differ. If a solution doesn't exist then, under the perceptron rule, the weights will
continually be altered by significant amounts so that the weight vector oscillates.
On the other hand, the delta rule always converges (with sufficiently small) to
some weight vector w0 at which the error is a minimum. Further, the perceptron
rule engenders no change in the weights if the output and target agree and, if a
solution exists, there will come a point when no more weight changes are made.
The delta rule, however, will always make some change to the weights, no matter
how small. This follows because the target activation values ±1 will never be
attained exactly, so that, even when correct classification has been achieved, the
weights will continue to adapt, albeit at an ever decreasing rate. The training
algorithm which uses the delta rule is similar, therefore, to that in Section 4.3 but
now there is no option of "do nothing" and the stopping criterion is different.

 repeat

 for each training vector pair (v, t)

 evaluate the activation a when v is input to the TLU

90

 adjust each of the weights according to (5.13)

 end for

 until the rate of change of the error is sufficiently small

 The stopping criterion is not as well defined as it might be and often relies on
experience with using the algorithm. More will be said about this in the next
chapter.

 An example of using the delta rule is provided by the worked simulation in Table
5.1. Its layout and interpretation are similar to those for the example with the
perceptron rule (Table 4.1) except that no output needs to be computed

here (since we are working with the activation directly) and the key column in
determining weight changes is now labelled d. The problem is the same: train a
two-input TLU with initial weights (0, 0.4) and threshold 0.3, using a learn rate of
0.25.

 Comparison of the delta rule (5.13) and the perception rule (4.6) shows that
formally they look very similar. However, the latter uses the output for comparison
with a target, while the delta rule uses the activation. They were also obtained from
different theoretical starting points. The perceptron rule was derived by a
consideration of hyperplane manipulation while the delta rule is given by gradient
descent on the square error.

 In deriving a suitable error measure ep for the delta rule, our first attempt (5.9) used
the TLU output y. This had to be abandoned, however, because of the discontinuous
relation between y and the weights arising via the step-function output law. If this is
replaced with a smooth squashing function, then it is possible to reinstate the output
in the definition of the error so that for semilinear units we may use ep=1/2(tp-yp)2.
In this case there is an extra term in the delta rule that is the derivative of the
sigmoid d (a)/da. It is convenient occasionally to denote derivatives by a dash or
prime symbol so putting d (a)/da= '(a) we obtain

91

(5.14)

It is not surprising that the slope of the activation-output function (the sigmoid)
crops up here. Any changes in the weights alter the output (and hence the error) via
the activation. The effect of any such changes depends, therefore, on the sensitivity
of the output with respect to the activation. To illustrate this, the sigmoid and its
slope are shown in Figure 5.5. Suppose, first, that the activation is either very large
or very small, so that the output is close to 1 or 0 respectively. Here, the graph of
the sigmoid is quite flat or, in other words, its gradient '(a) is very small. A small
change a in the activation (induced by a weight change wi) will result in a very
small change y in the output, and a correspondingly small change ep in the error.
Suppose now that the activation is close to the threshold at which the sigmoid
takes the value 0.5. Here, the function is changing most rapidly—its gradient is
maximal. The same change a in the activation (induced by the same weight
change) now results in a much larger change in the output y, and a
correspondingly larger change in the error ep. Thus the rate of change, or gradient,
of the error with respect to any weight is governed by the slope of the sigmoid.

Figure 5.5 The sigmoid and its slope.

So far we have considered training a single node. In the case of a single-layer net
with M nodes the error has to be summed over all nodes

(5.15)

92

which is reasonable since each node is acting independently and there are no
between-node interactions. In a similar way, the error gradient for the ith weight of
the jth node only involves the error term for that node. Thus for semilinear
nodes the learning rule is the same as that in (5.14), except for a unit or node index

(5.16)

93

5.4 Watching the delta rule at work

 Consider a TLU with a single input x so that it has two trainable parameters, a
weight w and threshold , which are components of the augmented weight vector
w=(w,). Suppose the TLU is to learn simply to transmit its Boolean input so that
there are two training patterns (x=0, =-1), (x=1, =1). This example can be used
to demonstrate some of the properties of gradient descent with the delta rule, in
spite of its apparent triviality, because the error is a function of two variables,
E=E(w,), and can be represented in a three-dimensional surface plot as shown in
Figure 5.6. Thus, E is the height above a plane that contains two axes, one each for
w and . Now let the weights undergo a series of adaptive changes and let w(n) be
the weight vector after the nth update and w(0) the initial vector. Further, let E(n)
be the error after the nth update; then we may plot E(n) as the height above the
plane at the point w(n).

Figure 5.6 Error surface for example in 1D.

Figure 5.7 Training in the example in 1D.

94

 Suppose we now perform a true gradient descent using batch training by evaluating
the gradient of E over both training patterns. Starting with w(0)= (-4, 1) and using a
learning rate a of 0.25, we obtain the series E(n), w(n) shown by the dots in Figure
5.7a. The error surface has been shown as a contour map this time, but has the same
profile as that in Figure 5.6. The larger dot indicates the location of w(0) and
successive weight vectors are joined by line segments. There is a steady decrease
in the error so that E(n+1)<E(n) for all n and the direction of descent is down the
steepest trajectory, as indicated by the inter-weight lines being perpendicular to the
contours. Notice that, as the surface becomes shallower, the size of the change in
the weight vector becomes smaller since the surface gradient and w are directly
related under gradient descent training.

 Figure 5.7b shows the same TLU being trained with the same value of but, this
time, using sequential pattern update under the delta rule. The progress down the
error slope is clearly more erratic since we are using an estimate, for the
error gradient based on evidence provided by pattern p alone. In fact, there are as
many steps taken "uphill" as there are down, although the mean direction is
downwards.

 Increasing the learning rate to 0.6 results in bigger steps being taken at each update
(Fig. 5.7c) so that the error decreases, on average, more rapidly. Increasing even
further to 1.6 results, however, in an unstable situation (Fig. 5.7d) where the steps
are so large that the weight vector roams erratically around the error landscape and
there is no convergence towards the valley floor. The axes for w and have had to
be rescaled to show all the updates (we have "zoomed out") and the region of the
error surface shown in the previous diagrams has now receded into the distance.

95

5.5 Summary

 This chapter introduced a powerful, general technique for supervised learning in
neural networks. It is based on the concept of minimizing a network error E,
defined in terms of the discrepancy between the desired target and network output.
Since the network is completely defined by its weight set, the error may be written
as a function of the weights and the problem couched in terms of attempting to
"move downhill" over the error "surface"—considered as a function of the weights
—until a minimum is reached. This movement requires knowledge of the gradient
or slope of E and is therefore known as gradient descent. An examination of the
local behaviour of the function under small changes showed explicitly how to make
use of this information. The delta rule has superficial similarities with the
perceptron rule but they are obtained from quite different starting points (vector
manipulation versus gradient descent). Technical difficulties with the TLU required
that the error be defined with respect to the node activation using suitably defined
(positive and negative) targets. Semilinear nodes allow a rule to be defined
directly using the output but this has to incorporate information about the slope of
the output squashing function. The learning rate must be kept within certain bounds
if the network is to be stable under the delta rule.

96

Chapter Six
Multilayer nets and backpropagation

 Recall that our goal is to train a two-layer net in toto without the awkwardness
incurred by having to train the intermediate layer separately and hand craft the
output layer. This approach also required prior knowledge about the way the
training patterns fell in pattern space. A training rule was introduced—the delta
rule—which, it was claimed, could be generalized from the single-unit/layer case
to multilayer nets. Our approach is to try and understand the principles at work
here, rather than simply use the brute force of the mathematics, and many of the
fundamental ideas have already been introduced in the last chapter. A full
derivation may be found, for example, in Haykin (1994). The training algorithm to
be developed is called backpropagation because, as will be shown, it relies on
signalling errors backwards (from output to input nodes) through the net.

97

6.1 Training rules for multilayer nets

 A network that is typical of the kind we are trying to train is shown in Figure 6.1. It
consists of a set of input distribution points (shown in black) and two layers of
semilinear nodes shown as circles. The second, or output, layer signals the
network's response to any input, and may have target vectors ti applied to it in a
supervised training regime. The other half, vi, of the training patterns are applied to
the inputs of an intermediate layer of hidden nodes, so called because we do not
have direct access to their outputs for the purposes of training and they must
develop their own representation of the input vectors.

 The idea is still to perform a gradient descent on the error E considered as a
function of the weights, but this time the weights for two layers of nodes have to be
taken into account. The error for nets with semilinear nodes has already been
established as the sum of pattern errors ep defined via (5.15). Further, we assume
the serial, pattern mode of training so that gradient estimates based on information
available at the presentation of each pattern are used, rather than true gradients
available only in batch mode. It is straightforward to calculate the error gradients
for the output layer; we have direct access to the mismatch

Figure 6.1 Two-layer net example.

between target and output and so they have the same form as those given in (5.16)
for a single-layer net in the delta rule. This is repeated here for convenience:

(6.1)

98

where the unit index j is supposed to refer to one of the output layer nodes. The
problem is now to determine the gradients for nodes (index k) in the
hidden layer. It is sometimes called the credit assignment problem since one way
of thinking about this is to ask the question—how much "blame" or responsibility
should be assigned to the hidden nodes in producing the error at the output?
Clearly, if the hidden layer is feeding the output layer poor information then the
output nodes can't sensibly aspire to match the targets.

 Our approach is to examine (6.1) and see how this might generalize to a similar
expression for a hidden node. The reasoning behind the appearance of each term in
(6.1) was given in Section 5.3 and amounted to observing that the sensitivity of the
error to any weight change is governed by these factors. Two of these, the input and
sigmoid slope, are determined solely by the structure of the node and, since the
hidden nodes are also semilinear, these terms will also appear in the expression for
the hidden unit error-weight gradients. The remaining term, (tp-yp), which has been
designated the "d", is specific to the output nodes and our task is therefore to find
the hidden-node equivalent of this quantity.

 It is now possible to write the hidden-node learning rule for the kth hidden unit as

(6.2)

where it remains to find the form of dk. The way to do this is to think in terms of the
credit assignment problem. Consider the link between the kth hidden node and the
jth output node as shown in Figure 6.2. The effect this node has on the error
depends on two things: first, how much it can influence the output of

Figure 6.2 Single hidden-output link.

node j and, via this, how the output of node j affects the error. The more k can affect

99

j, the greater the effect we expect there to be on the error. However, this will only
be significant if j is having some effect on the error at its output. The contribution
that node j makes towards the error is, of course, expressed in the "d" for that node
dj. The influence that k has on j is given by the weight wjk. The required interaction
between these two factors is captured by combining them multiplicatively as djwjk.
However, the kth node is almost certainly providing input to (and therefore
influencing) many output nodes so that we must sum these products over all j giving
the following expression for dk:

(6.3)

Here, Ik is the set of nodes that take an input from the hidden node k. For example,
in a network that is fully connected (from layer to layer) Ik is the whole of the
output layer. Using (6.3) in (6.2) now gives the desired training rule for calculating
the weight changes for the hidden nodes since the dj refer to the output nodes and
are known quantities.

 The reader should be careful about the definition of the "d" in the literature. We
found it convenient to split off the slope of the sigmoid '(ak), but it is usually
absorbed into the corresponding d term. In this scheme then, for any node k (hidden
or output) we may write

(6.4)

where for output nodes

(6.5)

and for hidden nodes

100

(6.6)

In line with convention, this is the usage that will be adopted subsequently. It
remains to develop a training algorithm around the rules we have developed.

101

6.2 The backpropagation algorithm

 This basic algorithm loop structure is the same as for the perception rule or delta
rule

 initialize weights

 repeat

 for each training pattern

 train on that pattern

 end for loop

 until the error is acceptably low

 Algorithm outline

 The first step is to initialize the weights to small random values. Criteria that help
define "small" have been given by Lee et al. (1991) and essentially require that no
training pattern causes any node to reach an output close to one of its extreme
values (usually 0 or 1). If this does occur then the node is said to have reached
premature saturation and may be considered to have been pretrained to some
arbitrary value for that pattern. Such nodes may then have to undergo a process of
unlearning before being retrained to give useful outputs.

 One iteration of the for loop results in a single presentation of each pattern in the
training set and is sometimes referred to as an epoch. What constitutes an
"acceptably low" error is treated in Section 6.4 but for the moment we expand the
main step of "train on that pattern" into the following steps.

 1. Present the pattern at the input layer.

 2. Let the hidden units evaluate their output using the pattern.

 3. Let the output units evaluate their output using the result in step 2 from the hidden
units.

 4. Apply the target pattern to the output layer.

 5. Calculate the ds on the output nodes.

102

 6. Train each output node using gradient descent (6.4).

 7. For each hidden node, calculate its d according to (6.6).

 8. For each hidden node, use the d found in step 7 to train according to gradient
descent (6.2).

 The steps 1–3 are collectively known as the forward pass since information is
flowing forward through the network in the natural sense of the nodes' input-output
relation. Steps 4–8 are collectively known as the backward pass.

 Step 7 involves propagating the ds back from the output nodes to the hidden units
—hence the name backpropagation. The backpropagation (BP) algorithm is also
known as error backpropagation or back error propagation or the generalized
delta rule. The networks that get trained like this are sometimes known as
multilayer perceptrons or MLPs.

103

6.3 Local versus global minima

 In drawing the error-weight relation schematically in Figure 5.4 we made a
simplification, which now needs to be addressed. A more realistic view is taken in
Figure 6.3. The error is a more complex function of the weights and it is now
possible to converge on one of several weight vectors. Suppose we start with a
weight set for the network corresponding to point P. If we perform gradient
descent, the minimum we encounter is the one at Ml, not that at Mg. Gradient
descent is a local algorithm in that it makes use of information which is
immediately available at the current weight vector. As far as the training process is
concerned it cannot "know" of the existence of a smaller error at Mg and it simply
proceeds downhill until it finds a place where the error gradient is zero. Ml is
called a local minimum and corresponds to a partial solution for the network in
response to the training data. Mg is the global minimum we seek and, unless
measures are taken to escape from Ml, the global minimum will never be reached.

 One way of avoiding getting stuck in local minima would be sometimes to allow
uphill steps against the gradient. In this way, it might be possible to jump over
intervening bumps between points like Ml and Mg. This is exactly what occurs in
the pattern update regime in which we perform a noisy descent based on
approximate gradient estimates (recall Fig. 5.7). This is therefore one advantage of
the pattern update procedure over its batched counterpart. Noise

Figure 6.3 Local and global minima.

is also introduced when the learning rule is modified to include the so-called
momentum term (Sect. 6.5), since this deviates from the exact requirements of
gradient descent.

104

 Another factor that can play a role here is the order of pattern presentation. In
pattern update training during a single epoch it is possible to present vectors in a
fixed sequence, or by selecting a random permutation of the pattern set each time;
that is, all vectors are presented once and only once but their order is changed from
epoch to epoch in a random way. If the latter option is chosen, there is a greater
diversity of possible paths across the error-weight landscape and so this tends to
favour escape from local minima.

105

6.4 The stopping criterion

 In the algorithm outlined above, what constitutes an acceptably low error? One
possible definition for Boolean training sets might be to accept any error for which
all output nodes have responses to all patterns that are closest to the correct
Boolean value, as defined by the target, since then, if we were to replace the
sigmoid with a hard-limiting threshold, the correct Boolean response would be
guaranteed.

 Another definition might simply prescribe some very low value (Greek epsilon)
for the mean pattern error (ep)1. This must be interpreted carefully for the following
reason. Consider a net with N output nodes and M training patterns and suppose a
single output node in response to a single training pattern is in error with the delta
taking its maximum value of 1. We then say there is a single bit-error and
(ep)=1/MN. Clearly for large values of M and N this becomes insignificant and may
easily satisfy the criterion, while for smaller nets and training sets it may not.
However, it may be that we are interested in the number of such bit-errors and
should decrease accordingly for the larger net. One problem with this approach
is that it assumes the net can decrease its mean error below the given value of ,
which is not necessarily the case if the net does not have enough resources (nodes
and connections) to approximate the required function to the desired degree. This
might also occur if the net becomes trapped in a local minimum but, in any case, we
would carry on training to no avail without ever stopping.

 An alternative stopping criterion that is always valid is to halt when the rate of
change of the error is sufficiently small. This is reasonable since, as an error
minimum is approached (either local or global), the error surface becomes
shallower and so the change in error at each epoch becomes ever smaller (see Fig.
5.7).

 Finally, it is possible to base the termination of training on the network's ability to
generalize, a topic discussed further in Section 6.10.1.

106

6.5 Speeding up learning: the momentum term

 The speed of learning is governed by the learning rate . If this is increased too
much, learning becomes unstable; the net oscillates back and forth across the error
minimum or may wander aimlessly around the error landscape. This was illustrated
in Section 5.4 for a simple single-node case but the behaviour is quite typical of
any gradient descent and so applies equally well to backpropagation. It is evident,
however, that although a small learning rate will guarantee stability it is rather
inefficient. If there is a large part of the error surface that runs consistently
downhill then it should be possible to increase the learning rate here without
danger of instability. On the other hand, if the net finds itself in a region where the
error surface is rather "bumpy", with many undulations, then we must proceed
carefully and make small weight changes.

 One attempt to achieve this type of adaptive learning utilizes an additional term in
the learning rule. Thus, if w(n) is the nth change in weight w (indices have been
dropped for clarity) then

(6.7)

The momentum term w(n-1) is just the momentum constant (Greek lambda)
multiplied by the previous weight change. The momentum constant is greater than
zero and, to ensure convergence, is also less than 1. By using this relation
recursively it is possible to express w(n) as a sum of gradient estimates evaluated
at the current and previous training steps. Therefore, if these estimates are
consistently of the same sign over a "run" of updates (we are on a large, uniform
slope) then the weight change will grow larger as previous gradient estimates
contribute cumulatively and consistently towards the current update. It is in this
sense that the net "gathers momentum". However, if successive gradient estimates
are of opposite sign (we are undulating up and down) then successive changes will
tend to cancel each other and the latest update will be smaller than it would without
any momentum term.

107

6.6 More complex nets

 Although the net shown in Figure 6.1 is a typical multilayer perceptron net, it does
not exhaust the kind of net we may train with backpropagation. First, it is possible
to have more than one hidden layer as shown in Figure 6.4, which shows a net with
two hidden layers. This is trained in exactly the same way with the ds of each layer
(apart from the output nodes) being expressed in terms of those in the layer above.
Thus, the ds for the first hidden layer are expressed in terms of those of the second
hidden layer, which are, in turn, calculated using those of the output nodes. It is
quite possible to have more than two hidden layers but the training time increases
dramatically as the number of layers is increased and, as

Figure 6.4 Network with two hidden layers.

Figure 6.5 Network with non-full connectivity.

discussed in Section 6.7, there are good reasons to suppose we don't ever need
more than three layers altogether.

 All the nets exhibited so far have been fully connected layer to layer so that each
node has inputs from all nodes in the previous layer. This is not necessarily the

108

case and the speed of learning may be increased if we can restrict the connectivity
in some way, as shown in Figure 6.5 in which each hidden node is connected to
only four of the inputs. Connectivity may be restricted if we have prior knowledge
of the problem domain as, for example, in the case of visual tasks. Here, points

Figure 6.6 Non-layered network.

that are physically close to each other in the image are often highly correlated and
so it makes sense to sample the image locally over small patches. This is just what
is done in the animal visual system in which each neuron in the visual cortex is
stimulated by a small part of the visual stimulus called the neuron's receptive field
(Bruce & Green 1990).

 Finally, we have assumed so far that the nets have a layered structure in which any
path from input to output has to pass through the same number of nodes. Once again
this is not necessary and a non-layered network is shown in Figure 6.6 in which the
connections shown by heavier lines bypass the hidden nodes altogether. It is quite
possible to train such nets using backpropagation but most networks tend to be of
the layered type.

 In spite of the variations just described, all the nets dealt with in this chapter have
one thing in common: there are no signal paths that loop back on themselves. In
other words, starting from an input, say, signals are processed by a finite series of
nodes (some of which may be hidden) before contributing to a final output
response, and there is no feedback loop from output to input. Such nets are
therefore designated feedforward nets in contrast with feedback or recurrent nets,
which allow signals to propagate around closed paths; more will be said about
these in Chapter 7.

109

6.7 The action of well-trained nets

 6.7.1 Operation in pattern space

 The two-layer net that was partially hand crafted in Section 4.5.2 to solve the
fourway classification problem can now be retrained in toto using
backpropagation. Further, the same problem may be recast to demonstrate the
power of our new algorithm to classify a nonlinearly separable pattern space. Thus,
consider the situation in pattern space shown on the left in Figure 6.7. The two
classes A and B cannot be separated by a single hyperplane. In general we require
an arbitrarily shaped decision surface and, in this case, it may be approximated by
two plane segments. Extending these segments, it can be seen that the situation is
similar to that in Figure 4.8 except the labelling of the patterns is different. The
network solution, therefore, again consists of two hidden nodes h1, h2 (one for each
plane) but this time with a single output node that will signal "1" for class A and "0"
for class B. Of course, the output node can never actually supply these values, but
we assume that the weights are sufficiently large that the sigmoid can operate close
to its extremes. The hidden nodes are also assumed to operate close to saturation.
The required output node function y is indicated on the right of the figure. Since it
has two inputs its pattern space may be represented in 2D and, assuming for
simplicity perfect Boolean hidden outputs, its inputs will be the corners of the
square. All inputs induce a "1" except for that at the corner (0, 0) and so it is
linearly separable.

Figure 6.7 Two classes nonlinearly separable.

Using more hidden nodes it is possible to generate more complex regions in pattern
space and, in order to discuss this more fully, it is useful to invoke a couple of new
concepts. A region R in pattern space is said to be connected if, for any two points
P1, P2 there exists a path connecting P1, P2 that lies wholly within R. Informally, R
consists of a single unbroken area, as shown at the top of Figure 6.8. The areas of

110

pattern space dealt with so far have all been connected. A connected region of
pattern space R is said to be convex if, for all pairs of points P1, P2 in R, the
straight line between P1 and P2 lies wholly within R, as shown in the lower half of
Figure 6.8. This is the formalization of the requirement that, in 2D, there are no
indentations in R.

 Now consider a net with a single output node that signals whether we are in some
region R of pattern space or in the remainder (or complement) R, where it is
assumed that R is the smaller of the two. The situation in Figure 6.7 is typical

Figure 6.8 Connectedness and convexity.

and represents a case of a convex, connected R, with R being the part of the space
containing class B. In this example, R extends infinitely in pattern space—
schematically it is unbounded in the bottom half of the diagram. Using a third
hidden node, however, it would be possible to implement the problem shown in
Figure 6.9 in which R is still convex and connected, but is now finite. We may
continue adding sides to the region's circumference in this way by adding more
hidden nodes. How far, then, can we proceed in this way using a single hidden
layer? Lippmann (1987) states that, with this type of network, R is necessarily
connected and convex. However, Wieland & Leighton (1987) have demonstrated
the ability of a single hidden layer to allow a non-convex decision region and
Makhoul et al. (1989) extended this result to disconnected regions. In general,
therefore, any region R may be picked out using a single hidden layer.

111

Figure 6.9 Finite region in pattern space.

Figure 6.10 TLU versus semilinear boundaries.

Notice that the existence of regions with perfectly sharp boundaries presupposes a
threshold function instead of a sigmoid at the output. This is not the case with
semilinear nodes and so the sharp boundaries become blurred. These two cases are
illustrated in Figure 6.10, which shows surface plots in pattern space of the output
for a TLU and semilinear node. Both units have weight vector (1/2, 1/2) and
threshold 3/4 so that the TLU case is the same as that in Figure 4.1 and shows the
sharp decision line between the "0" and "1" regions. The semilinear node,
however, has a smooth sigmoidal rise across the decision line which now
constitutes a contour at a height of 0.5.

 6.7.2 Networks and function fitting

 Up till now our analysis of the way networks operate has been exclusively in the
geometric context of pattern space. An alternative explanation may be offered that
has its basis in thinking of the net as implementing a mathematical function of its
inputs, and is especially pertinent if we are dealing with continuous input and
output signals (not restricted to the Boolean values 0, 1). For example, if we
wanted to make a forecast pn of a stock value based on k previous values of the

112

price pn-1, pn-2,…, pn-k, we would want to train a net to discover the functional
relation (if any) between these quantities; that is, to discover the underlying
function pn=pn(pn-1, pn-2,…, pn-k).

 This way of thinking may be illustrated with the following simple example whose
network is shown in Figure 6.11.

 There is a single input x and two hidden nodes h1, h2 with weights and thresholds
w1=1, 1=2, w2=1, 2=-2, respectively. These provide input for a single output
node with weights 5, -5 and threshold 2. The way this network functions is shown
in Figure 6.12. The horizontal axis is the input and the vertical axis the output of the
network nodes. Curve 1 shows the output y1 of h1, and curve 2 the negative output -
y2 of h2. The activation a of the output node is 5(y1-y2), which is just a scaled copy
of the sum of the two quantities represented by these two curves. The sigmoid of the
output node will work to compress the activation into the interval (0, 1) but its
output y (curve 3) will have the same basic shape as a.

 Notice first that, for very large positive and negative values of x, the activation a is
almost constant and equal to zero, which means that y will also be approximately
constant. At first, as x increases from large negative values, the output y1 of the first
hidden node increases while y2 remains close to zero. Thus, a (and hence y) for the
output node also increase. As x increases still further, however, h2 starts to come
into play and it makes its negative contribution to a. This starts to make a decrease
and eventually, when y1 and y2 are almost equal, effectively cancels out the input
from h1 making a almost zero.

 Moving the thresholds 1, 2 apart would make the output "hump" wider, while
increasing the weights of the output node makes it more pronounced. Also, making
these weights differ in magnitude would allow the levels either side of

Figure 6.11 Simple network to illustrate function fitting in 1D.

113

Figure 6.12 Functionality of network example in Figure 6.11.

the hump to be different. We may think of the network's output y as a function of the
input x (we write y=y(x)) and, by suitable choice of the net parameters, implement
any one of a wide range of "single-humped" or unimodal functions. Introducing
another hidden node h3 would enable the appearance of a second hump and so on
for further nodes h4, h5…. In this way it is possible to train networks to solve
problems with intricate functional relationships y=y(x).

 In most cases, of course, the net will have many inputs x1, x2,…, xn and outputs y1,
y2,…, ym, in which case-it may be thought of as implementing m functions of the
form yj=yj(x1, x2,…, xn). For n=2 we may represent these relations graphically as
surface plots but their exact visualization becomes impossible for n>3. The best
we can hope to do is hold all but two (p and q, say) of the inputs constant and
explore the variation of yj as a function of xp, xq.

 Just as, in the geometric setting, it is important to know how complex the decision
surface may be for a given number of hidden layers, it is pertinent to ask in the
functional context what class of functions may be implemented in each such case.
This time it can be shown (Funahashi 1989, Hornik et al. 1989) that, using a single
hidden layer, it is possible to approximate any continuous function as closely as we
please. This is consistent with the discussion of pattern space analysis in which it
was noted that a single hidden layer is sufficient to encode arbitrary decision
surfaces.

 6.7.3 Hidden nodes as feature extractors

 Consider the four 11-input, single-output training patterns shown in Table 6.1. What
are the "features" in this training set? At first, we might say that vector components
like x3 and x6 through to x9 are features since these components always take the
value "1". However, a more meaningful interpretation would be that these are

114

really just "background" components since their value doesn't change and they tell
us nothing about the classification of each vector. Better candidates for features are
components like x1 or x11 in which each value (0 or 1) is correlated with the output
(y) in some way. In the case of x1, for example, y=x1 always, so that input x1 is a
very informative feature which completely determines the output. Thus a "feature"
in this context is a subset of the input space that helps us to discriminate the patterns
by its examination

without recourse to the entire pattern. This, of itself, is important but there is a
further significance in that we can think of features as containing the essential
information content in the pattern set. Of course, in more complex problems, we
may need to combine evidence from several features to be sure about a given
pattern classification.

 If the vectors in this example were used to train a single semilinear node then we
would expect a large positive weight to develop on input 1 so that it becomes
influential in forcing the activation to positive values. On the other hand x11,
although correlated with the output, takes on an opposing value. This is captured by
developing a negative weight on input 11 since then, when x11=1, it will force the
output to be zero.

 Is it possible to formalize these ideas mathematically? Suppose we replace each
"0" in Table 6.1 with "-1" to give new components and output . Now, for each
pattern p and each component form . This gives some measure of the input-
output correlation since, if the input and the output are the same, the expression is
+1; if they are different it is -1. Notice that this property is lost if we use the
original Boolean notation (0 instead of -1), for then the product is zero if either of
xi or y is zero, irrespective whether the two are equal or not. Now consider the
mean correlation ci on the ith component

(6.8)

115

For a feature like x1 this evaluates to +1. For a background component, however, it
is 0 since there are as many input-output similarities (+1s) as there are differences
(-1s). For components like x11 that anti-correlate with the output, c11=-1. This, then,
seems to mesh quite nicely with our informal idea of what constitutes a feature.

 In Figure 6.13 the correlation coefficients ci are plotted against i and are shown by
the lines terminated with small square symbols. Also plotted are the weights that
evolve as a result of training a single semilinear node on the patterns using the delta
rule. There is a very close match between the weights and the coefficients (or
features) so that, in this sense, the node has learnt to detect the features in the
training set.

 Of particular interest is x4, which, for three of the patterns, takes on the opposite
value to the output, but for one is the same. This then is an anti-correlated feature
but not of the same strength as x11.

116

6.8 Taking stock

 To summarize the power of the tools that have now been developed: we can train a
multilayer net to perform categorization of an arbitrary number of classes and with
an arbitrary decision surface. All that is required is that we have a set of inputs and
targets, that we fix the number of hyperplanes (hidden units)

Figure 6.13 Weights and features.

that are going to be used, and that we perform gradient descent on the error with the
backpropagation algorithm. There are (as always), however, subtleties that emerge
which make life difficult. One of these concerned the presence of local minima but
we hope that, by using noisy, pattern-serial training and/or momentum these may be
avoided. Another, more serious problem concerns the number of hidden units used
and can result in inadequate training set generalization. If this occurs then we
have lost most of the benefit of the connectionist approach.

117

6.9 Generalization and overtraining

 Consider the dichotomy in pattern space shown schematically in Figure 6.14. The
training patterns are shown by circular symbols and the two classes distinguished
by open and filled symbols. In the right hand diagram, there are two line segments
indicating two hyperplane fragments in the decision surface, accomplished using
two hidden units. Two members of the training set have been misclassified and it
may appear at first sight that this net has performed poorly since there will be some
residual error. However, suppose that some previously unseen test patterns are
presented, as shown by the square symbols. The colouring scheme corresponds to
that used for the training set so that filled and open squares are from the same
classes as filled and open circles respectively. These have been

Figure 6.14 Generalization and overtraining in pattern space.

classified correctly and the net is said to have generalized from the training data.
This would seem to vindicate the choice of a two-segment hyperplane for the
decision surface since it may be that the two misclassified training patterns result
from noisy data or outliers. In this case the net has implemented a good model of
the data, which captures the essential characteristics of the data in pattern space.

 Consider now the left hand diagram in which there are six line segments associated
with the use of six hidden units. The training set is identical to that used in the
previous example and each one has been successfully classified, resulting in a
significantly smaller error. However, all four test patterns have been incorrectly
classified so that, even though the training data are all dealt with correctly, there
may be many examples, especially those close to the decision boundary from each
class (see below), that are misclassified. The problem here is that the net has too
much freedom to choose its decision surface and has overfitted it to accommodate
all the noise and intricacies in the data without regard to the underlying trends.

 It is suggested in these diagrams that there is some sense in which input vectors are
"close" to one another so that, for example, the two training patterns that fail to get
classified correctly using two hidden units are still, nevertheless, close to the

118

decision surface. The geometric approach associated with the use of pattern space
does indeed imply some measure of distance d(u, v), between two vectors u, v. We
might, for instance, use the length of the vector difference u-v with the length
defined via (3.6) giving

(6.9)

Of special interest is the case when the patterns are Boolean so that ui, vi are all 0
or 1. Then, if we omit the square root we obtain a measure known as the Hamming
distance h

(6.10)

Since (ui-vi)=±1 or 0 the square term may be replaced with the absolute value of
the difference

(6.11)

which is just the number of places where the two vectors differ. For example (1, 1,
0, 0) and (1, 0, 1, 0) are Hamming distance 2 apart because they differ in the
second and third places. For Boolean vectors, the network is therefore performing
Hamming distance generalization so that, unless we are very close to the decision
surface, vectors that are close to each other tend to be given the same classification.

 It is possible to describe generalization from the viewpoint adopted in Section
6.7.2, which dealt with nets as function approximators. Figure 6.15 shows two
examples of the output y of a net as a function of its input x. This is only a schematic
representation since both y and x may be multidimensional. The circles and squares

119

are supposed to represent training and test data respectively, while the curves show
the functions implemented by each network. On the right hand side is a network
function that is comparatively simple and may be realized with few hidden units
(recall that adding units allows more undulations or "bumps" in the function's
graph). It does not pass exactly through the training data and so there will be some
residual error. However, it appears to have captured quite well the underlying
function from which the training data were sampled since the test data are
reasonably close to the curve; the net has generalized well.

 On the other hand, the left hand figure shows the function realized by a network
with more hidden units giving rise to a correspondingly more complex function.
The training data are the same as those used in the previous example but, this time,
the net has learned these patterns with almost no error. However, the test data
(squares) are poorly represented because the net has been given too much freedom
to fit a function to the training set. In trying to obtain an ever increasingly accurate
fit, the net has introduced spurious variations in the function that have nothing to do
with the underlying input-output relation from which the data were sampled. This is
clearly analogous to the situation in pattern space shown in Figure 6.14.

 One of the questions that remained unanswered at the end of our development of the
backpropagation algorithm was how to determine the number of hidden units to use.
At first, this might not have seemed a problem since it appears that we can always
use more hidden units than are strictly necessary; there would simply be
redundancy with more than one hidden node per hyperplane. This is the "more of a
good thing is better" approach. Unfortunately, as we have discovered here,

Figure 6.15 Generalization and overtraining in the context of function approximation.

things aren't so easy. Too many hidden nodes can make our net a very good lookup
table for the training set at the expense of any useful generalization. In the next
section, techniques are described that attempt to overcome this problem. It turns out
that it is not always necessary to determine an optimum number of hidden nodes and
that it is possible to limit the eventual freedom allowed for the net to establish a
decision surface in other ways.

120

121

6.10 Fostering generalization

 6.10.1 Using validation sets

 Consider again networks with too many hidden units like those associated with the
left hand side of Figures 6.14 and 6.15. The diagrams show the decision surface
and function respectively after exhaustive training, but what form do these take in
the early stages of learning? It is reasonable to suppose that the smoother forms
(indicated on the right hand side of the respective figures) or something like them
may be developed as intermediates at this time. If we then curtail the training at a
suitable stage it may be possible to "freeze" the net in a form suitable for
generalization.

 A striking graphical demonstration that this is indeed what happens in pattern space
was provided by Rosin & Fierens (1995). They trained a net on two classes in a
pattern space in 2D (to allow easy visualization), each of which consisted of a
circularly symmetric cluster of dots in the plane. The two classes overlapped and
so the error-free decision boundary for the training set was highly convoluted.
However, in terms of the underlying statistical distributions from which the training
set was drawn they should be thought of as being separated optimally by a straight
line. On training, a straight line did emerge at first as the decision boundary but,
later, this became highly convoluted and was not a useful reflection of the true
situation.

 How, then, are we to know when to stop training the net? One approach is to divide
the available training data into two sets: one training set proper T, and one so-
called validation set V. The idea is to train the net in the normal way with T but,
every so often, to determine the error with respect to the validation set V. This
process is referred to as cross-validation and a typical network behaviour is
shown in Figure 6.16. One criterion for stopping training, therefore, is to do so
when the validation error reaches a minimum, for then generalization with respect
to the unseen patterns of V is optimal. Cross-validation is a technique borrowed
from regression analysis in statistics and has a long history (Stone 1974). That such
a technique should find its way into the "toolkit" of supervised training in
feedforward neural networks should not be surprising because of the similarities
between the two fields. Thus, feedforward nets are performing a smooth function fit
to some data, a process that can be thought of as a kind of

122

Figure 6.16 Cross-validation behaviour.

nonlinear regression. These similarities are explored further in the review article
by Cheng & Titterington (1994).

 6.10.2 Adequate training set size

 If, in Figures 6.14 and 6.15, the test data had originally been part of the training set,
then they would have forced the network to classify them properly. The problem in
the original nets is that they were underconstrained by the training data. In
particular, if there are too few patterns near the decision surface then this may be
allowed to acquire spurious convolutions. If, however, pattern space is filled to a
sufficient density with training data, there will be no regions of "indecision" so that,
given a sufficiently large training set of size N, generalization can be guaranteed.
Such a result has been established for single output nets by Baum & Haussler
(1989), who showed that the required value of N increased with the number of
weights W, the number of hidden units H and the fraction f of correctly classified
training patterns; in this sense W and H are the network "degrees of freedom". The
only problem here is that, although this result provides theoretical lower bounds on
the size of N, it is often unrealistic to use sets of this size. For example, for a single
output net with ten hidden units, each of 30 weights, and with f=0.01 (1 per cent
misclassified in the training set) N is more than 10.2 million; increasing f to 0.1
reduces this to 0.8 million but, either way, these are usually not realizable in
practice. Baum and Haussler's result has subsequently been extended and sharpened
for a special class of nets with internal symmetries by Shawe-Taylor (1992).

 6.10.3 Net pruning

 The last section introduced the idea that poor generalization may result from a large
network being underconstrained by the training set. The other side of this coin is

123

that there are too many internal parameters (weights) to model the data that are
supplied. The number of weights is, of course, partly determined by the number of
hidden units and we set out by showing that this must be kept to a minimum for good
generalization. However, rather than eliminate complete units, it may be possible to
place constraints on the weights across the network as a whole so that some of the
network's freedom of configuration is removed. One way to achieve this is to
extend the network error function to incorporate a term that takes on small values
for simple nets and large values for more complex ones. The utility of this hinges,
of course, on what we mean by "complex" and one definition is that nets with many
weights close to zero should be favoured in contrast to those with weights that all
take significant numerical values. It transpires that there is a very simple way of
enforcing this (Hinton 1987). Thus, define

(6.12)

where the sum is over all weights in the net, and let Et be the error used so far
based on input-output differences (5.15). Now put E=Et+ Ec and perform gradient
descent on this total risk E. The new term Ec is a complexity penalty and will
favour nets whose weights are all close to zero. However, the original
performance measure Et also has to be small, which is favoured by nets with
significantly large weights that enable the training set to be correctly classified. The
value of determines the relative importance attached to the complexity penalty.
With =0 we obtain the original backpropagation algorithm while very large values
of may force the net to ignore the training data and simply assume small weights
throughout. With the right choice of the result is a compromise; those weights that
are important for the correct functioning of the net are allowed to grow, while those
that are not important decay to zero, which is exactly what is required. In effect,
each very small weight is contributing nothing and represents a non-connection; it
has been "pruned" from the network. In this way connections that simply fine-tune
the net—possibly to outliers and noise in the data—are removed, leaving those that
are essential to model the underlying data trends.

 Many variations have been tried for the form of Ec, and other heuristics, not based
on a cost function like Ec, have been used to prune networks for better
generalization; see Reed (1993) for a review.

 6.10.4 Constructing topologies

124

 So far it has been assumed that the network topology (the number of layers and
number of nodes in each layer) is fixed. Our initial analysis, however, showed that
the obvious thing to try is to determine a suitable number of hidden nodes. This may
be done in one of two ways. We can try to determine an optimum topology at the
outset and then proceed to train using backpropagation, or alter the topology
dynamically in conjunction with the normal gradient descent. Either way, the
resulting algorithms tend to be fairly complex and so we only give the barest
outline of two examples, one for each approach.

 Weymare & Martens (1994) provide an example of the topology initialization
technique in which the data are first sent through a conventional clustering
algorithm to help determine candidate hyperplanes, and hence hidden units. These
candidate units are then used in a network construction algorithm to estimate the
optimal topology. Finally the net is fine tuned with a limited number of
backpropagation epochs. This algorithm is perhaps best considered as a hybrid
technique in which the hidden units are trained in part via the initial data clustering,
as well as the normal gradient descent.

 In the method of Nabhan & Zomaya (1994) nodes are dynamically added or
subtracted from a network that is concurrently undergoing training using
backpropagation. Their algorithm is based on the hypothesis that nets which model
the data well will train in such a way that the root mean square (rms) value of the
weight changes decreases from epoch to epoch. If this fails to take place
then structural changes are made to the network by selecting what they call
"promising" structures—nets that start to decrease their rms weight change.

 Other constructive algorithms, such as the cascade-correlation procedure (Fahlman
& Lebiere 1990), make use of cost-function optimization but do not use gradient
descent per se and are therefore only distantly related to backpropagation.

125

6.11 Applications

 It is not the intention here to give an exhaustive list of the areas in which multilayer
perceptrons have found application; any problem that can be framed as one of
classification or prediction is a candidate for treatment in this way. Rather, it is
more instructive to take a couple of case studies that highlight some of the aspects
of implementing a problem using an MLP.

 6.11.1 Psychiatric patient length of stay

 Our first example (Davis et al. 1993) is taken from the area of medical diagnosis
with a network that predicts the length of stay of psychiatric patients in hospital
based on demographic, social and clinical information recorded at their time of
admission. This is an important problem since patient admission may be contingent
on financial resources, which will be better allocated if probable length of stay is
known in advance.

 In contrast to the previous net, which had only three continuously variable inputs,
this one uses many tri-valued inputs (0, 0.5, 1) representing two-valued categorical
data with the value 0.5 reserved for missing data. For example, the rating for social
impairment is usually given on a nine-point scale from 0 (none) to 8 (severe) but
was collapsed into two values—0 for "low" and 1 for "high". If this was not
assessed for some reason then it is set to 0.5. The net had 49 inputs, 500 hidden
units and four outputs to represent the four categories of length of stay T: (I) T 7
days, (II) T>7 days but 30 days, (III) T>30 days but 6 months, (IV) T>6 months
but 1 year.

 The data for the training set were gathered over a 3.5 year period with a view to
controlling for factors such as health policy changes, economic factors and resource
availability. The main point to emerge here is that the network modeller should be
aware of any underlying assumptions concerning the variability of the data. The
training patterns included information about age, sex, population of town of
residence, previous admission history, family support systems, severity of illness,
length of stay in the community, and clinical psychiatric metrics formalized in a
standard psychiatric reference (Diagnostic and statistical manual, 3rd edn). As
noted above, all these quantities have been reduced to one of two values (or 0.5 if
the data were missing). The authors also tried using analogue values but found that
the performance was not as good. In binarizing the data, information is discarded
and there are two possible outcomes. Either important information that can be used
by the net is thrown away, or irrelevant variation (noise) that would present the net
with a much harder problem to solve is avoided. It appears, on the whole, that in

126

this case the latter situation prevailed. One way in which noise can enter the
clinical data is in the reliability of assessment; thus two doctors may assign
different values to diagnostic parameters since these are established by subjective
(albeit expert) judgement on rating scales.

 One of the problems to be overcome in using MLPs lies in interpreting the output.
Assuming that each class is encoded by a single node, it is clear what category is
being indicated if one of the output units has a value close to 1 while the others
have small values. However, it is not so clear what to do if two or more outputs are
very close to each other. There are theoretical grounds (Haykin 1994:164–5) for
supposing that, no matter how small the difference between output values, we
should adopt the class indicated by the maximal output. In interpreting their network
output, Davis et al. used this technique for reporting one set of results. Another set,
however, were based on what they called "extended tolerance" in which, if all
outputs were below 0.2, they deemed that the network was unable to make a firm
categorical estimate for T. It was then assumed that the net was unable to
distinguish between classes I and II, and between III and IV, so that the only
classification possible is "short stay" (T 30 days) or "long stay" (T>6 months).
This is still useful since 30 days is a common dividing point in hospital
reimbursement schemes.

 In all, 958 patient records were used for training and 106 for testing. The net
predicted the length of stay correctly in 47 per cent of cases in the test set, which
grew to 60 per cent on using the extended tolerance criterion. A second, larger test
of 140 patients was then taken and used to compare the net's performance with that
of a multidisciplinary team of clinicians and mental health experts. The network
scored 46 per cent on exact classification and 74 per cent under extended tolerance.
The treatment team attempted a classification of only 85 patients out of this group
but, of those classified, they scored 54 per cent and 76 per cent for exact and
extended tolerance respectively. It is not clear whether the other cases were not
attempted owing to uncertainty or lack of time. If the former, then the net is
performing better than the team; if the latter, it is showing comparable performance.
It should be emphasized that the clinical team had access to the patients over a 72
hour period and spent a significant amount of time with them before making their
assessments.

 6.11.2 Stock market forecasting

 The next example is taken from the work by Refenes et al. (1994) on predicting the
performance of stock returns in the capital markets. Although their work is
introduced in the context of other models of stock returns, we shall focus here only
on the core of the problem as presented to the network in order to draw out the

127

network-dependent issues. Thus, Refenes et al. seek to predict the so-called
"outperformance" Y of each stock as a function of three parameters A, B and C,
which are extracted from the balance sheets of the companies that contribute to the
portfolio of stocks. The authors do not give details of what these factors are—they
presumably constitute commercially sensitive data—and, in any case, their exact
nature is not critical for understanding the network problem. The outperformance is
a measure of relative success of the stock 6 months after the data for the input
factors A, B and C are gathered so that the value of Y for January, say, refers to
something measured in June of the same year. Therefore, the net is effectively being
trained to predict the stock 6 months into the future, given current information about
factors that are believed to determine its behaviour. This is in contrast with the
previous example in which it was explicitly assumed that there is no temporal
variation in the data, or that we are supposed to ignore any such change. The
dataset was obtained from 143 stocks, each one having an input triplet and
outperformance assigned every month. Training was done using 6 months' data and
so used 143×6=858 vectors.

 One of the questions addressed concerned the optimal topology. They found that
better results on the training set and generalization on test data2 were obtained using
two layers of hidden units. To help describe network topologies, let (I-H1-H2-V)
denote a three-layer net with I, H1, H2, V units in the input, first hidden, second
hidden and output layers respectively; for this problem I= 3 , V=1. The best
performance was obtained with a net of structural type (3–32–16–1), with similar
results provided by nets of type (3–26–13–1) and (3–24–12–1). Two-layer nets
gave errors on the training and test data that were typically about twice as great.
They conclude that the net shows stability with respect to the number of nodes in
each layer, with the number of layers being the most important factor. Further, the
performance with the training data was significantly better than that obtained with a
multivariate linear regression (MLR) model currently in use.

 The three-layer nets took typically 25000 epochs to train while the single-layer nets
converged after about 5000 epochs. It is not surprising that it should take longer to
train three- rather than two-layer nets, but what is not clear is why they should
perform better on this problem. Now, the inputs and output are continuous variables
rather than Boolean valued. Thus, there may be a complex, nonlinear relation
between Y and each of A, B and C, so that the net has to "track" relatively small
variations in each input. We therefore speculate that the first hidden layer acts to
recode the three-dimensional input in a higher dimensional (H1-D) space in which
these differences are amplified in some way. The units in the second hidden layer
may then act on the receded input in the normal way as some kind of feature
detectors. There is a theorem due to Cover (1965) that provides some theoretical
support for this idea. The theorem states that a complex classification problem
recast in a higher dimensional space via a nonlinear transform is more likely to be

128

linearly separable. Although the stock prediction net is not performing
classification as such, we could repose it in this way by dividing the
outperformance Y into "low" and "high" values and merely asking for a decision
into these course categories. These two problems, although not equivalent, are
obviously closely related.

 In assessing the net's ability to generalize, it is necessary to test using data from a
different timeframe, since each stock has only a single input vector for each month.
Thus, testing took place using a subsequent 6 month period from that used in
training. Two conclusions were drawn. First, the mean error on the test data was
about one-half that obtained with the MLR model. Secondly, the error increased
slowly from month to month in the 6 month period whereas the MLR model showed
no temporal variation. That there may be some variation is to be expected since the
environment in which stock prices vary changes over time according to government
economic policy, general market confidence, etc. However, it is not clear over
what time period we should expect such variations and this is formalized in a
hypothesis of the so-called DynIM3 model, which posits a slow change
characterized by 6 month periods of relative stability. The net performance is
consistent with this hypothesis, being subject to slow temporal change, and is
therefore superior to the MLR model, which is insensitive to time.

 One of the criticisms sometimes levelled at neural nets is that, although they may
generate good models of the data, it is difficult to then analyze the structure of the
resulting model or to discover the relative importance of the inputs. Refenes et al.
tackled the second of these by a sensitivity analysis. By holding two of the inputs
constant, it is possible to plot the output against the remaining variable. This was
done for each variable while holding the other two at their mean values and it was
apparent that, while there was a complex, nonlinear relation between Y and the
inputs A and B, the output was less sensitive to C, with Y remaining fairly low over
much of its range and only increasing when C took on large values.

129

6.12 Final remarks

 Backpropagation is probably the most well-researched training algorithm in neural
nets and forms the starting point for most people looking for a network-based
solution to a problem. One of its drawbacks is that it often takes many hours to train
real-world problems and consequently there has been much effort directed to
developing improvements in training time. For example, in the delta-bar-delta
algorithm of Jacobs (1988) adaptive learning rates are assigned to each weight to
help optimize the speed of learning. More recently Yu et al. (1995) have developed
ways of adapting a single, global learning rate to speed up learning.

 Historically, backpropagation was discovered by Werbos (1974) who reported it
in his PhD thesis. It was later rediscovered by Parker (1982) but this version
languished in a technical report that was not widely circulated. It was discovered
again and made popular by Rumelhart et al. (1986b, c, d) in their well-known book
Parallel distributed processing, which caught the wave of resurgent interest in
neural nets after a comparatively lean time when it was largely overshadowed by
work in conventional AI.

130

6.13 Summary

 We set out to use gradient descent to train multilayer nets and obtain a
generalization of the delta rule. This was made possible by thinking in terms of the
credit assignment problem, which suggested a way of assigning "blame" for the
error to the hidden units. This process involved passing back error information
from the output layer, giving rise to the term "backpropagation" for the ensuing
training algorithm. The basic algorithm may be augmented with a momentum term
that effectively increases the learning rate over large uniform regions of the error-
weight surface.

 One of the main problems encountered concerned the existence of local minima in
the error function, which could lead to suboptimal solutions. These may be avoided
by injecting noise into the gradient descent via serial update or momentum.
Backpropagation is a quite general supervised algorithm that may be applied to
incompletely connected nets and nets with more than one hidden layer. The
operation of a feedforward net may be thought of in several ways. The original
setting was in pattern space and it may be shown that a two-layer net (one hidden
layer) is sufficient to achieve any arbitrary partition in this space. Another
viewpoint is to consider a network as implementing a mapping or function of its
inputs. Once again, any function may be approximated to an arbitrary degree using
only one hidden layer. Finally, we may think of nets as discovering features in the
training set that represent information essential for describing or classifying these
patterns.

 Well-trained networks are able to classify correctly patterns unseen during training.
This process of generalization relies on the network developing a decision surface
that is not overly complex but captures the underlying relationships in the data. If
this does not occur the net is said to have overfitted the decision surface and does
not generalize well. Overfitting can occur if there are too many hidden units and
may be prevented by limiting the time to train and establishing this limit using a
validation set. Alternatively, by making the training set sufficiently large we may
minimize the ambiguities in the decision surface, thereby helping to prevent it from
becoming too convoluted. A more radical approach is to incorporate the
construction of the hidden layer as part of the training process.

 Example applications were provided that highlighted some of the aspects of porting
a problem to a neural network setting. These were typical of the kind of problems
solved using backpropagation and helped expand the notion of how training vectors
originate in real situations (first introduced via the visual examples in Fig. 4.10).

131

6.14 Notes

 1. Angled brackets usually imply the average or mean of the quantity inside.

 2. Training and test data are referred to as in-sample and out-of-sample data respectively in the paper.

 3. DynIM (Dynamic multi-factor model of stock returns) is a trademark of County NatWest Investment
Management Ltd.

132

Chapter Seven
Associative memories: the Hopfield net

133

7.1 The nature of associative memory

 In common parlance, "remembering" something consists of associating an idea or
thought with a sensory cue. For example, someone may mention the name of a
celebrity, and we immediately recall a TV series or newspaper article about the
celebrity. Or, we may be shown a picture of a place we have visited and the image
recalls memories of people we met and experiences we enjoyed at the time. The
sense of smell (olfaction) can also elicit memories and is known to be especially
effective in this way

 It is difficult to describe and formalize these very high-level examples and so we
shall consider a more mundane instance that, nevertheless, contains all the aspects
of those above. Consider the image shown on the left of Figure 7.1. This is
supposed to represent a binarized version of the letter "T" where open and filled
circular symbols represent 0s and 1s respectively (Sect. 4.6.1). The pattern in the
centre of the figure is the same "T" but with the bottom half replaced by noise—
pixels have been assigned a value 1 with probability 0.5. We might imagine that the
upper half of the letter is provided as a cue and the bottom half has to be recalled
from memory. The pattern on the right hand side is obtained from the original "T"
by adding 20 per cent noise—each pixel is inverted with probability 0.2. In this
case we suppose that the whole memory is available but in an imperfectly recalled
form, so that the task is to "remember" the original letter in its uncorrupted state.
This might be likened to our having a "hazy" or inaccurate memory of some scene,
name or sequence of events in which the whole may be pieced together after some
effort of recall.

Figure 7.1 Associative recall with binarized letter images.

 The common paradigm here may be described as follows. There is some underlying
collection of stored data which is ordered and interrelated in some way; that is, the
data constitute a stored pattern or memory. In the human recollection examples
above, it was the cluster of items associated with the celebrity or the place we
visited. In the case of character recognition, it was the parts (pixels) of some letter
whose arrangement was determined by a stereotypical version of that letter. When

134

part of the pattern of data is presented in the form of a sensory cue, the rest of the
pattern (memory) is recalled or associated with it. Alternatively, we may be
offered an imperfect version of the stored memory that has to be associated with the
true, uncorrupted pattern. Notice that it doesn't matter which part of the pattern is
used as the cue; the whole pattern is always restored.

 Conventional computers (von Neumann machines) can perform this function in a
very limited way using software usually referred to as a database. Here, the
"sensory cue" is called the key or index term to be searched on. For example, a
library catalogue is a database that stores the authors, titles, classmarks and data on
publication of books and journals. Typically we may search on any one of these
discrete items for a catalogue entry by typing the complete item after selecting the
correct option from a menu. Suppose now we have only the fragment "ion, Mar"
from the encoded record "Vision, Marr D." of the book Vision by D.Marr. There is
no way that the database can use this fragment of information even to start
searching. We don't know if it pertains to the author or the title, and, even if we did,
we might get titles or authors that start with "ion". The input to a conventional
database has to be very specific and complete if it is to work.

135

7.2 Neural networks and associative memory

 Consider a feedforward net that has the same number of inputs and outputs and that
has been trained with vector pairs in which the output target is the same as the
input. This net can now be thought of as an associative memory since an imperfect
or incomplete copy of one of the training set should (under generalization) elicit the
true vector at the output from which it was obtained. This kind of network was the
first to be used for storing memories (Willshaw et al. 1969) and its mathematical
analysis may be found in Kohonen (1982). However, there is a potentially more
powerful network type for associative memory which was made popular by John
Hopfield (1982), and which differs from that described above in that the net has
feedback loops in its connection pathways. The relation between the two types of
associative network is discussed in Section 7.9. The Hopfield nets are, in fact,
examples of a wider class of dynamical physical systems that may be thought of as
instantiating "memories" as stable states associated with minima of a suitably
defined system energy. It is therefore to a description of these systems that we now
turn.

136

7.3 A physical analogy with memory

 To illustrate this point of view, consider a bowl in which a ball bearing is allowed
to roll freely as shown in Figure 7.2.

Figure 7.2 Bowl and ball bearing: a system with a stable energy state.

Suppose we let the ball go from a point somewhere up the side of the bowl. The
ball will roll back and forth and around the bowl until it comes to rest at the
bottom. The physical description of what has happened may be couched in terms of
the energy of the system. The energy of the system is just the potential energy of the
ball and is directly related to the height of the ball above the bowl's centre; the
higher the ball the greater its energy. This follows because we have to do work to
push the ball up the side of the bowl and, the higher the point of release, the faster
the ball moves when it initially reaches the bottom. Eventually the ball comes to
rest at the bottom of the bowl where its potential energy has been dissipated as heat
and sound that are lost from the system. The energy is now at a minimum since any
other (necessarily higher) location of the ball is associated with some potential
energy, which may be lost on allowing the bowl to reach equilibrium. To
summarize: the ball-bowl system settles in an energy minimum at equilibrium when
it is allowed to operate under its own dynamics. Further, this equilibrium state is
the same, regardless of the initial position of the ball on the side of the bowl. The
resting state is said to be stable because the system remains there after it has been
reached.

 There is another way of thinking about this process that ties in with our ideas about
memory. It may appear a little fanciful at first but the reader should understand that
we are using it as a metaphor at this stage. Thus, we suppose that the ball comes to
rest in the same place each time because it "remembers" where the bottom of the
bowl is. We may push the analogy further by giving the ball a co-ordinate
description. Thus, its position or state at any time t is given by the three co-
ordinates x(t), y(t), z(t) with respect to some cartesian reference frame that is fixed
with respect to the bowl. This is written more succinctly in terms of its position
vector, x(t)=(x(t), y(t), z(t)) (see Fig. 7.3). The location of the bottom of the bowl,

137

xp, represents the pattern that is stored. By writing the ball's vector as the sum of xp
and a displacement x, x=xp+ x, we may think of the ball's initial position as
representing the partial knowledge or cue for recall, since it approximates to the
memory xp.

Figure 7.3 Bowl and ball bearing with state description.

If we now use a corrugated surface instead of a single depression (as in the bowl)
we may store many "memories" as shown in Figure 7.4. If the ball is now started
somewhere on this surface, it will eventually come to rest at the local depression
that is closest to its initial starting point. That is, it evokes the stored pattern which
is closest to its initial partial pattern or cue. Once again, this corresponds to an
energy minimum of the system. The memories shown correspond to states x1, x2, x3
where each of these is a vector.

Figure 7.4 Corrugated plane with ball bearing: several stable states.

There are therefore two complementary ways of looking at what is happening. One
is to say that the system falls into an energy minimum; the other is that it stores a set
of patterns and recalls that which is closest to its initial state. The key, then, to
building networks that behave like this is the use of the state vector formalism. In
the case of the corrugated surface this is provided by the position vector x(t) of the
ball and those of the stored memories x1, x2,…, xn. We may abstract this, however,
to any system (including neural networks) that is to store memories.

 (a) It must be completely described by a state vector v(t)=(v1(t), v2(t),… , vn(t))
which is a function of time.

138

(b) There are a set of stable states v1, v2, v1,…, vn, which correspond to the stored
patterns or memories.

 (c) The system evolves in time from any arbitrary starting state v(0) to one of the
stable states, which corresponds to the process of memory recall.

 As discussed above, the other formalism that will prove to be useful makes use of
the concept of a system energy. Abstracting this from the case of the corrugated
surface we obtain the following scheme, which runs in parallel to that just
described.

 (a) The system must be associated with a scalar variable E(t), which we shall call
the "energy" by analogy with real, physical systems, and which is a function of
time.

 (b) The stable states vi are associated with energy minima Ei. That is, for each i,
there is a neighbourhood or basin of attraction around vi for which Ei is the
smallest energy in that neighbourhood (in the case of the corrugated surface, the
basins of attraction are the indentations in the surface).

 (c) The system evolves in time from any arbitrary initial energy E(0) to one of the
stable states Ei with E(0)>Ei. This process corresponds to that of memory recall.

 Notice that the energy of each of the equilibria Ei may differ, but each one is the
lowest available locally within its basin of attraction. It is important to distinguish
between this use of local energy minima to store memories, in which each minimum
is as valid as any other, and the unwanted local error minima occurring during
gradient descent in previous chapters. This point is discussed further in Section
7.5.3.

139

7.4 The Hopfield net

 We now attempt to apply the concepts outlined above to the construction of a neural
network capable of performing associative recall. Consider the network consisting
of three TLU nodes shown in Figure 7.5. Each node is connected to every other
node (but not to itself) and the connection strengths or weights are symmetric in that
the weight from node i to node j is the same as that from node j to node i. That is,
wij=wji and wii=0 for all i, j. Additionally, the thresholds are all assumed to be
zero. Notice that the flow of information in this type of

Figure 7.5 Three-node Hopfield net.

net is not in a single direction, since it is possible for signals to flow from a node
back to itself via other nodes. We say there is feedback in the network or that it is
recurrent because nodes may be used repeatedly to process information. This is to
be contrasted with the feedforward nets that have been used exclusively so far.

 Networks of this type and their energy-based analysis were described elegantly by
John Hopfield in 1982 so that his name is usually associated with this type of net. In
fact something very close to the "Hopfield model" had been introduced previously
by Little in 1974 but here there was less emphasis on the energy-based description.
Little also made extensive use of a quantum mechanical formalism, which may have
made his work less accessible to readers from non-physics backgrounds.

 The state of the net at any time is given by the vector of the node outputs1 (x1, x2,
x3). Suppose we now start this net in some initial state, choose a node at random
and let it update its output or "fire". That is, the chosen node evaluates its activation
in the normal way and outputs a "1" if this is greater than or equal to zero and a "0"
otherwise. The net now finds itself either in the same state as it started in, or in a
new state that is at Hamming distance 1 from the old one. We now choose another
node at random, let it update or fire, and repeat this many times. This process

140

defines the dynamics of the net and it is now pertinent to ask what the resulting
behaviour of the net will be.

 In describing these state transitions it is convenient to attach a numeric label to each
state and the most natural way of doing this is to interpret the Boolean state vector
as a binary number, so that state (x1, x2, x3) is labelled with 4x1+2x2+x3. For
example, (1, 1, 0) is state 6, and state (0, 1, 1) is state 3. For each network state,
there are three possible outcomes for the next state depending on which of the three
nodes is chosen to fire. Suppose, for example, the net starts in state (1, 0, 1) (label
5) and node 1 fires. The activation a of this node is given by a=w13x3+w12x2=-
2×1+1×0=-2. Then, since this is less than 0, the new output is also 0 and the new
state is (0, 0, 1) (label 1); in summary, state 5 goes to state 1 when node 1 fires.
Repeating this working for nodes 2 and 3 firing, the new states are 7 and 4
respectively. By working through all initial states and node selections it is possible
to evaluate every state transition of the net as shown in Table 7.1. Notice that a
state may or may not change when a node fires. This information may also be
represented in graphical form as a state transition diagram, shown in Figure 7.6.
States are represented by triangles with their associated state number, directed arcs
represent possible transitions between states and the number along each arc is the
probability that each transition will take place (given that any of the three nodes are
chosen at random to fire). For example, starting in state 5 we see from the diagram
that there is an equal probability of 1/3 of going to states 1, 7, or 4, which is
reflected in the three arcs emanating from state 5 in the diagram. Again, starting in
state 1 and updating nodes 1 or 3 results in no state change, so there is a probability
of 2/3 that state 1 stays as it is; however, choosing node 2 to update (probability
1/3) results in a transition to state 3. The "no-change" condition gives an arc that
starts and ends at the same state.

141

Figure 7.6 State transition diagram for three-node net.

The important thing to notice at this stage is that, no matter where we start in the
diagram, the net will eventually find itself in one of the states 3 or 6, which re-enter
themselves with probability 1. That is, they are stable states; once the net finds
itself in one of these it stays there. The state vectors for 3 and 6 are (0, 1, 1) and (1,
1, 0) respectively and so these are the patterns or "memories" stored by the net.

 The collection of states, together with possible transitions, is referred to as the
state space of the network and is analogous to the physical space in which the
corrugated surface and ball reside. The set of states that can result in state 3 being
retrieved are 1, 2, 0, 5, 7 and the corresponding set for state 6 are 4, 2, 0, 5, 7.
These are therefore the basins of attraction for these two stable states and there is,
in this case, a strong overlap between the two. Basins of attraction are also known
simply as attractors or confluents, which also reflect mental images we might have
of the behaviour of the net in state space as being attracted to, or flowing towards,
the state cycles.

 As the network moves towards a stored pattern its state becomes ever closer (in
Hamming distance) to that pattern. For example, in the case of the stored "T"
pattern of Figure 7.1, starting in a state like the one on the left, we would see the
degree of noise decrease gradually and the pattern on the left of the figure emerge.
This is illustrated in Figure 7.7 in which the numbers indicate how many nodes
have been selected for update.

142

Figure 7.7 Dynamic evolution of states.

7.4.1 Defining an energy for the net

 The dynamics of the net are described completely by the state transition table or
diagram. It has demonstrated the existence of stable states (crucial to the
associative memory paradigm) but it is not clear that we are guaranteed to obtain
such states always. The alternative, energy-based formalism will, however, prove
more fruitful in this respect. Our approach will be to think of each member of a pair
of nodes as exercising a constraint on the other member via the internode weight.
The use of the energy concept in this context may be introduced using an analogy
with a simple physical system. Thus, consider a pair of objects joined by a spring
as shown in Figure 7.8. The left hand part of the figure shows the use of a tension
spring, which tends to pull the objects together. Since work has to be done to draw
the objects apart, the energy minimum of this system occurs when the objects are
close to each other or, in other words, tend towards the same position in space. The
right hand part of the figure shows a compression spring whose energy minimum
occurs when the objects are far apart or take different positions in space.

 Now consider two nodes i, j in a Hopfield net connected by a positive weight

Figure 7.8 Pairwise energy between objects joined by springs.

+w, as shown on the left hand part of Figure 7.9. We claim that positive and
negative weights are analogous to the tension and compression springs
respectively, since positive weights tend to make the nodes take on the same output
values while negative weights tend to force different values. This viewpoint has
led to the name constraint satisfaction network being used occasionally for

143

recurrent nets with symmetric weights. To make this claim plausible, consider first
the case of a positive weight +w (with w>0) and suppose, in fact, the two nodes
had opposite values with the outputs of i and j being 1 and 0 respectively. If j were
given the chance to update or fire, the contribution to its activation from i is
positive, which helps to bring j's activation above threshold, thereby inducing an
output of "1". Of course, the contribution from i on its own may be insufficient, the
point being that node i is trying to drive node j above threshold, so that the state2 1,
0 is not stable with respect to these nodes. The same argument applies to state 0, 1
since the weight is the same for both nodes. Suppose now that both nodes have 1 on
their outputs. The contributions to each other's activity are positive, which tends to
reinforce or stabilize this state. The state 0, 0 is neutral with respect to the sign of
the weight since no contribution to the activation is made by either node.

Figure 7.9 Pairwise energy in a Hopfield net.

Now consider the case of a negative weight -w (shown on the right hand side of
Fig. 7.9). The situation is now reversed and opposite output values are stabilized.
Thus, if i and j have outputs 1 and 0 respectively and j fires, then i inhibits j and
reinforces its negative activation. Similarly with both outputs equal to 1, each node
inhibits the other, which tends to destabilize this state.

 The constraint description may now be set within the energy framework by
assigning high energies to states that tend to get destabilized and low energies to
those that are reinforced. One way of doing this is to define the internode energy eij
by

(7.1)

This results in values for eij as given in Table 7.2. To see how this works, consider
first the case where the weight is positive. The last energy entry in the table (-wij) is
then negative and, since it is the only non-zero value, is therefore the

144

lowest energy available. Further, it occurs when both units are "on", which is
consistent with the arguments above. On the other hand, if the weight is negative the
non-zero energy state (state 1, 1) is positive, has the highest energy available, and
is therefore not favoured, which is again in line with the requirements.

 The energy of the whole network E is found by summing over all pairs of nodes

(7.2)

This may be written

(7.3)

since the sum includes each pair twice (as wijxixj and wjixjxi, where wij=wji) and
wii=0.

 In order to demonstrate the existence of stable network states, it is necessary to see
what the change in energy is when a node fires. Suppose node k is chosen to be
updated. Write the energy E in a form that singles out the terms involving this node:

The first term here contains no references to node k, which are all contained in the
second two terms. Now, because wik=wki, these last two sums may be combined

145

For ease of notation, denote the first sum by S and, in the second sum, take outside
the summation since it is constant throughout. Then

The sum following xk is just the activation of the kth node so that

(7.4)

Let the energy after k has updated be E' and the new output be x'k. Then

(7.5)

Denote the change in energy E'-E by E and the change in output x'k-xk by xk;
then subtracting (7.4) from (7.5)

(7.6)

There are now two cases to consider:

 (a) ak 0. The output then goes from 0 to 1 or stays at 1. In either case xk 0.
Therefore xkak 0 and so E 0.

 (b) ak<0. The output then goes from 1 to 0 or stays at 0. In either case xk 0.

146

Therefore, once again, xkak 0 and E 0.

 Thus, for any node selected to fire, we always have E 0 so that the energy of the
net decreases or stays the same. However, the energy cannot continue decreasing
indefinitely—it is bounded below by a value obtained by putting all the xi, xj=1 in
(7.3). Thus E must reach some fixed value and then stay the same. However, we
have not quite guaranteed stable states yet for, once E is constant, it is still possible
for further changes in the network's state to take place as long as E=0. State
changes imply xk 0 but, in order that E=0, (7.6) necessitates that ak=0. This, in
turn, implies the change must be of the form 0 1. There can be at most N of these
changes, where N is the number of nodes in the net. After this there can be no more
change to the net's state and a stable state has been reached.

 7.4.2 Alternative dynamics and basins of attraction

 Up to now it has been assumed that only a single node updates or fires at any time
step. All nodes are possible candidates for update and so they operate
asynchronously; that is, there is no co-ordination between their dynamical action
over time. The other extreme occurs if we make all nodes fire at the same time, in
which case we say there is synchronous update. In executing this process, each
node must use inputs based on the current state, so that it is necessary to retain a
copy of the network's state as the new one is being evaluated. Unlike asynchronous
dynamics, the behaviour is now deterministic. Given any state, a state transition
occurs to a well-defined next state leading to a simplified state transition diagram
in which only a single arc emerges from any state vertex. The price to pay is that
the energy-based analysis of the previous section no longer applies. However, this
is not a problem since the deterministic dynamics lead to a simple description of
the state space behaviour. Thus, since the net is finite there is a finite number of
states and, starting from any initial state, we must eventually

Figure 7.10 State space for synchronous dynamics.

147

Figure 7.11 Confluent structure of three-node net.

reach a state that has been visited before. In particular, single-state cycles occur
again but now there is the possibility for multiple-state cycles. The result is that the
state space is divided into a set of discrete regions, each one being associated with
a state cycle as shown in Figure 7.10. Each of these is, of course, a basin of
attraction but, unlike the state space under asynchronous dynamics, the attractors
are non-overlapping. Multiple-state cycles cannot occur under asynchronous
dynamics and may be useful for storing sequences of events or patterns.

 It is of interest to compare the synchronous-dynamical confluent structure of the
three-node net used earlier in the chapter with its asynchronous behaviour in Figure
7.6. This is shown in Figure 7.11 and consists of three basins of attraction, two of
which have single-state cycles and another a two-cycle. The single-state cycles are
the same as those under asynchronous dynamics and it can be shown that this is a
general result; the single stored patterns remain the same under both dynamics.

 7.4.3 Ways of using the net

 So far it has been assumed that the net is started in some initial state and the whole
net allowed to run freely (synchronously or asynchronously) until a state cycle is
encountered. As indicated in the central pattern of Figure 7.1, there is another
possibility in which some part of the net has its outputs fixed while the remainder is
allowed to update in the normal way. The part that is fixed is said to be clamped
and, if the clamp forms part of a state cycle, the remainder (undamped) part of the
net will complete the pattern stored at that cycle. This process is illustrated in
Figure 7.12, in which the top half of the "T" has been clamped and the bottom half
initially contains 50 per cent noise. Which mode is used will depend on any prior
knowledge about parts of the pattern being uncorrupted or noise free.

148

Figure 7.12 Evolution under clamp.

149

7.5 Finding the weights

 Although we have established the existence of stable states, nothing has been said
so far about how the net can be made to store patterns from a training set. In his
original paper, Hopfield (1982) did not give a method for "training" the nets under
an incremental, iterative process. Rather he gave a prescription for making a
weight set as a given set of patterns to be stored, which, in spite of this, we will
still refer to as a "training set". In Section 7.5.2 we shall relate the storage
prescription to a biologically inspired learning rule—the Hebb rule—and show
that the nodes may also be trained in the normal, incremental way.

 7.5.1 The storage prescription

 The rationale behind the prescription is based on the observations made in Section
7.4.1 about the way in which weights constrain the outputs of node pairs. Consider,
for example, two nodes that tend, on average, to take on the same value over the
training set so that the pairs 0, 0 or 1, 1 dominate; we say that the nodes are
correlated. The pair 1, 1 will be reinforced by there being a positive internode
weight (although the 0, 0 pairing is not affected). If, on the other hand, the two
nodes tend, on average, to take on opposite values (they are anti-correlated) with
pairs 0, 1 or 1, 0, then this will be reinforced by a negative internode weight.

 We now proceed to formalize these ideas mathematically. First, it is convenient to
introduce an alternative way of representing binary quantities. So far these have
been denoted by 0 and 1 but in the polarized or spin representation they are
denoted by -1 and 1 respectively. This name is derived from the fact that Hopfield
nets have many similarities with so-called spin glasses in physics, which are used
to model magnetic materials; each local magnetic domain is either aligned with
(+1) or against (-1) an external field. The connection between spin glasses and
other systems is explored by Kirkpatrick et al. (1983). Now let be
components of the pth pattern to be stored as given in the spin representation.
Consider what happens if the weight between the nodes i and j is given by

(7.7)

where the sum is over all patterns p in the training set. If, on average, the two
components take on the same value then the weight will be positive since we get

150

terms like 1×1 and -1×-1 predominating. If, on the other hand, the two components
tend to take on opposite values we get terms like -1×1 and 1×-1 predominating,
giving a negative weight. This is just what is required according to the discussion
given above, so that (7.7) is a suitable storage prescription for Hopfield nets. This
discussion of output correlation should be compared with that of feature detection
in Section 6.7.3. Note that the same weights would result if we had tried to learn
the inverse of the patterns, formed by taking each component and changing it to the
opposite value. The net, therefore, always learns the patterns and their inverses;
more will be said about these spurious states in Section 7.5.3.

 The storage prescription has a long history. Willshaw et al. (1969) proposed a
correlational scheme for use in their feedforward net, which is a simplified
precursor to that described above, while Anderson (1972) trained single-layer
feedforward nets using essentially the same rule as that used by Hopfield.

 7.5.2 The Hebb rule

 The use of (7.7), which is a recipe for fixing the weights without incremental
adaptation, may appear to run counter to the ideas being promoted in the
connectionist cause. It is possible, however, to view the storage prescription as a
shortcut to obtain weights that would result from the following process of
adaptation

 1. Choose a pattern from the training set at random.

 2. Present the components of this pattern at the outputs of the corresponding nodes
of the net.

 3. If two nodes have the same value then make a small positive increment to the
internode weight. If they have opposite values then make a small negative
decrement to the weight.

 Iteration of these three steps many times constitutes a training algorithm whose
learning rule (step 3) may be written mathematically as

(7.8)

where, as usual, a is a rate constant and 0< <1. It is clear that, as the number of
iterations increases, the pattern of weights developed will approximate ever more

151

closely to those given by the storage prescription up to some overall scaling factor.
As a variation on (7.8), suppose we had used the usual Boolean representation for
the components so that is 0 or 1. The rule would now be

(7.9)

Interpreting this, we see that the change in weight is only ever positive and only
occurs if both nodes are firing (output "1"). This is essentially the same as a rule
posited by the neuropsychologist D.O.Hebb in 1949 as a possible way that
biological neurons learn. In his book The organization of behaviour Hebb
postulated that

 When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A's efficiency, as one of the
cells firing B, is increased.

 The rules in (7.8) and (7.9) are examples of a family that involve the product of a
pair of node activations or outputs. They are known collectively as Hebb rules
even though the mathematical formulation of Hebb's proposal is most closely
captured by (7.9).

 7.5.3 Spurious states

 As well as storing the required training set patterns, the storage prescription has the
undesirable side effect of creating additional, spurious stable states together with
their associated basins of attraction. It has already been noted that the inverse
patterns are also stored. In some sense, however, these are not "spurious" since the
original labelling of pattern components is arbitrary (renaming the set of "0"
components as "1" and vice versa doesn't really change the pattern). Apart from
these there is always a large number of other states that are mixtures of the training
patterns. Amit (1989) has classified these and found that there are more than 3P

spurious states where p is the size of the training set.

 However, things are not as bad as they seem at first glance. It transpires that the
energies of the training set states (and their inverses) are all equal and less than any
of the spurious states. It is possible to take advantage of this to help the net settle
into a stable state corresponding to one of the prescribed patterns. Thus, suppose
we replace the hard-limiter in the node output function with a sigmoid and interpret
its value as the probability of outputting a 1. That is, the units are now stochastic

152

semilinear nodes (Sect. 2.4). Now, when a node updates there is some possibility
that the output will be the inverse of its TLU value so that the energy increases. In
this way it is possible for the net to move away from a spurious minimum, across
an energy boundary in state space, and find itself in the basin of attraction of a
member of the training set. The price to pay is that we have to work a little harder
at interpreting the network output since, in this noisy regime, the state of the net is
continually fluctuating. We can then choose to interpret the retrieved state as the
mean of each node output or the state that has, on average, greatest overlap with the
network state. This approach, together with a quantitative analysis of the effect of
noise, is given in the book by Amit (1989).

153

7.6 Storage capacity

 The storage prescription attempts to capture information about the mean correlation
of components in the training set. As such, it must induce a weight set that is a
compromise as far as any individual pattern is concerned. Clearly, as the number m
of patterns increases, the chances of accurate storage must decrease since more
trade-offs have to be made between pattern requirements. In some empirical work
in his 1982 paper, Hopfield showed that about half the memories were stored
accurately in a net of N nodes if m=0.15N. The other patterns did not get stored as
stable states. In proving rigorously general results of this type, it is not possible to
say anything about particular sets of patterns so that all results deal with
probabilities and apply to a randomly selected training set. Thus McEliece et al.
(1987) showed that for m<N/2logN, as N becomes very large, the probability that
there is a single error in storing any one of the patterns becomes ever closer to
zero. To give an idea of what this implies, for N=100 this result gives m=11.

154

7.7 The analogue Hopfield model

 In a second important paper (Hopfield 1984) Hopfield introduced a variant of the
discrete time model discussed so far that uses leaky-integrator nodes. The other
structural difference is that there is provision for external input. The network
dynamics are now governed by the system of equations (one for each node) that
define the node dynamics and require computer simulation for their evaluation.

 In the previous TLU model, the possible states are vectors of Boolean-valued
components and so, for an N-node network, they have a geometric interpretation as
the corners of the N-dimensional hypercube. In the new model, because the outputs
can take any values between 0 and 1, the possible states now include the interior of
the hypercube. Hopfield defined an energy function for the new network and
showed that, if the inputs and thresholds were set to zero, as in the TLU discrete
time model, and if the sigmoid was quite "steep", then the energy minima were
confined to regions close to the corners of the hypercube and these corresponded to
the energy minima of the old model. The use of a sigmoid output function in this
model has the effect of smoothing out some of the smaller, spurious minima in a
similar way to that in which the Boolean model can escape spurious minima by
using a sigmoid.

 There are two further advantages to the new model. The first is that it is possible to
build the new neurons out of simple, readily available hardware. In fact, Hopfield
writes the equation for the dynamics as if it were built from such components
(operational amplifiers and resistors). This kind of circuit was the basis of several
implementations—see for example Graf et al. (1987). The second is a more
philosophical one in that the use of the sigmoid and time integration make greater
contact with real, biological neurons.

155

7.8 Combinatorial optimization

 Although we have concentrated exclusively on their role in associative recall, there
is another class of problems that Hopfield nets can be used to solve, which are best
introduced by an example. In the so-called travelling salesman problem (TSP) a
salesman has to complete a round trip of a set of cities visiting each one only once
and in such a way as to minimize the total distance travelled. An example is shown
in Figure 7.13 in which a set of ten cities have been labelled from A through to J
and a solution indicated by the linking arrows. This kind of problem is
computationally very difficult and it can be shown that the time to compute a
solution grows exponentially with the number of cities N.

Figure 7.13 Travelling salesman problem: an example.

In 1985, Hopfield and Tank showed how this problem can be solved by a recurrent
net using analogue nodes of the type described in the previous section. The first
step is to map the problem onto the network so that solutions correspond to states of
the network. The problem for N cities may be coded into an N by N network as
follows. Each row of the net corresponds to a city and the ordinal position of the
city in the tour is given by the node at that place outputting a high value (nominally
1) while the rest are all at very low values (nominally 0). This scheme is illustrated
in Figure 7.14 for the tour of Figure 7.13. Since the trip is a closed one it doesn't
matter which city is labelled as the first and this has been chosen to be A. This
corresponds in the net to the first node in the row for A being "on" while the others
in this row are all "off". The second city is F, which is indicated by the second
node in the row for F being "on" while the rest are "off". Continuing in this way, the
tour eventually finishes with city I in tenth position.

 The next step is to construct an energy function that can eventually be rewritten in
the form of (7.3) and has minima associated with states that are valid solutions.
When this is done, we can then identify the resulting coefficients with the weights

156

wij. We will not carry this through in detail here but will give an example of

Figure 7.14 Network state for TSP solution.

the way in which constraints may be captured directly via the energy. The main
condition on solution states is that they should represent valid tours; that is, there
should be only one node "on" in each row and column. Let nodes be indexed
according to their row and column so that yxi is the output of the node for city X in
tour position i and consider the sum

(7.10)

Each term is the product of a pair of single city outputs with different tour
positions. If all rows contain only a single "on" unit, this sum is zero, otherwise it
is positive. Thus, this term will tend to encourage rows to contain at most a single
"on" unit. Similar terms may be constructed to encourage single units being "on" in
columns, the existence of exactly ten units "on" in the net and, of course, to foster a
shortest tour. When all these terms are combined, the resulting expression can
indeed be written in the form of (7.3) and a set of weights extracted3. The result is
that there are negative weights (inhibition) between nodes in the same row, and
between nodes in the same column. The path-length criterion leads to inhibition
between adjacent columns (cities in a path) whose strength is proportional to the
path length between the cities for those nodes. By allowing the net to run under its
dynamics, an energy minimum is reached that should correspond to a solution of the
problem. What is meant by "solution" here needs a little qualification. The net is
not guaranteed to produce the shortest tour but only those that are close to this; the
complexity of the problem does not vanish simply because a neural net has been
used.

157

 The TSP is an example of a class of problems that are combinatorial in nature
since they are defined by ordering a sequence or choosing a series of combinations.
Another example is provided from graph theory. A graph is simply a set of vertices
connected by arcs; the state transition diagram in Figure 7.6 is a graph, albeit with
the extra directional information on the arcs. A clique is a set of vertices such that
every pair is connected by an arc. The problem of finding the largest clique in a
graph is one of combinatorial optimization and also takes time which is
exponentially related to the number of vertices. Jagota (1995) has demonstrated the
possibility of using a Hopfield net to generate near optimal solutions using a
network with the same number of nodes as graph vertices.

158

7.9 Feedforward and recurrent associative nets

 Consider the completely connected, feedforward net shown in Figure 7.15a. It has
the same number of inputs and outputs and may therefore be used as an associative
memory as discussed in Section 7.2 (for greater realism we might suppose the net
has more than three nodes and that the diagram is schematic and indicative of the
overall structure). Suppose now that the net processes an input pattern. We imagine
that, although the net may not have managed to restore the pattern to its original
form (perfect recall), it has managed to produce something that is closer to the
stored memory pattern than the original input. Now let this pattern be used as a new
input to the net. The output produced now will, in general, be even closer to a
stored memory and, iterating in this way, we might expect eventually to restore the
pattern exactly to one of the stored templates.

Figure 7.15 Relation between feedforward and recurrent associative nets.

To see how this is related to the recurrent nets discussed in this chapter, consider
Figure 7.15b, which shows the network output being fed back to its input (the
feedback connections are shown stippled). Making the process explicit in this way
highlights the necessity for some technical details: there must be some mechanism
to allow either the feedback or external input to be sent to the nodes and, during
feedback, we must ensure that new network outputs about to be generated do not
interfere with the recurrent inputs. However, this aside, the diagram allows for the
iterative recall described above. Figure 7.15c shows a similar net, but now there
are no feedback connections from a node to itself; as a result, we might expect a
slightly different performance.

 Now, each input node may be thought of as a distribution point for an associated
network output node. Part (d) of the figure shows the input nodes having been
subsumed into their corresponding output nodes while still showing the essential

159

network connectivity. Assuming a suitable weight symmetry, we now clearly have a
recurrent net with the structure of a Hopfield net. Since, in the supposed dynamics,
patterns are fed back in toto, the recurrent net must be using synchronous dynamics
(indeed the mechanism for avoiding signal conflict in the "input nodes" above may
be supplied by sufficient storage for the previous and next states, a requirement for
such nets as discussed in Sect. 7.4.3).

 In summary we see that using a feedforward net in an iterated fashion for
associative recall may be automated in an equivalent recurrent (feedback) net.
Under suitable assumptions (no self-feedback, symmetric weights) this becomes a
Hopfield net under asynchronous dynamics. Alternatively, we could have started
with the Hopfield net and "unwrapped" it, as it were, to show how it may be
implemented as a succession of forward passes in an equivalent feedforward net.

160

7.10 Summary

 Associative memory may be described as a process of recalling stored patterns or
templates from a partial or noisy version of the original pattern. This is a much
more general paradigm than that used by conventional computers when working
with databases. Although feedforward nets may be used to perform this task, a more
powerful tool is provided by a class of recurrent nets. These may be thought of as
iteratively processing their input pattern to provide new versions that grow
progressively closer to a stored memory. Such nets may also be thought of as
examples of a larger class of dynamical systems that can be described in terms of
an "energy" function. The system energy decreases as the system evolves and we
identify stable states (energy minima) with stored memories. The Hopfield net is an
example of this type of net. It consists of a set of TLUs with zero threshold in which
every node takes input from all other nodes (except itself) and where the interunit
weights are symmetric.

 Under asynchronous operation, each node evaluates its inputs and "fires"
accordingly. This induces a state transition and it is possible (in principle) to
describe completely the network dynamics by exhaustively determining all possible
state transitions. Alternative dynamics are offered by running the net synchronously,
so that the net operation is deterministic. The stable states are, however, the same
as under asynchronous dynamics. For nets of any significant size the problem of
finding the state transition table is intractable but, since we are only interested in
equilibrium states, this is not too important. It is here that the energy formalism
comes into its own and enables us to demonstrate the general existence of stable
states. The energy is defined by thinking of the net as instantiating a series of
pairwise constraints (via the weights) on the current network state. If these
constraints (the weights) are imposed by the pairwise statistics of the training set,
then these will tend to form the stable states of the net and, therefore, constitute
stored memories. Although the weights may be calculated directly, they may also be
thought of as evolving under incremental learning according to a rule based on a
description of biological synaptic plasticity due to Hebb.

 Hopfield nets always store unwanted or spurious states as well as those required
by the training set. In most cases this is not a problem since their energy is much
higher than that of the training set. As a consequence their basins of attraction are
smaller and they may be avoided by using a small amount of noise in the node
operation. In order to store a given number of patterns reliably the net must exceed
a certain size determined by its storage capacity.

 Hopfield developed an analogue version of the binary net and also showed how
problems in combinatorial optimization may be mapped onto nets of this type.

161

162

7.11 Notes

 1. Since the Hopfield net is recurrent, any output serves as input to other nodes and so this notation is not
inconsistent with previous usage of x as node input.

 2. In this discussion the term "state" refers to the arrangement of outputs of i and j rather than the net as a
whole.

 3. The analogue net has, in fact, an extra linear component due to the external input.

163

Chapter Eight
Self-organization

 In this chapter we explore the possibility that a network can discover clusters of
similar patterns in the data without supervision. That is, unlike the MLPs, there is
no target information provided in the training set. A typical dataset to be dealt with
is illustrated schematically in Figure 8.1. Here, points appear to fall naturally into
three clusters with two smaller, more tightly bound ones on the left, and one larger,
more loosely bound on the right. Note that no mention has been made here of class
labels; the relation between classes and clusters is discussed further in Section
8.2.1. If the network can encode these types of data, by assigning nodes to clusters
in some way, then it is said to undergo both self-organization and unsupervised
learning.

 A key technique used in training nets in this way concerns establishing the most
responsive node to any pattern. One way of doing this is simply to search the net for
the largest activity. This, however, displaces the responsibility for this process
onto some kind of supervisory mechanism that is not an integral part of the net. An
alternative is to supply extra resources to the network that allow this

Figure 8.1 Clusters in a training set.

search to take place within the net itself. This distinction will become clearer later
but we introduce it here to motivate the next section, which deals with a search
mechanism intrinsic to the network.

164

8.1 Competitive dynamics

 Consider a network layer of units as shown in Figure 8.2. Each unit is governed by
leaky-integrator dynamics and receives the same set of inputs from an external input
layer. Additionally there are intra-layer or lateral connections such that each node j
is connected to itself via an excitatory (positive) weight and inhibits all other
nodes in the layer with negative weights which are symmetric, so that .
The connections from only one node have been shown in the diagram for the sake of
clarity. This lateral connection scheme is sometimes referred to as on-centre, off-
surround since it aptly describes the sign of the weights with respect to any neuron
as centre.

Figure 8.2 Competitive layer.

Now suppose a vector x is presented at the input. Each unit computes its external
input s, as a weighted sum of the components of x, formed using an input weight
vector w. This may be written in vector notation using the dot product as s=w·x and
is the most expressive way of writing this for our purposes since we wish to view
the situation from a geometric perspective. One of the nodes, labelled k say, will
have a value of s larger than any other in the layer. It is now claimed that, under the
influence of the lateral connections, the activation ak of node k will increase
towards its limiting value while that of the other units in the layer gets reduced. The
total input to each node j consists of the "external" input sj, together with a
contribution lj from other nodes within the layer. Thus, if yj= (aj) is the node's
output, lj may be written

(8.1)

165

and, using (2.6) (with the constants relabelled c1 and c2),

(8.2)

What happens is that node k has its activation stimulated directly from the external
input more strongly than any other node. This is then reinforced indirectly via the
self-excitatory connection. Further, as the output yk grows, node k starts to inhibit
the other nodes more than they can inhibit node k. The growth and decay processes
are limited, however (Sect. 2.5), so that the layer gradually reaches a point of
equilibrium or stability. If the net is a one-dimensional string of nodes (rather than a
two-dimensional layer) its activity may be represented graphically in profile as
shown in Figure 8.3. An initial situation, shown in the lower part of the figure, will
evolve into that shown at the top. Each asterisk plots the activation of a node and
dashed lines have been fitted to the spatial profiles merely to help show their
arrangement. The final output profile of the net reflects that of the final activation
(since y= (a)) and will have the same shape as that in the upper half of the figure,
albeit with an even higher contrast in values.

Figure 8.3 Competitive dynamics: network before and after reaching equilibrium.

The transition from initial state to equilibrium occurs as if there is a limited amount
of activity to be shared amongst the nodes under some competition. The net is said
to evolve via competitive dynamics and it is the node with the largest external
input (the one with the initial advantage) that wins the competition by grabbing the
bulk of the activity for itself. These nets and their dynamics are therefore sometimes
referred to as "winner-takes-all". Thus, competitive dynamics can be used to

166

enhance the activation "contrast" over a network layer and single out the node that
is responding most strongly to its input.

 To obtain the kind of situation shown in Figure 8.3 where there is a distinct and
unique winning node, three conditions must be met. First, there should only be one
excitatory weight emanating from any node that is connected to itself. Some lateral
connections schemes allow for a small excitatory neighbourhood around each node
so that nearby units are fed via positive rather than negative weights. In this case
there will be a "winning neighbourhood" or localized region of high activity in the
layer rather than a single, most active unit. Secondly, the lateral connections must
be sufficiently strong so that the resulting equilibrium is well defined; small intra-
layer weights will give a lower maximum and larger residual activities in the rest
of the net. Finally, the inhibitory connections from each node must extend to all
other nodes otherwise the competition takes place only within local regions of the
net and several local activity maxima can then be supported. Depending on the
requirements it may, in fact, be advantageous to allow any of these situations to
occur by suitable choice of lateral weights (Sect. 8.3.2). However, focusing on the
winner-takes-all situation, we now examine how competitive dynamics may be
useful in a learning situation.

167

8.2 Competitive learning

 Consider a training set whose vectors all have the same unit length, that is
for all x. If the vector set does not originally have unit length it is possible to
convert or normalize it to a new one that does, by multiplying each vector by the
reciprocal of its original length. Thus, if x' is the new vector formed from the
original x,

(8.3)

In 2D the vectors all fall on the unit circle as shown in Figure 8.4. In general, they
fall on the n-dimensional equivalent—the unit hypersphere—in which case the
figure is a schematic representation of the true situation.

Figure 8.4 Normalized vectors on unit sphere.

Suppose that a competitive neural layer has a set of normalized weight vectors for
connection to external input. These vectors may also be represented on the unit
sphere as shown for a three-node net on the left hand side of Figure 8.5. What we
require for this net is that each node responds strongly to vectors in one of the
clusters in the training set. Since there are three nodes and, apparently, three
clusters, we should expect to be able to encode each cluster with a single node.
Then, when a vector is presented to the net, there will be a single node that
responds maximally to the input.

168

Figure 8.5 Normalized weights and vectors.

Clearly, for this process to take place, it is necessary to understand the relation that
must pertain between a weight vector w and an input pattern x if a node is to
respond "strongly" to x. The key is provided by using the inner product expression
for the node's external input, s=w·x. Using the geometric viewpoint of the inner
product developed in Chapter 3, s will be large and positive if the weight and input
vectors are well aligned. Then, if the "angle" between w and x becomes larger, s
becomes smaller, passing through zero before becoming negative. Corresponding
with these changes, the output starts at comparatively large values and decreases
towards zero.

 Further, if the weight and pattern vectors are all of unit length, then s gives a direct
measure of the alignment of each node's weight vector with a particular pattern. To
see this, write the external input using the geometric form of the inner product,

 where this defines the angle between w and x. The appearance of
the vector lengths in this expression means that, in general, they are confounded
with the angular term and can lead to a misinterpretation of the angular separation;
large external inputs can arise, not because is small but simply through large
values of ||w||, ||x||. However, if all vectors are normalized, the lengths are both one,
so that s=cos and is therefore a true measure of the angular proximity between
weight and pattern vectors. If we do not use normalized vectors, it would be
possible for a single weight vector to give the largest response to several clusters
simply by virtue of its having a large length, which is contrary to the proposed
encoding scheme.

 The ideal network will therefore have its three weight vectors aligned with the
three pattern clusters as shown on the right hand side of Figure 8.5. This is brought
about most efficiently by "rotating" each weight vector so that it becomes aligned
with the cluster that is initially its nearest neighbour. This has been indicated in the
figure by attaching labels to the weight vectors, which they retain throughout
training.

 The desired state may be effected by iteratively applying vectors and adjusting the

169

weights of the node whose external input is largest. According to the above
discussion, this is indeed the node whose weight vector is closest to the current
pattern x and, under competitive dynamics, is identified as the node with the largest
output at equilibrium. Let the "winning node" have index k and weight vector wk
(note that wk is the kth weight vector, not the kth component of w, which i s wk).
Then wk should now be rotated towards x, which may be accomplished by adding a
fraction of the difference vector x-wk, as shown in Figure 8.6. This gives the
learning rule for an arbitrary node j

(8.4)

Suppose now the net is truly winner-takes-all, so that node k has its output y close
to one while all the others have values close to zero. After letting the net reach
equilibrium, the learning rule in (8.4) may be expressed without any special
conditional information as

(8.5)

This may now be incorporated into a training algorithm as follows:

 1. Apply a vector at the input to the net and evaluate s for each node.

 2. Update the net according to (8.2) until it reaches equilibrium.

 3. Train all nodes according to (8.5).

 In practice, the number of updates in the second step will be predetermined to
ensure a network state close to equilibrium in most cases.

 As learning progresses, the best responding node to any pattern will change as the
weight vectors reorganize themselves. If the training patterns are well clustered
then it is usually the case that a stable weight set will be found (in the

170

Figure 8.6 Competitive learning rule.

sense that the most responsive node for any pattern remains the same, although its
exact response value may continue to change). If the patterns are not so well
clustered and if there are many more patterns than nodes, then the weight coding
may be unstable. This issue is addressed further in Chapter 9.

 If a stable solution is found, then the weight vector for each cluster represents, in
some sense, an average or typical vector from the cluster, since it has been directed
towards each of them during training. Thus we may think of the weight vectors as
archetypal patterns or templates for the cluster, a theme that is also taken up again
in Chapter 9.

 There remains a problem concerning the normalization that has not been addressed
because, although the weights are initially of unit length, it is to be expected that as
they adapt their length will change. One way around this is to renormalize the
updated weight vector after each training step. However, this is computationally
demanding and there is a simpler way that allows for a good approximation to true
normalization while being automatically implemented in the learning rule. Thus, if
we restrict ourselves to positive inputs, the condition

(8.6)

is approximately equivalent to the normalization given by the Euclidean length that
has been used so far. To see this we note that, because the (Euclidean) length is
one, the squared length is also one and so, under the normalization used so far,

(8.7)

171

While (8.7) defines points on a unit sphere, (8.6) defines points on a plane (since it
is a linear relation). This is illustrated in 3D in Figure 8.7, which shows the
surfaces that weight or input vectors must lie on in the two normalization schemes.
Since quantities are restricted to be positive, these surfaces are constrained to the
positive quadrant of the space. According to how closely the distance of the plane
from the origin approximates to one, the two schemes may be said to be equivalent.
Now suppose that we do indeed use

(8.8)

as an alternative definition of the the "length" of a vector so that normalization of
both weights and inputs implies (8.6). The change in length of a weight vector is
now just the sum of the changes in the weight components. If these changes take
place under the training rule (8.5) then

(8.9)

For y=0 there is no change. If y=1 the first sum in the brackets on the right hand side
is always one since the training patterns don't change. If the weight vector was
normalized according to (8.6) prior to learning update then the second sum is also
one and so the right hand side is zero. Thus, the change in the length of the weight
vector is zero and normalization is automatically preserved. The use of
normalization based on (8.8) turns out under most circumstances to be adequate
although it should be emphasized that it relies on the input patterns having positive
components. This is conceptually, at least, not a difficulty since, if we interpret the
inputs as having come from a previous layer of sigmoidal output units, they must all
be positive.

172

Figure 8.7 Normalization surfaces

It is of interest to rewrite the learning rule in a slightly different way as the sum of
two terms

(8.10)

The first of these looks like a Hebb term while the second is a weight decay. Thus
competitive self-organization may be thought of as Hebb learning but with a decay
term that guarantees normalization. This latter property has a biological
interpretation in terms of a conservation of metabolic resources; the sum of synaptic
strengths may not exceed a certain value, which is governed by the physical
characteristics of the cell to support synaptic and postsynaptic activity.

 A good introduction to competitive learning is given by Rumelhart & Zipser (1985)
who also provide several examples, one of which is discussed in the next section.

 8.2.1 Letter and "word" recognition

 Rumelhart and Zipser trained a competitive net using pairs of alphabetic characters
A and B, each one being based on a 7 by 5 pixel array and inserted into one-half of
a larger, 7 by 14, grid as shown in Figure 8.8. In a first set of experiments the input
patterns were the letter pairs AA, AB, BA, BB. With just two units in the net, each
one learned to detect either A or B in a particular serial position. Thus, in some
experiments, one unit would respond if there was an A in the first position while the
other would respond if there was a B in the first position. Alternatively the two
units could learn to respond to the letter in the second position. Note that these
possibilities are, indeed, the two "natural" pairwise groupings of these letter strings
leading to the clusters {AA, AB}, {BA, BB} or {AA, BA}, [AB, BB}. Rumelhart and
Zipser call the two-unit net a "letter detector". With four units each node can learn
to respond to one of the four letter pairs; each training pattern is then a separate

173

"cluster" and the net is a "word detector". In making these distinctions, it is clear
that we have attached class labels to the patterns, which is predicated on our
understanding of "letter" and "word".

Figure 8.8 Letters used in competitive training example.

Another set of experiments used the letter pairs AA, AB, AC, AD, BA, BB, BC, BD.
When a net with only two units was used, one unit learned to recognize the pairs
that started with A, while the other learned to respond to those that began with B.
When four units were used each unit learned to recognize the pairs that ended in
one of the four different letters A, B, C, D. This again represents the two natural
ways of clustering the training set, although both are examples of "letter" detection.

174

8.3 Kohonen's self-organizing feature maps

 In addition to identifying clusters in training data, there is an additional level of
organization that a competitive network can develop. This occurs when nodes that
are physically adjacent in the network encode patterns that are "adjacent", in some
sense, in the pattern space of the input. The concept of proximity leads to the idea
of a topography or map defined over a neural layer in which these maps represent
some feature of the input space. This property is one that is enjoyed by many areas
of cortex in animal brains, which makes their description a natural starting point.

 8.3.1 Topographic maps in the visual cortex

 The mammalian cortex is the externally visible sheet of neural tissue that is folded
and then wrapped to enclose more central areas of the brain. Among other things, it
is responsible for processing sensory information such as sound and vision. Here
we focus on the visual cortex, which is a rich source of topographic maps.

 The simplest example occurs when the measure, or metric, for map proximity is
just the spatial separation of luminance within the visual field. Thus, in the primary
visual cortex (area V1), patches of light that are physically close to each other will
stimulate areas of cortex that are also in close proximity. This is a so-called
retinotopic map since it relates cortical location to position on the retina of the
eye. Connolly & Van Essen (1984) have demonstrated this for the Macaque monkey
V1 as shown in Figure 8.9. Part (a) shows the visual field for one eye expressed in
a co-ordinate system with circular symmetry that is labelled according to the visual
eccentricity (in degrees) from the centre of gaze. The bold line delimits the extent
of the field of view. Part (b) is the representation in V1 of this field, where the
locations of cortex responding to the dark squares in (a) have been shown to
facilitate comparison. Two points need to be emphasized. First, adjacent areas in
the field of view are processed by adjacent areas of cortex and, secondly, more
cortex is devoted to the immediate area surrounding the centre of gaze (the fovea).
The first 5° of foveal vision are mapped into a region that represents about 40 per
cent of the cortex (shown by the shaded area in the diagram). This is quite general
in topographic maps; although the proximity relation between areas (or topology)
of the input is preserved, the relative size within regions of the input space may not
be.

 Another example occurs in V1 by virtue of the fact that many of its cells are "tuned"
to oriented features of the stimulus. Thus, if a grid or grating of alternating light and
dark lines is presented to the animal, the cell will respond most strongly when the
lines are oriented at a particular angle and the response will fall off as the grating

175

is rotated either way from this preferred orientation. This was established in the
classic work of Hubel & Wiesel (1962) using microelectrode

Figure 8.9 Retinotopic maps.

Figure 8.10 Orientation tuning of cat visual cortex.

studies with cats. Two grating stimuli are now "close together" if their orientations
are similar, which defines the input space metric. In a later study Hubel & Wiesel
(1974) made recordings from an electrode inserted almost tangentially to the cortex
and plotted the optimal orientation tuning of the cells encountered against the
distance of electrode penetration. Two sets of data are shown in Figure 8.10 (the
open and filled symbols refer to which eye is dominant for that cell and their
distinction can be ignored here). In the graph on the left hand side the orientation
varies smoothly with electrode track distance. That on the right shows several
smooth segments interrupted by discontinuities. This pattern is typical and has been
demonstrated more graphically for cat visual cortex using a direct optical imaging
technique (Bonhoeffer & Grinvald 1991), which makes use of the small changes in
reflectivity of the surface of the exposed cortex when it is in metabolic demand due

176

to neural activity. By presenting stimuli at different orientations, it is possible to
map simultaneously the orientation preference of cells in an entire region of cortex.
Apart from reinforcing the results of Hubel and Wiesel, this new data showed that
there were point discontinuities around which the orientation tuning changed
gradually, resulting in what the authors refer to as "pinwheel" structures.
Bonhoeffer and Grinvald displayed their maps using artificial colour codes for
orientation preference. We have reproduced a typical pinwheel structure in Figure
8.11 by using small bars oriented in alignment with the optimal tuning for that
region. The orientation centre has been marked with a shaded disc. Note that
orientation is defined over the range 0–180° and that no directions are implied so
that orientations differing by 180° are identified as the same.

Figure 8.11 Pinwheel structures for orientation tuning.

8.3.2 Developing topographic maps

 The first attempt to train a map of this kind was that of von der Malsburg (1973). A
network of units arranged on a two-dimensional hexagonal grid learned orientation
tuning from a "retina" of 19 nodes also arranged hexagonally (see Fig. 8.13). The
training set consisted of Boolean patterns of light bars ("on" units) against a dark
background ("off" units) at nine different orientations. The model was biologically
motivated so that, rather than there being a single self-excitatory connection per
node, the lateral excitatory region included a unit's nearest neighbours, and lateral
inhibition was mediated via a separate set of neurons. Further, the resulting
inhibitory region did not then extend to the rest of the net but was restricted only to
units that were at most three nodes distant. At each pattern presentation, the
competitive dynamics were allowed to run so that an equilibrium output profile
was established. At equilibrium a Hebb rule was applied, followed by an explicit
renormalization of the weights.

 This model worked well and the net learned a local map, in which several parts of

177

the net responded well to a given orientation. To understand how this emerges,
consider a typical equilibrium output profile in the latter stages of training, as
shown schematically in 1D in Figure 8.12. There are two points to note here. First,
there is more than one region of significant activity which occurs because the
lateral inhibition does not operate globally over the entire net. This allows parts of
the net that are sufficiently well separated to act independently and develop their
own local maxima. Secondly, the activity within each region is spread across
several units with there being no single "winning node". This is a result of the
excitation extending over a small region of the net and not being restricted to a
single self-excitatory connection per node. Now consider what happens under the
Hebb rule. Connections from the "on" units in the input retina will have their
strengths increased to those units that are active, and this increase will be in
proportion to the unit's output. Thus, nodes in active network regions will learn to
respond more strongly to the current pattern. In this way neighbouring nodes

Figure 8.12 Output profiles in orientation map.

tend to develop similar weight vectors and so the network topography has its
origins in the extended regions of activity prior to training.

 Although this example worked well, there are aspects of the model that are
potential causes of difficulty. The use of competitive dynamics per se leads to a
problem concerning the parametrization of the lateral weights. What is the best
radius of excitation and the best ratio of inhibition to excitation? Although not
crucial in the orientation net, it should be borne in mind that the input space had
only a single feature or dimension to be encoded (i.e. orientation) and in most
problems there are several metric dimensions to the input (discussed further in
Sect. 8.3.5). This can serve to make the learning more sensitive to the activity
profiles at equilibrium. Secondly, the iterative solution of the net dynamics can be
very computationally intensive and, if a global rather than local solution were
sought (requiring full lateral interconnectivity), this could be prohibitive.

 Kohonen (1982) re-examined the problem of topographic map formation from an
engineering perspective and extracted the essential computational principles. Most

178

work in this area now makes use of the algorithm he developed for self-organizing
feature maps (SOFMs or simply SOMs). He has described the principles and
further developments in a subsequent book (Kohonen 1984) and review paper
(Kohonen 1990).

 8.3.3 The SOM algorithm

 The network architecture still consists of a set of inputs that are fully connected to
the self-organizing layer, but now there are no lateral connections. It is clear, from
the analysis of the orientation map in the last section, that the key principle for map
formation is that training should take place over an extended region of the network
centred on the maximally active node. All that is required is that the concept of
"neighbourhood" be defined for the net. This may be fixed by the spatial relation
between nodes within the self-organizing layer, as shown in Figure 8.13. Three
neighbourhood schemes are shown based on a linear array of nodes and two two-
dimensional arrays in the form of rectangular and hexagonal grids. In all cases,
three neighbourhoods are shown delimited with respect to a shaded unit at
distances of 1, 2 and 3 away from this node. Thus, the linear, rectangular and
hexagonal arrays have 5, 25 and 19 nodes respectively in their distance-2
neighbourhoods (including the central nodes). Although three-dimensional arrays of
nodes are conceivable, they tend not to get used in practice owing to their
complexity. We now give details of the algorithm, followed by a discussion of each
step.

Figure 8.13 Neighbourhood schemes for SOMs.

The weights are initialized to small random values and the neighbourhood distance
dN set to cover over half the net. Vectors are drawn randomly from the training set
and the following series of operations performed at each selection.

179

1. Find the best matching or "winning" node k whose weight vector wk is closest to
the current input vector x using the vector difference as criterion:

(8.11)

2. Train node k and all nodes in the neighbourhood Nk of k using a rule similar to
that in (8.4)

(8.12)

3. Decrease the learning rate a slightly.

 4. After a certain number M of cycles, decrease the size of the neighbourhood dN.

 Concerning the definition of best matching node (point 1) the weight-pattern inner
product or node activation has been abandoned in favour of the distance between
the weight and pattern vectors. This uses both angular and length information from
w and x, and so does not suffer from the difficulties that require vector
normalization. If the vectors are normalized, then the two schemes are equivalent.
To show this formally we use (3.10) to show that, for any w and x,

(8.13)

Thus, a decrease in the distance implies an increase in the dot product w·x
and vice versa.

 Secondly, the winning node is found using a straightforward search rather than by
the internal dynamics of the net, which therefore obviates the overhead associated
with this task. Both these features make for computational ease and efficiency but

180

are biologically unrealistic. It is possible to train using the inner product measure
but this then requires normalization at each training step. Alternatively, if the
training set has only positive components, we can use the simple, linear
normalization method described in Section 8.2 and rely on the auto-renormalization
implied (8.9). If we adopt the vector difference criterion, the response of the net
when used after training is given by supposing that the winning node is "on" while
all others are "off". The advantage of the inner product measure is that it leads to a
more natural network response in which each node computes an activation a=w·x.
We can then either pass this through a sigmoid output function or simply interpret it
directly as the output so that y=a.

 The learning rule (point 2) is identical to that used in competitive learning if we
suppose that the nodes in the current neighbourhood are active with output equal to
1, and the rest of the net is quiescent with output 0. However, learning now takes
place over an extended neighbourhood and, as noted previously, it is this regional
training that induces map formation. By starting with a large neighbourhood we
guarantee that a global ordering takes place, otherwise there may be more than one
region of the net encoding a given part of the input space. The best strategy is to let
dN decline to zero over a first phase of training, during which the map topography
is formed, and then continue to train only the best-match nodes to make small
adjustments and pick up the finer detail of the input space. If the learning rate is
kept constant, it is possible for weight vectors to oscillate back and forth between
two nearby positions in the later stages of training. Lowering a ensures that this
does not occur and the network is stable.

 8.3.4 A graphic example

 It is possible to illustrate the self-organization of a Kohonen net graphically using a
net where the input space has just two dimensions. Consider a net with six nodes on
a rectangular grid, as shown in Figure 8.14. Because each node has only

Figure 8.14 Six-node network with node labels.

181

Figure 8.15 Untrained net in weight space.

two inputs, it is possible to visualize the representation of this net in weight space
(Fig. 8.15) in which a marker is placed at the position corresponding to each node's
weight vector (as drawn from the co-ordinate origin). The weights are assumed to
start with positive random values, and lines have been drawn connecting markers
for nodes that are physically adjacent in the net. For example, nodes 2 and 5 have
small and large weight vectors respectively and are therefore widely separated in
weight space. They are, however, nearest neighbours in the network and so are
linked by a line in the diagram.

Figure 8.16 Training set in pattern space.

Suppose now that there are six training vectors A, B, C, D, E, F, as shown in the
pattern space diagram in Figure 8.16. Since there are six units in the network and
six training patterns we should expect that, in a well-trained net, each unit is
assigned a unique training pattern so that its weight vector matches the
corresponding input vector. This is the result of the competitive learning but, under
t h e Kohonen algorithm, we also expect a topographic map to emerge. The
implication of this is that neighbouring nodes will become associated with
neighbouring patterns so that the weight space of the trained net looks like that of
Figure 8.17.

182

Figure 8.17 Trained net in weight space.

Figure 8.18 A 25-node net: training set and initial weight space.

The intermediate stage between the initial and final weight space diagrams is better
illustrated using a slightly larger net. In this example, 200 vectors have been chosen
at random from the unit square in pattern space and used to train a net of 25 nodes
on a 5 by 5 rectangular grid. The vectors and the initial weight space are shown on
the left and right hand sides respectively of Figure 8.18. Subsequent "snapshots" of
weight space are shown in Figure 8.19, where the numbers refer to how many
patterns have been used to train up to that point. After only 60 iterations, all nodes
have weights that are close to the centre of the diagram1, which indicates that they
are near the average values of the training set. This is a result of using a large
initial neighbourhood so that nearly all nodes get trained at every step. As the
neighbourhood shrinks, the weight space representation starts to "unravel" as
distinct parts of the pattern space can start to be encoded by different regions of the
net. After 600 training steps, the net has become ordered with the correct topology,
which is apparent as there are no internode connection lines crossing each other.
Further training does not alter the ordering of the map but makes fine adjustments to
the weight vectors so that the entire input space is represented equally. Since the
training patterns cover the square uniformly, the final map reflects this by being
almost regular in shape.

183

Figure 8.19 A 25-node net: "snapshots" in weight space during training.

8.3.5 Maps, distributions and dimensionality

 In another example, the training set is not uniformly distributed in pattern space but
is drawn from a semicircular arc of width 0.2; the initial weight space and patterns
are shown in Figure 8.20. A net of 100 nodes on a 10 by 10 grid was trained using
these patterns and some snapshots of weight space are shown in Figure 8.21. Once
again, ordered map formation takes place and the node weights occupy the same
region in pattern space as the training set. However, this time

Figure 8.20 Vectors constrained to a 2D arc: training set and initial weight space.

184

Figure 8.21 Vectors constrained to a 2D arc: "snapshots" in weight space during training.

the pattern space representation on the net has to be contorted to enable the map to
exist. In this process there are a few nodes that have developed weight vectors
which do not represent any members of the training set and which have become
"stranded", as it were, in a pattern-free zone. This is almost inevitable, and another
example of this phenomenon is provided by Kohonen (1984) in his book.

 The situation becomes even more complex when the input space has more than two
dimensions. Now, the higher dimensions must be "squashed" onto the two-
dimensional grid but this will be done in such a way as to preserve the most
important variations in the input data. To see what is meant by "important
variation" here, consider the example illustrated in Figure 8.22. Here, patterns that
are specified by their two (x and y) co-ordinates in the plane have been sampled
from an arc of a circle. However, any pattern in this set is uniquely specified by a
single number—for example, the angle around the arc from one of its end points.
I t s underlying dimensionality is therefore 1, and provides us with a simple
example of a low-dimensional space (a line) embedded in a higher dimensional
one (the plane). It is therefore possible to train a set of two-input units arranged in
line (rather than a two-dimensional array) to map accurately the input set shown in
the figure. Then, nodes get assigned according to the density of vectors along the
line in pattern space, so that more nodes would be assigned to the ends of the arc
than the middle. The data nominally in 2D have been mapped into the 1D of the
linear neural net array, which has therefore effected a dimension reduction of the
data.

185

Figure 8.22 Two-dimensional data with underlying dimensionality 1.

Oriented patterns on a simple, circular array provide another example as shown in
Figure 8.23. Each pattern is Boolean and is set on an array of 32 elements so that
its nominal vector dimensionality is also 32. However, each one has the same
shape and the only difference between them is their orientation. A single parameter
—the angle of orientation—may then be used to specify the pattern uniquely so the
underlying dimensionality is, once again, 1. In general, the underlying
dimensionality of the training set is greater than 2 and so, even after dimension
reduction, the input space has to be deformed to be mapped onto a two-dimensional
neural layer. Further, the representation of the data in the lower dimensional space
is usually not perfect in a real-world, non-idealized situation. For example, the
"linear" dataset in Figure 8.22 would realistically occupy a finite width in the plane
rather than being strictly confined to the line, and the orientation set would not be
exactly the same shape. In spite of this, the net can still develop good maps for
these sets along their primary parameter dimension.

Figure 8.23 Oriented patterns on a grid.

8.3.6 SOMs and classification: LVQ

186

 Our emphasis in discussing self-organization has been on encoding clusters in the
training set. Class labels may be attached to nodes if we have already assigned
labels to patterns in some way. This was the case, for example, in the examples
provided by Rumelhart and Zipser (in Sect. 8.2.1). In general, nodes may become
classifiers by repeatedly presenting patterns to the net, finding the maximally
responding node and labelling it according to the class of that pattern. The problem
with this simple-minded approach is that, in general, a node may respond
maximally to more than one class of pattern. Therefore, we have to base the node's
class label on a majority vote to find the class to which it most frequently responds.

 The relation between clusters and classes may be discussed further using the
patterns in Figure 8.1. To facilitate this, let the two smaller clusters on the left be
designated L1 and L2 and the loosely bound cluster on the right, R. If a net with
three units is trained on these patterns then each unit would be assigned to one of
L1, L2 and R. Now, how these are interpreted in terms of class labels is entirely
dependent on the context of these patterns in relation to the problem domain in
which they originated. Thus, it may be that each of the three clusters does indeed
represent a separate class and it is comparatively straightforward to make node
assignments. Alternatively, L1 and L2 may be from the same class, which may then
be thought of as containing two subcategories—perhaps upper and lower case
versions of the same letter in a character recognition task—and then two nodes will
be used for one of the classes. Another possibility is that one of the three visually
apparent clusters we have identified is, in fact, a result of two adjacent or
overlapping subclusters, each of which has a different class label. This gives rise
to the problem alluded to above in which a node will appear to belong to more than
one class. Now suppose the net has only two nodes. The most probable outcome is
that L1 and L2 will be represented by one node while R is assigned to the other. If
there is a one-to-one mapping between clusters and classes we will then
necessarily fail to distinguish between two of them. On the other hand, if we have
more than three nodes, several nodes will be assigned to a single class.

 Having made the initial class-node assignment, is it possible to improve the
network's performance in classification? Kohonen has shown (Kohonen 1988a,
Kohonen 1990) that it is possible to fine-tune the class boundaries of an SOM in a
supervised way and has developed several methods for doing this. They are all
variants of what he calls linear vector quantization (LVQ). Vector quantization is
a standard statistical clustering technique (Gray 1984), which seeks to divide the
input space into areas that are assigned typical representatives or "code-book"
vectors. The problem, of course, is to discover what is meant by "typical" and to
cover the input space in an efficient manner. These ideas are, of course, at the heart
of the SOM algorithm. The weight vector of each node may be thought of as a
stereotypical example of the class assigned to that node since, by the nature of the

187

training, it is necessarily close to vectors in that class. The weights are therefore
code-book vectors and the SOM algorithm a kind of vector quantization.

 In order to understand the LVQ techniques it should be borne in mind that the
closest weight vector wk to a pattern x may be associated with a node k that has the
wrong class label for x. This follows because the initial node labels are based only
on their most frequent class use and are therefore not always reliable. In the first
variant, LVQ1, the procedure for updating wk is as follows:

(8.14)

The negative sign in the misclassification case makes the weight vector move away
from the cluster containing x, which, on average, tends to make weight vectors
draw away from class boundaries.

 Two variant techniques (LVQ2 and LVQ3) have also been described by Kohonen
(1990). These are more complex than LVQ1 but allow for improved performance
in classification.

 8.3.7 The role of SOMs

 Biological purpose

 What purpose do topographic maps serve in cortical networks? In artificial neural
nets it is sufficient for a single node to encode a cluster or region of the input space.
This was the case when the competitive dynamics sharpened the output profile in an
extreme way in the winner-takes-all net. In biological nets, however, structural and
signal noise require considerable redundancy if a network is to represent an input
feature in a robust way. It is therefore better to use a distributed code at dynamic
equilibrium in which several nodes respond to some extent when presented with a
given input. This was the case in the orientation maps of von der Malsburg (1973)
whose equilibrium activity was shown in Figure 8.12. The other side of this coin is
that even though each node responds optimally to a particular input pattern it also
gives significant output to nearby patterns in the input space. That is, nodes have a
broad tuning with respect to the dimensions encoded in the net so that in the
orientation maps, for example, each node responds somewhat to a range of

188

orientations. This is shown in Figure 8.24, which contrasts it with the point-like
tuning in a winner-takes-all net.

 Recall that, in order for distributed profiles to emerge, there had to be an extensive
excitatory region around each node. Now imagine that, instead of the excitatory
links being local, they are spread randomly throughout the net. Under competitive
learning, the same distributed encoding would emerge, albeit in a non-topographic
way and leading to apparently random output profiles. However, the average length
of axonic projections would be longer since there is now no predisposition to local
connections. Turning the argument around, since we know that local connectivity
leads to topographic maps, it is possible that maps appear in the cortex through the
requirement of minimizing "wiring"

Figure 8.24 Node tuning to pattern features in competitive nets.

length or, equivalently of ensuring that infra-cortical computation is carried out
locally. This hypothesis has been tested in simulation by Durbin & Mitchison
(1990), who showed that the criterion of minimizing the cortical wiring led to the
kind of dimension-reducing topographic maps observed in the cortex.

 Understanding cortical maps

 Self-organizing topographic maps were introduced from the biological perspective
and one of the objectives in using them is to explore the computational principles
that may be at work in their generation in real cortical tissue. Willshaw & von der
Malsburg (1976) gave an account of the emergence of retinotopic maps; Obermayer
et al. (1990) showed how retinotopy and orientation maps can develop
concurrently; Goodhill (1993) has discussed the generation of ocular dominance
maps in which areas of cortex become associated with processing input from each
eye when initially driven binocularly. Gurney & Wright (1992b) showed how a
self-organizing network can develop topographic maps of image velocity in which
the dimensions encoded are the speed and direction of a rigidly moving body. One
of the direction maps that was learned is shown in Figure 8.25. Compare this with

189

the orientation pinwheels discovered by Bonhoeffer and Grinvald (Fig. 8.11).
There is the same basic swirling pattern but, because we are dealing with direction
rather than orientation, the encoding covers the entire range of angles between 0°
and 360°. Notice also the discontinuity or "fracture" in the map in the left hand
upper region, which was a characteristic of the data of Hubel and Wiesel (Fig.
8.10).

 Visualizing the input space

 In artificial neural nets, the dimension reduction framework provides a basis for
understanding the nature of the training set in that it may be useful to be able to
visualize metric relations in the input space. This is apparent in the work of
Kohonen et al. (Kohonen et al. 1984, Kohonen 1988b) in which a map

Figure 8.25 Direction tuning in velocity-encoding net.

Figure 8.26 Phonemic map.

of the phonemes in the Finnish language was developed from natural speech
samples. Phonemes are the smallest units of sound that characterize speech—they
are usually smaller than syllables and consist of the primitive utterances that

190

constitute speech in a given language. One of the phonotopic maps that Kohonen
developed is shown in Figure 8.26. Although a full appreciation of this map
requires knowledge of the phonemic notation used and its Finnish speech
equivalent, it is apparent that vowel-like sounds occur in the top right hand part of
the map and grade into consonant-like sounds over the rest of the net. Clearly, the
true dimensionality of "phoneme space" is not known a priori, but the final two-
dimensional representation gives us some insight into the metric relations between
phonemes. The net also works as a phoneme classifier first stage in an automatic
speech to text translation device in which phonemes are subsequently transcribed
into the corresponding textual symbols.

 One of the problems in speech recognition is that each time a phoneme is uttered it
is slightly different. This is most severe between different speakers but is also
apparent within the speech of a single person. The neural network is ideally suited
to overcoming these types of noisy data. However, there are more fundamental
problems to be overcome. Continuous speech does not come ready parcelled in
phonemic segments, leading to so-called co-articulation effects in which the exact
sound of a phoneme can vary according to its context within a word. These
difficulties are addressed by Kohonen but with methods that do not use neural
networks. For example, context sensitivity is dealt with using a conventional rule-
based system. This is an example, therefore, of a hybrid approach, which is often
the most pragmatic in engineering a problem solution (see Sect. 11.4.4).

 Another example concerns the representation of animal categories given an input
vector of animal properties (Ritter & Kohonen 1989). The input patterns consist of
Boolean vectors, each describing a particular animal, and with components
signalling the presence or absence of properties such as "is small", "is big", "has
two legs", "has four legs", "likes to fly", "likes to run", etc. When an SOM is
trained on these descriptors, each animal gets assigned to a distinct part of the net
so that the net becomes partitioned into regions representing the three types of
animal: birds, hunter-carnivores and herbivores. In the original work of Ritter &
Kohonen, the input vectors were augmented with preassigned classification
information. However, there are several unsatisfactory aspects to this, as noted by
Bezdek & Pal (1995), who go on to show that this extra information is unnecessary
for good class ordering on the SOM.

 Combining SOMs and MLPs

 Huang & Kuh (1992) used a combination of a single-layer perceptron, an SOM and
a multilayer perceptron to solve the problem of isolated word speech recognition
on a database of 20 words consisting of numbers (0 through to 9) and ten so-called
"control" words. The latter were drawn from the kind of commands required to

191

interact with a computer program, such as "go", "help", "yes", "no", etc. This
problem is considerably simpler than the recognition of continuous speech
discussed above, since the vocabulary is small and the words are supposed to be
spoken separately with distinct interword silence. Nevertheless, there will still be
inter- and intra-speaker variations in the input, and true silence has to be
distinguished from background noise.

 The raw input was split into samples of 16 ms duration. Each sample was then
processed to give information about 15 frequency channels and three other
parameters that were used in a simple perceptron to distinguish speech from noise.
If a sample was classified as speech then it was fed into a rectangular-array SOM,
which was used to learn an acoustic map of the words in the training set. This is
similar to the phonotopic map shown in Figure 8.26 but this time there is no attempt
to distinguish phonemes per se and each 16 ms segment is treated as a valid input.
When a complete word is input to the net, a temporal sequence of sound segments is
generated and, by recording all those units that responded to a word, a pattern of
excitation is built up which is characteristic of that word. These characteristic
word signatures produced by the SOM are then used as input vectors to an MLP,
which is trained to recognize them using backpropagation. In this way, the SOM is
being used as a preprocessor for the MLP and it is in this way that SOMs often find
practical application.

 Several further points are worth mentioning. First, the SOM was trained using
Kohonen's self-organizing algorithm but was fine-tuned using a kind of vector
quantization known as K-means clustering. Secondly, the topographic nature of the
acoustic map was used to good effect in searching for best-matching units. Thus,
adjacent segments in an acoustic word sequence are often not too different because
of physical constraints on the vocalization of sounds. The result is that they tend to
excite nodes that are close to each other (although not necessarily adjacent) on the
network array. Having located the first best match in a word sequence, the next one
is likely to be found in its near vicinity, the subsequent match close to this and so
forth. Finally, the combined network was very successful, with the best recognition
rates approaching 99.5 per cent.

192

8.4 Principal component analysis

 We have seen that one way of viewing SOM learning is that it accomplishes a
dimension reduction. There is another way of performing this, which we first
examine in pattern space before seeing its implementation in a network.

Figure 8.27 Clusters for PCA.

 Consider the two clusters of two-dimensional patterns shown in Figure 8.27. It is
clear in this graphical representation that there are two clusters; this is apparent
because we can apprehend the geometry and the two sets have been identified with
different marker symbols. However, suppose that we did not have access to this
geometric privilege, and that we had to analyze the data on the basis of their (x, y)
co-ordinate description alone. One way of detecting structure in the data might be
to examine the histograms with respect to each co-ordinate—the number of points
lying in a series of groups or bins along the co-ordinate axes—as shown in the top
half of Figure 8.28. There is a hint that the histograms are bimodal (have two
"humps"), which would indicate two clusters, but this is not really convincing.
Further, both histograms have approximately the same width and shape. In order to
describe the data more effectively we can take advantage of the fact that the clusters
were generated so that their centres lie on a line through the origin at 45° to the x
axis.

 Now consider a description of the data in another co-ordinate system x', y' obtained
from the first by a rotation of the co-ordinate axes through 45°. This is shown
schematically in Figure 8.29. The new x' axis lies along the line through the cluster
centres, which gives rise to a distinct bimodality in its histogram, as shown in the
bottom left of Figure 8.28. Additionally, the new y' histogram is more sharply
peaked and is quite distinct from its x' counterpart. We conclude that the structure
in the data is now reflected in a more efficient co-ordinate representation.

193

 In a real situation, of course, we are not privy to the way in which the clusters were
produced, so that the required angle of rotation is not known. However, there is a
simple property of the data in the new co-ordinate system that allows us to find the
optimal transformation out of all possible candidates; that the variance along one of
the new axes is a maximum. In the example this is, of course, the x' axis. A
corollary of this is that the variance along the remaining y' axis is reduced. With
more dimensions, a "rotation" of the co-ordinate axes is sought such that the bulk of
the variance in the data is compressed into as few vector components as possible.
Thus, if the axes are labelled in order of decreasing data variability, x1 contains the
largest data variance commensurate with a co-ordinate rotation; x2 contains the
largest part of the remaining variance; and so forth. The first few vector
components in the transformed co-ordinate system are the principal components
and the required transformation is obtained by principal component analysis or
PCA. This is a standard technique in statistical analysis and details of its operation
may be found in any text on multivariate analysis—see, for example, Kendall
(1975).

 To the extent that the essential information about the dataset is contained in the first
few principal components, we have effected a dimension reduction. Thus, in our
simple two-dimensional example, the class membership is related directly to the
distance along the x' axis. Then, although each point still needs two co-ordinates,
the most important feature is contained in the single dimension—x'. The situation is
reminiscent of the dimension reduction discussed for SOMs. However, the
transformation under PCA is linear (since co-ordinate rotation is a

Figure 8.28 Histograms for PCA data.

194

Figure 8.29 Rotated co-ordinate axes.

linear transformation) whereas dimension reduction on an SOM is not necessarily
so. For example, the embedding of the arc in the plane (Fig. 8.22) requires a
nonlinear transform to extract the angle around the arc (e.g. =tan-1y/x).

 We now attempt to place PCA in a connectionist setting. Figure 8.30 shows a single
pattern vector v taken in the context of the two-dimensional example used above.
Also shown is the expression for its first principal component vx' along the
x' axis, in terms of the angle between x and this axis. Consider now a node whose
weight vector w has unit length and is directed along the x' axis. The following now
holds for the activation: since ||w||=1. But

 so that a=vx'. That is, the activation is just the first principal
component of the input vector. Thus, if we use a linear node in which the output
equals the activation, then the node picks up the most important variation in its
input. Further, we may obtain an approximation of v according to

(8.15)

Figure 8.30 Vectors and PCA.

195

This property only becomes useful, however, if we can develop the required
weight vector in a neural training regime. This was done by Oja (1982), who
showed that it occurs under self-organization with a Hebb-like learning rule

(8.16)

This is similar to (8.5) except that the decay term is y2w instead of yw. Of course, it
is more useful if we can extract principal components other than just the first, and
Sanger (1989) has shown how to do this using a single layer of linear units, each
one learning one of the component directions as its weight vector. Sanger also gave
an application from image compression in which the first eight principal component
directions were extracted from image patches of natural scenes. Let the resulting
weight vectors be w1…w8 and their outputs in response to an image patch be y1…
y8. These outputs are just the principal components and so, under a generalization
of (8.15), the original patch may be reconstructed by forming the vector
y1w1+y2w2+…+y8w8. Sanger showed how the components yi can be efficiently
quantized for each patch, without significant loss of image information, so that the
number of bits used to store them for the entire image was approximately 4.5 per
cent that of the original image pixels.

 Finally, we note that it is possible to extend PCA in a neural setting from a linear to
a nonlinear process—see, for example, Karhunan & Joutsensalo (1995).

196

8.5 Further remarks

 We have seen how self-organization has connections with clustering, vector
quantization and PCA. It also has connections with a branch of the theory of
communication known as information theory. This deals with the structure and
relations between signals treated in the abstract. There is not room to develop these
ideas here but the interested reader may find a suitable introduction in Jones
(1979). Linsker was one of the first to explore these connections in a series of
papers (Linsker 1986), which are summarized in Linsker (1988). Linsker showed
how a layer of linear neurons can, using a type of Hebb rule under self-
organization, learn to extract features from its input simply by virtue of there being
a local receptive field structure in the input connections. By training a set of
hierarchical layers one at a time, it was possible for the net to learn a set of
progressively more complex features. Further, he went on to demonstrate how the
Hebb-like rule was equivalent to a learning principle that tried to optimize the
preservation of information through the net. Plumbley (1993) has shown similar
principles at work with so-called anti-Hebbian learning in which weight values
are decreased in response to input-output correlation. This type of learning has the
effect of decorrelating the outputs of a net so they respond to different patterns.

 Self-organizing multilayer nets with local receptive fields have also been studied
by Fukushima in a network known as the neocognitron (Fukushima 1980,
Fukushima 1988, Fukushima 1989). It is a complex structure with three cell or node
types and its overall connection scheme is similar in broad outline to the animal
visual system in that each successive layer sees a local patch (receptive field) of its
input. The neocognitron is therefore best suited to visual pattern recognition
problems and is able to generalize to scaled, translated, rotated and highly distorted
versions of the training exemplars, just as humans are able to do when reading
handwritten characters. Fukushima reports simulations with the numerals 0–9, and
Kim & Lee (1991) have demonstrated the ability of a neocognitron to recognize
Hanguls (Korean) syllabic characters.

197

8.6 Summary

 Lateral on-centre, off-surround connections in a layer of neurons enable the activity
profile of the layer to be contrast enhanced. Thus, nodes being supplied with the
strongest external input become very active at the expense of nodes that are being
weakly driven. With suitable lateral weights this can result in the extreme case of
"winner-takes-all" dynamics in which the node with the largest external input
reaches its maximum activity strength while all others have their activities reduced
to a minimum. This mechanism is used in competitive learning where nodes
become associated with pattern clusters by aligning their weight vectors with
cluster centres. For any given pattern x, the node whose weight vector w is best
aligned with x is adapted so that w moves even closer to x. The degree of weight-
pattern alignment is determined by node activity since this is proportional to the dot
product w·x of the two vectors (under a scheme in which these two sets of vectors
are normalized). The most active node is therefore the one whose weight vector
should be adapted and may be found using the competitive (winner-takes-all)
dynamics. In an ideal case each cluster is encoded by (gives maximal response
with) at least one node although what constitutes a cluster is determined by the
network. The learning rule used in weight adaptation may be written as the sum of a
Hebb rule and a decay term. This type of learning is called unsupervised—
equivalently the net is said to undergo a process of self-organization—because
there are no target outputs.

 In a topographic feature map, not only are nodes responsive to clusters but also they
are arranged in the net so that adjacent nodes encode clusters that are "close" to
each other. The concept of proximity here is based on the idea that the pattern space
has an underlying dimensionality significantly smaller than the nominal
dimensionality of each vector. If this is the case then the feature map will vary
smoothly along each of these main dimensions although singularities or fractures
may also be found. Topographic feature maps are found extensively in animal
cortex where they encode sensory and motor information. They may be developed
in artificial nets under self-organization using a learning rule similar to that used in
competitive learning but now, not only is the "winning" node trained, but also nodes
within a surrounding neighbourhood. To ensure well-ordered maps with good
resolution of pattern space detail, both the neighbourhood size and learning rate
must be gradually reduced as training progresses. After training a self-organizing
map (SOM) in the manner outlined above, its class boundaries (if these are known)
may be improved using linear vector quantization (LVQ).

 The purpose of feature maps in the biological setting may be related to a need to
conserve "wire length". The SOM algorithm sheds light on possible developmental
processes in the brain and feature maps allow visualization of fundamental

198

relations in the pattern space of the training set. SOMs may be thought of in terms of
a dimension reduction of the input space; an alternative, linear statistical method
that attempts to do this is principal component analysis (PCA), which has a neural
network implementation.

199

8.7 Notes

 1. All the weights are slightly different although only five points are shown; the graphic resolution is not able to
make these fine differences apparent.

200

Chapter Nine
Adaptive resonance theory: ART

 Adaptive resonance theory, or ART, refers to a class of self-organizing neural
architectures that cluster the pattern space and produce archetypal weight vector
templates. As such they have many features in common with the networks described
in Chapter 8. However, ART networks are substantially richer architecturally and
dynamically since they attempt to fulfil a much broader programme of objectives.

201

9.1 ART's objectives

 9.1.1 Stability

 One of the problems noted in connection with simple competitive nets was that,
under certain circumstances, the assignment of best-matching nodes to patterns can
continually be in a state of flux so that no stable coding is reached. Grossberg
(1976a, b) gives specific examples of this phenomenon and has examined the
general conditions under which it is likely to happen. In particular, he notes that an
attempt to use too few nodes may well lead to instability and shows how the order
of vector presentation may be crucial in this respect. Carpenter & Grossberg
(1987b) refer to this problem as the plasticity-stability dilemma: how can a
network remain open to new learning (remain plastic) while not washing away
previously learned codes? In the SOMs developed under Kohonen's algorithm this
was overcome by gradually reducing the learning rate. However, this is a rather ad
hoc solution that simply limits the plastic period of the net. One of the main claims
made for ART is that it overcomes the plasticity-stability dilemma in a natural way,
so that the net is continually immersed in a training environment where there are no
separate learning and testing phases.

 9.1.2 Control over detail of encoded features

 A further problem is to know a priori how many nodes are required to cluster the
pattern space. Clearly, if we provide a large number then we shall obtain an
extremely finely graded classification, while too few and the clusters will be too
large. It would, therefore, be more satisfactory if we could allow the net to decide
for itself how many templates or clusters to provide according to the setting of a
single parameter that determines the net's "attention to detail".

 9.1.3 Biological plausibility

 Several aspects of the SOM algorithm were clearly not biologically plausible.
Indeed, its motivation was to extract the required computational principles and then
discard their biological basis. The gradient descent algorithms like
backpropagation used with MLPs do not even attempt to provide any biological
support. It is therefore a significant challenge to ensure that each mechanism and
component of a network can be identified (at least in principle) with a
neurobiological counterpart.

202

 9.1.4 System integration

 The learning rules and training algorithms we have dealt with so far imply that
there is an external controller which supervises the sequencing of many of the steps
during learning. For example, weight adjustment is initiated at specific times at the
end of a pattern presentation cycle, an error signal is accumulated at the output
layer of an MLP, or a neighbourhood size parameter is reduced in an SOM. Is it
possible, at the neural level, to integrate a large part of this system control into the
fabric of the network itself or, at a higher level, to make each part manifest and
exhibit it as a seamless part of the whole system?

 9.1.5 Mathematical foundation

 One requirement when developing a network algorithm is to ensure that properties
of the net such as convergence, stability, the nature of internal representation, etc.,
should be mathematically provable. With some of the algorithms described so far,
attempts to characterize their behaviour have often been carried out well after their
initial use, which was largely empirically driven; they worked and the results
appeared to justify the means. It is therefore desirable that a mathematically proven
foundation of the network properties be developed as early as possible so that
empirical simulation work is avoided which may be directed at trying to achieve
the impossible.

 9.1.6 The way forward

 The construction of a self-organizing network that addresses all these issues is an
extremely ambitious programme to fulfil. Nevertheless, Grossberg and Carpenter
attempted to do just this with the ART1 architecture and learning scheme. This
paper is the culmination of a long development effort initiated by Grossberg
(1973), who had started by characterizing the behaviour of the competitive
dynamics that would be an essential component of the network. The elements of the
learning theory were laid in Grossberg (1976b) and refined in Grossberg (1980).
The final form of ART1 is presented by Carpenter & Grossberg (1987b). ART1 is
restricted to dealing with Boolean input patterns but further enhancements and
revisions have extended the scope of the ART family of architectures. We shall,
however, restrict our main focus of attention to ART1, only briefly describing
subsequent developments in Section 9.4. Reviews of ART may be found in
Grossberg (1987) and Carpenter & Grossberg (1988, 1992), and Grossberg (1988)
includes a review of Grossberg's work on competitive dynamics.

203

 The literature on ART sometimes has the appearance of being rather impenetrable
and Byzantine. This is partly because it is a complex system and partly because the
programme is so all embracing, attempting to make connection with neurobiology at
both the cellular and anatomical levels, and with psychological theories of
learning. All of this is then interwoven with a rich mathematical description. The
connection with biology often results in many of the familiar network features we
have described being referred to by unfamiliar names. The mathematics also makes
occasional use of notation that is not intuitive in a connectionist context.

 Our purpose here is not to give an exhaustive description of every aspect of the
ART paradigm; rather, we wish to give an overview that will (hopefully) make it
more accessible. The key to our approach is not to try and tackle ART "head on" in
all its complexity, but to try and disentangle a set of levels of analysis using a
suitable hierarchical approach. This perspective is of quite general applicability
and so we will revisit some networks and algorithms described earlier, both to
deepen our understanding of these systems and to illustrate how it may be applied
to ART.

204

9.2 A hierarchical description of networks

 In his book Vision, David Marr (1982) described a hierarchical framework for
discussing the nature of computational processes. The motivation for this was an
understanding of the nature of computation in the visual system. However, Marr's
approach is of quite general applicability and we shall use a modified version of it
to describe the process of training a neural network (in particular the ART1 net).

 The top level of the hierarchy is the computational level. This attempts to answer
the questions—what is being computed and why? The next level is the algorithmic,
which describes how the computation is being carried out, and, finally, there is the
implementation level, which gives a detailed "nuts-and-bolts" description of what
facilities the algorithm makes use of. In applying this scheme, the clear distinctions
that are hypothesized may not be so easy to make in practice, and how system
features get allocated to levels may be, to some extent, a matter for debate.
However, Marr's original example helps illustrate the meaning intended. It
examines the computation of the bill in a supermarket with a cash register. In
answer to the top-level question of "what" is being computed, it is the arithmetical
operation of addition. As to "why" this is being done, it is simply that the laws of
addition reflect or model the way we should accumulate prices together from piles
of goods in a trolley; it is incorrect, for example, to multiply the prices together.
Next we wish to know how we do this arithmetic and the answer is that it is done
by the normal procedure taught at school where we add individual digits in
columns and carry to the next column if required. This will be done in the usual
decimal representation rather than binary (normally encountered in machine
arithmetic) because of the possibility of incurring rounding errors when converting
to and from binary. As for the implementation, this occurs using logic gates made
out of silicon, silicon oxide and metal. Notice that, in principle, the three levels are
independent. In particular the type of implementation used is quite independent of
the chosen algorithm (alternatives in the above example might make use of an older
mechanical machine or pencil and paper). In addition, for any given computation,
we may choose from a variety of algorithms to achieve the same final result.

 In Marr's original hierarchy, the implementation level was associated with a
particular set of hardware resources. Here we are not so concerned with this issue
per se as much as supplying a more detailed account of the network operation.
Further, we shall find it useful to divide the implementation level into two—a high
or system implementation level and a low or signal implementation level. The
system level includes processes and mechanisms that have yet to be articulated at
the level of artificial neurons. For example, in backpropagation no specific neural
mechanism is indicated for finding the error. This may be possible in principle but
its instantiation would reside at the signal level. This distinction will become

205

clearer as we proceed with the explanation of ART1, and further examples of this
approach may be found in Chapter 11.

206

9.3 ART1

 Historically the first (and simplest) member of the ART family is ART1. It is a
two-layer network that discovers pattern cluster templates in arbitrary Boolean
pattern sets.

 9.3.1 Computational level

 The computational level has the same goal of finding cluster templates as simple
competitive learning. However, the number of templates is not fixed ab initio but is
determined by the requirement that each pattern should be sufficiently similar to its
associated template. Further, the template set and the mapping between patterns and
templates should be stable so that, after a finite time, these do not change.

 In order to make this more concrete, first recall that ART1 deals with Boolean
patterns. It also uses Boolean templates and each "1" in a template or pattern is
referred to as a feature. Now let d be the number of features common to the
template and pattern, divided by the number of features in the pattern. In other
words, d is that fraction of the features in a pattern that are held in common with the
template, and 0 d 1. Notice that large values of d imply that the pattern is close to
the template, so d is a measure of proximity rather than distance.

 The computational requirement is now that each pattern should be assigned a
template such that the pattern-template similarity d is greater than some prescribed
value . The object of this is to overcome the problem outlined above concerning
the level of detail in encoding features. For, if is small then the similarity
criterion is loose, comparatively few templates will be required and a few coarse
clusters will be found. If, on the other hand, is large then the similarity criterion
is demanding, and many templates may be used in encoding a large number of
smaller clusters, many of whose templates may be similar to each other. In the
terminology of ART, is known as the vigilance since it informs the net of how
closely it should examine new patterns to see if they are similar to existing stored
templates.

 9.3.2 Network architecture

 The intimate relation between the algorithm and the ART network makes it
profitable to describe the neural network architecture at this stage (the relation
between algorithms and networks is explored further in Sect. 11.2). The network
(Fig. 9.1) has two layers of leaky-integrator-type neurons. Although the dynamics of

207

each are somewhat more complex than those described by equation (2.6) this is not
a problem as we will be concerned primarily with their equilibrium properties.

Figure 9.1 ART1 network architecture.

The first layer (labelled F1 in the ART notation) receives input from the external
environment and from the second layer labelled F2. Quantities relating to layers F1,
F2 are indexed by i, j respectively and individual nodes denoted by vi and vj.
Layers F1 and F2 contain M and N nodes respectively. The input to F1 from F2 is
mediated by a set of top-down weights zji, which constitute the stored templates.
Layer F2 is subject to competitive, winner-takes-all dynamics and receives input
from F1 via a set of bottom-up weights zij (notice that the ordering of the i, j indices
indicates bottom up or top down). In contrast with simple competitive learning,
these weights do not store templates as such, although, as will be shown later, they
are closely related. Note that, in some versions of ART1, layer F1 is also equipped
with lateral on-centre, off-surround connections. Only one set of each type of
connections has been shown for simplicity.

 9.3.3 Algorithmic level

 We proceed by first describing the algorithm informally. Next it is formalized in
some pseudo-code and detailed points are subsequently discussed.

 At the algorithmic level, each pattern presentation initiates a search for a closely
matching template. If the template-pattern match is within the vigilance criterion,
then the template is adjusted to incorporate information provided by the new pattern
by losing any features that are not shared with it. If no sufficiently well-matched
template can be found, a new template is created that is set equal to the current
pattern.

 The success of ART lies in the subtlety with which the templates are searched, as it
is not necessarily the case that the closest template is chosen first. Rather, the

208

bottom-up weights zij determine the order of search by specifying the F2 node that
has the largest response to the input out of a set J of nodes which are currently
eligible for template match. By "largest response" here is meant the weighted (by
wij) sum of inputs from F1. If a node selected in this way does not match its
template well with the pattern then it is deleted from the list J, which initially
contains all N nodes in F2.

 Thus, there is a sequence of selection-match trials in which F2 selects the most
active node (in response to the current input pattern) from its remaining pool of
untried nodes, and then tests its template against the input. If there is a match (under
the vigilance criterion) resonance is said to occur between the template and the
pattern, and the weights are updated. If there is no match then the currently active F2
node is deleted from J and the search continued. The search will terminate if either
there is a previously trained template that matches well, or an untrained node in F2
is selected. The initialization conditions ensure that such a node resonates with any
input since it is non-specific and provides strong inputs to the whole of F1. Of
course, in limiting cases, all nodes are trained and there are no free ones to take
new templates. In this case the net cannot learn the entire training set.

 At resonance, all top-down weights that correspond to template-pattern feature
matches are set to 1, while the rest are set to 0. All bottom-up weights are set to 0
or the same positive value, which is determined by the number of matching features
between pattern and template. Larger numbers of matches cause smaller positive
weights and vice versa so that, as discussed later, there is some kind of
normalization at work. Finally, if zij is set to 0 then so too is zji so that the bottom-
up weight vector to any F2 node is like a normalized version of that node's top-
down template.

 In order to develop this more formally we introduce some new notation in keeping
with that due to Carpenter and Grossberg. Vectors are written in upper case italic
and, for any vector V, let V be the set of component indices in V that are greater
than zero. For example, V=(1, 0, 0.7, 0, 0.5) has positive elements at the first, third,
and fifth positions so V={1, 3, 5}. If V is a Boolean vector then, in the terminology
of ART, the 1s are features so that V is a feature-index set. Further, let |V| be the
number of elements in V, which, for a Boolean vector, is just the number of features
i n V. The top-down template vector will be denoted b y Z(j)1 so that Z(j) has
components zji. Then, if I is the input pattern, use will be made of the set X, which
is the set intersection, I I-I Z(j). That is, X is just the index set for the features that
the input and the template have in common.

 The ART1 algorithm may now be expressed as follows. Comments are bracketed

209

by the symbols /* */ and use has been made of the set notation x Y to mean "x is a
member of set Y".

 /* Initialization—top-down weights */

 put all zji=1

 /* Initialization – bottom-up weights */

 Choose constant L>1

 Choose random values for zij ensuring all zij<L/(L-1+M)

 repeat

 Apply input I

 /* Initialize eligibility set to include all F2 nodes */

 Put J={v1,…, vj,…vN}

 Resonance=FALSE

 repeat /* search for match */

 find vj in F2 with largest value of I·Z(k) where k J

 /* I·Z(k) is what we call the activation */

 compute X=II-IZ(j)

 if /* template matches pattern */

 Resonance=TRUE

 else

 delete vj from J

 /* vj no longer eligible for template searched */

 endif

 until Resonance or J is empty

 if Resonance then /* weight update */

210

endif

 until…

 We now comment on some of these steps by way of explanation and to help show
their interrelation.

 – The condition is the symbolic representation of the matching criterion;
that is, the fraction of input features that are also common to the template must be
greater than the vigilance. One corollary of this definition is that inputs with a large
number of features require more feature mismatches to fail the vigilance test than do
inputs with only a few features. For example, suppose I1 and I2 have 10 and 100
features respectively and that they match against templates with 7 and 81 features
respectively. For I1 the test ratio is 7/10=0.7 while for I2 it is 81/100=0.81. Thus,
i f =0.8, I1 would fail a vigilance test against a template with only three
mismatching features, while I2 would pass with 19 mismatches. Carpenter and
Grossberg call this the self-scaling property, pointing out that, for a pattern like I1,
each feature contains useful information about the pattern because there are so few
of them. However, for a pattern like I2 a few missing features may be due to noise
rather than true informational content.

 – The prescriptions given for weight update constitute a pair of learning rules for
bottom-up and top-down weights.

 – The search sequence is such that trained nodes are always tested first before an
untrained node is used to establish resonance. However, if a search ends in this
way, it must be guaranteed that resonance occurs. This is done by virtue of the
initialization that sets all the top-down weights to 1. This template matches any
input and then X=I so that a fresh template simply encodes the current pattern.
Subsequent matches with this new template are always partial so that templates
always lose features and can never gain them.

 – Although L>1 (Carpenter & Grossberg 1987b) it is of interest to see what
happens in the limiting case when L=1. Then the initial values of zij are all 1/M so
that the sum of the weights is 1 and the bottom-up weight vector is normalized

211

according to the criterion in (8.8). Then, the bottom-up learning rule becomes
 for those i in X and 0 otherwise. Again so that the weights

remain normalized. In general L 1 so that normalization is not obtained in the sense
we have used. Carpenter and Grossberg refer to the quasi-normalization condition
occurring for arbitrary L as the Weber law rule . We have seen that this class of
process is essential for self-organized learning.

 – Although L>1 is required for correct operation, L should not be chosen too large
or new templates will be chosen at the expense of adapting previously learned
ones, even though may be small (Carpenter & Grossberg 1987b).

 – In later variants of the architecture, F1 is equipped with competitive dynamics
and can normalize the input prior to sending it on to F2. This allows for a simpler
bottom-up learning rule that puts zij=1 for those i in X and 0 otherwise.

 – If resonance does not occur then all nodes in F2 have been searched for match
without success (J is empty). In this case, the net cannot classify all the patterns at
the required level of vigilance. Lowering sufficiently will allow full
classification since this decreases the number of clusters required. This is
emphasized by the extreme cases of =0, for which all patterns are assigned the
same template, and =1, for which all patterns are assigned their own template.

 – It can be shown (Carpenter & Grossberg 1987b) that after a finite number of
presentations of the training set, the learned templates stabilize so that applying the
learning rules at resonance does not alter the weight sets. At this point, each pattern
directly accesses a learned template. That is, the first template to be chosen on
presentation of a pattern is the one that causes resonance. This allows us to avoid
having to supply a terminating condition to the outer loop (it has been written
—until…). The implication of this is that the whole process carries on indefinitely
and there is no separate learning and testing phase with ART (as is the case with
most architectures) although, in a real application, we would stop presenting
patterns after template stabilization. If, on the other hand, the training environment
were changed and new vectors were suddenly to be presented, then learning would
start again as new templates are assigned and old ones updated.

 – Georgiopoulous et al. (1991) have shown that, although the learned templates are
always stable, their form depends on the order of pattern presentation. They also
showed that it is possible for a learned template to exist that is not directly
accessed by any training pattern. These are therefore spurious templates with the
same status as the spurious stable states in the Hopfield nets. However, several
computer simulations exhibited by Carpenter & Grossberg (1987b) have shown an
absence of such templates and so it appears that these may be the exception rather
than the rule.

212

 – In another result, Georgiopoulous et al. (1991) showed that the number of epochs
(complete presentations of the training set) is limited by the number of different
pattern sizes. The size of a pattern is just its number of features and, if there are m
pattern sizes, then the net will stabilize in at most m epochs. This occurs
irrespective of any possible reordering of the training set at each epoch.

 9.3.4 An example

 The principles outlined above are now applied to a simple example, which is
shown in Figure 9.2. The four patterns A, B, C, D are presented to a net with at least
three F2 nodes and the vigilance is set at 0.8. Eventually, three templates will be
assigned after a single pass through the training set, after which stability has been
reached. Initially the three templates are unassigned, having all zji=1, indicated by
the grid squares being filled in the topmost row of the figure. Subsequent rows
show the development of the templates after each of the patterns (shown on the
right) has reached resonance and learning taken place. Thus, the second row shows
the net after training with pattern A, during which it attains resonance with the first
unassigned template. The common feature set, or template match, is just the pattern
itself and so the first template becomes equal to A. When B is presented, it first
searches against template 1. There are 11 features in pattern B and, of these, B
shares eight in common so that, at resonance, and . In this case, then,
since 8/11=0.73<0.8. The node with

Figure 9.2 Simple ART training example.

template 1 is therefore taken out of the eligibility set J and B is forced to resonance

213

with the next unassigned template.

 Patterns C and D consist of a common upper region of ten elements overlaid on A
and B respectively so that they differ in the same group of elements as A and B. C is
quite different from templates 1 and 2 and so, after searching them, reaches
resonance with template 3. On presentation of D, it also fails to reach resonance
with templates 1 and 2. On comparison with template 3, we have and

. The difference is the same as it was in comparing templates for
A and B since the third template is the same as C, and D differs from C by the same
group of elements that distinguish A and B. Now, however, since
14/17=0.82>0.8. Resonance occurs and template 3 is set to the common features
between its original form (C) and pattern D. Here we have an example of the self-
scaling property for, although the same group of features distinguish the pairs A, B
and C, D, they give rise to different learning strategies depending on their context.
In the case of A, B they are regarded as true pattern features and are retained in
separate templates. In the case of C, D, however, they are regarded as noise since
they represent a smaller fraction of the total feature set. Separate templates are
therefore not required and the existing one is modified to discard the feature
difference set.

 9.3.5 A system-level implementation

 In our development of the implementation, we attempt to adhere to the ART
terminology in order to accustom the reader to what can be expected in the
literature. Two terms are usefully dealt with right away.

 The short-term memory (STM) is the pattern of neural activity or activation profile
in the network as a result of stimulation by an input pattern. In his work on
competitive dynamics, Grossberg (1973) showed how it is possible (with the right
dynamics and weight structure) for the activation profile to continue after the input
has been withdrawn. In this way, the net "remembers" its previous input although
this is truly "short term" since, if the activity is destroyed by further input, this
memory trace is lost. The long-term memory (LTM) traces, in contrast, are the sets
of network weights (either top down or bottom up).

 At the system level, the network in Figure 9.1 is now supplemented by some extra
control structures as shown in Figure 9.3. The individual units or neurons are no
longer shown, and each layer is now represented by an unfilled rectangle. The two
layers together are known as the attentional subsystem. The weights (LTM traces)
have also been lumped graphically into single open arrow symbols. The filled
arrows represent control signals that may be thought of as formed by summing the
outputs from one of the neural layers, or by combining other control signals. The

214

signs over the arrows indicate whether the signals contribute additively or
subtractively from their destination. Where a control signal meets a neural layer it
is supposed to affect all nodes in that layer. Note that the control signals here are
not resolved at the neural level (in accordance with the definition of the system
level), and specific mechanisms for affecting each node are not specified.

 Much of this control mechanism is devoted to orchestrating the search for template
matches and to determining what constitutes a template mismatch. As indicated in
Figure 9.1, the template matching is accomplished in F1 and the winner-takes-all
dynamics of F2 ensure that only one template is chosen at any one time.

Figure 9.3 ART1—system level.

 We now examine the sequence of events that occurs for each pattern presentation
with short summaries posted before each main point.

 Summary The F2 node that responds most strongly to the input I is active while all others are inactive.

 The input I produces an STM trace X in layer F1 (vector of activations) which, in
turn, results in a set of F1 outputs, S. The latter is related to X via a squashing
function of some kind (although its exact form is not often specified in many
descriptions of ART). Each F2 node vj then multiplies or gates S by its bottom-up
LTM traces zij to form an input signal Tj; that is, each node forms the weighted sum
of its inputs from F1 (the summation component is also referred to as an adaptive
filter). The competitive dynamics contrast-enhance the activity to give a pattern of
STM Y at F2 and a final pattern of output U related to Y by another squashing
function. U is such that it specifies a single node with output 1, corresponding to the
node with largest input Tj, while the rest have output 0. Thus, F2 executes the
normal winner-takes-all choice.

215

 Summary The F1 gain control allows the input to be transmitted to F2 under the 2/3 rule. The orienting
subsystem is not active.

 The above choice at F2 is made possible by the correct values of the control
signals. Until F2 has chosen an optimally responding node, all its outputs are weak
and it provides no signal input to inhibit the F1 gain control. This is, however,
being excited by the input I so that it provides input to F1. Now, one of the criteria
for an F1 node to be active is that it should have at least two out of three of its
inputs active; this is the so-called 2/3 rule. All nodes in F1 receive input from the
gain control but only those nodes that also receive input from I are able to become
significantly active2 and transmit the input to F2 (the reason for this mechanism will
become clear in the next step). A similar role is played by the F2 gain control,
which allows this layer to become active only while input is being applied.

 Additionally, before F1 has had a chance to process its input from F2, it sends a
signal to the F2 reset mechanism, which is the same as that from the input at this
time, since the pattern in X is governed directly by I. This mechanism is also known
as the orienting subsystem since it helps control the search for templates. The two
signals providing input into the orienting subsystem therefore cancel and no signal
is sent to F2, which continues to operate in the normal way.

 Summary If a match occurs then resonance takes place, otherwise F2 is reset and a new template is read out.

 The output pattern U now contributes to the STM trace at F1 via the top-down
LTM-gated signals V. That is, each node vi in F1 calculates the weighted sum of
inputs Vi, from F2. Since only one node vj is active in F2, the top-down template of
LTM traces zji from vj gets imposed on or "read out" to F1 as shown in Figure 9.4.
Note that Carpenter and Grossberg regard the signals V as the template (or top-
down expectation) rather than the weights. However, since only

216

Figure 9.4 Reading out top-down templates.

one node at F2 is stimulating V, its components are identical to the zji and the two
terms are functionally equivalent (at least in ART1).

 Now, only those nodes in F1 that have input from both external pattern and top-
down template features are active in the new STM trace X*. This follows because,
when F2 chooses a winning node, it is able to send an inhibitory signal to the gain
control. The 2/3 rule now requires both external input and template signals for node
activity; those for which the template and pattern input differ will be turned off.
Note that the template match index set X (defined in the algorithm) is consistent
with the use of the symbol X to denote F1 STM. If X* and X are sufficiently
different, the inhibitory signal from F1 to the orienting subsystem will be
diminished to the extent that this now becomes active and sends an arousal burst to
F2. This excites all cells equally and results in the currently active node being reset
to an inactive state in a long-lasting way. That a node can be inhibited in this way
by an excitatory signal may appear paradoxical at first but possible neural
mechanisms for its instantiation are discussed in the next section.

 As soon as F2 has been reset, the original input pattern I can be reinstated in STM
at F1 since F2 is no longer able to inhibit the gain control. F1 excites F2 again but
this time the maximally responding node (largest Tj) is not able to take part in the
development of STM Y in F2. The node with the next largest response now gives
rise to the peak in STM under competitive dynamics, and therefore becomes the
new active node in F2.

 The process of match and possible reset is continued in this way until a match is
found that allows F1 to continue inhibiting the orientation subsystem. The degree of
inhibition required is, of course, governed by the vigilance . When this is done,
the two layers are supporting each other or resonating and learning takes place
according to the rules given in the algorithm. The LTM traces are, in fact, supposed
to be plastic at all times but the template search period is supposed to be very rapid
in comparison to the duration of resonance, and so significant changes only take
place at this time.

 The training of the bottom-up zij is sometimes referred to as in-star learning since it
trains LTM traces that are inbound to an F2 node. This is in contrast to the out-star
learning that takes place with the top-down zji since these modulate outbound
signals from F2.

217

 On withdrawal of the input, the F2 gain control becomes inactive and the STM at F2
therefore collapses. The reset of any F2 nodes is also discontinued so that all nodes
are now eligible for template search.

 9.3.6 The signal level: some neural mechanisms

 It is not the intention here to give an exhaustive account of the neural-level
signalling and processing mechanisms that (at least hypothetically) underpin ART1.
Instead, we give brief descriptions to give a flavour of the approach taken and to
help define some of the terms used in the literature.

 As noted previously, all nodes in the network obey leaky-integrator-like dynamics.
Grossberg also uses the term membrane equation to describe laws like this
governing activation dynamics, because he thinks of the activation as analogous to
the membrane potential in real neurons. However, unlike the simple model of (2.6),
which incorporates the weighted sum of inputs s additively, the models used by
Grossberg involve terms in which the activation is multiplied by the input.
Neurophysiologically, multiplication of signals is sometimes referred to as a
shunting operation so the ART neurons are shunting rather than additive. The
advantage of this approach is that it enables input normalization using a type of on-
centre, off-surround connection scheme that is feedforward (Fig. 9.5) . In additive
models this kind of process is only available with lateral competitive connections.
For a review of these ideas see Grossberg (1988).

 The control signals are established by providing neural inputs from the signal
source. For example, the inhibition of the F1 gain control by F2 is implemented by a
signal that is just the sum of all the F2 outputs.

 The reset mechanism at F2 has been given a plausible basis in the so-called on-
centre, off-surround dipole (Grossberg 1980). This is a small circuit of six
neurons with recurrent connections and a pair of slowly adapting synapses that can
have its output inhibited by an appropriately connected excitatory input signal. The
long-lasting reset at F2 is then mediated by the slowly responding synaptic links.
Each node is now replaced by one of these dipoles and Grossberg's use of the

218

Figure 9.5 Feedforward, on-centre, off-surround architecture.

term field to mean an array of neurons leads to the term dipole field being used
occasionally for layer F2.

 The LTM traces also obey equations governing their rate of change3, which implies
that they are, in general, continually plastic. However, as noted above, the search
for resonance is supposed to take place on a much shorter timescale than resonance
is maintained. Further, during this time, the LTM traces are supposed to be able to
come to equilibrium in the so-called fast-learning regime. That is, LTM changes
fast enough to allow its steady-state values to be reached at resonance but not so
fast that they are substantially affected during search. The learning rules given in the
algorithm are then the equilibrium values of LTM traces under fast learning. The
assignment of zero to previously positive LTM traces occurs because the dynamics
of LTM involve a decay component, leading to what is referred to as the
associative decay rule.

219

9.4 The ART family

 We have dealt here with the network known as ART1 but this is just one of a series
of architectures rooted in the principles of adaptive resonance theory. ART2
(Carpenter & Grossberg 1987a, Carpenter et al. 1991b) extends ART1 to the
classification and stable coding of analogue patterns. In ART2, the F1 layer is
replaced by a complex five-layer network, which is notionally split into a three-tier
F1 "layer" and a two-tier preprocessing "layer" F0. The length of search involved
here is a potential problem area, as it was with ART1, and has been addressed in a
fast, algorithmic version of ART2 (Carpenter et al. 1991b).

 A conceptually simpler analogue adaptation of ART1 is described in the so-called
fuzzy ART system (Carpenter et al. 1991c). This is advertised as an algorithm
rather than a network, although a neural implementation does exist (Carpenter et al.
1991d), and makes use of fuzzy set theory to generalize the notion of "feature". In
ART1, a template location is either a member of the feature set or it is not. In fuzzy
set theory (Zadeh 1965, Kosko 1992) an element can have a continuously graded
membership between 0 and 1, with 0 and 1 implying "definitely not in" and
"definitely in" the set respectively. By allowing template locations to take analogue
values between 0 and 1 we can interpret them as fuzzy set membership values. The
same applies to F1 outputs and the template-pattern match is now made by the fuzzy
equivalent of the set intersection II-IX at resonance; this reduces to finding the
minimum of the pair (zji, xi).

 ARTMAP (Carpenter et al. 1991a) is a supervised system that learns input-output
pairs (x, y). It consists of two ART1 modules linked by an intermediate layer or
map field. Each ART module self-organizes in the normal way and is devoted to
processing either the x or y patterns. The map field allows the learned templates of
the ART module Ma on the input side to access the templates in the module Mb on
the output side. In this way predictions from an input vector can be made and
checked against the target output. The control system contains a facility to alter the
vigilance of Ma so as to ensure that sufficient categories or templates are learned in
Ma to reduce the discrepancy with the supervised output to a minimum. However,
the vigilance is not increased unnecessarily and templates are kept as large as
possible in order to promote generalization. The network is a hybrid, containing
self-organizing elements in a supervisory environment, and has similarities with the
algorithms that dynamically construct the hidden layer in MLPs (Sect. 6.10.4) if we
think of F2 templates in Ma as corresponding to hidden nodes. Remarkably
successful results are reported by Carpenter et al. (1991a) for the classification of
mushrooms on a database of over 8000 examples. Inevitably, the fuzzy extension of
ART1 has been applied to ARTMAP to allow it to process analogue data

220

(Carpenter & Grossberg 1992) giving rise to the fuzzy ARTMAP architecture.
Carpenter & Grossberg (1992) contains a précis of the ARTMAP algorithm (albeit
in its fuzzy guise), which is less theory bound than that in Carpenter et al. (1991a).

 ART3 (Carpenter & Grossberg 1990) allows any number of ART2 modules to be
concatenated into a processing hierarchy. In this way the F2 nodes of one ART2
module send their output to the inputs of the next one. This paper also sees a return
to the biological roots of ART in that a chemical transmitter mechanism is
postulated for the F2 reset mechanism.

221

9.5 Applications

 Caudell et al. (1994) describe an application of ART1 to the classification of parts
in the inventories of the aircraft industry. This was successfully used by Boeing in
the early stages of the design process to avoid replication of effort and to make
optimum use of existing parts. Each part was assigned a binary vector in a
preprocessing stage that encoded shape, fastening hole locations and the number
and type of metal bends. For two-dimensional parts like flat metal fasteners, the
shape was encoded via its silhouette on a pixel grid, while three-dimensional parts
were treated by describing polygons that were fitted to their surfaces. The resulting
binary vectors were, in general, extremely long and, to avoid excessive storage,
they were encoded by describing the run lengths of successive 0s and 1s. For
example, 0000011110001111111 would map into 5437. The ART networks then
used a modification of the standard algorithm that could work directly on the run-
length encodings. The system consisted of a "hierarchical abstraction tree" of
ART1 "macrocircuits", each of which contained a collection of ART modules (Fig.
9.6). Consider first a single macrocircuit as shown on the left of the figure. The run-
length-encoded vectors are first divided into parts that describe shape, holes and
bends. The partial vectors for shape are then applied to the first (bottom) ART1
network, which clusters or groups them accordingly. For each shape-based cluster
learned in this way, the partial vectors for bends and holes are then separately
applied to another pair of ART nets so that the cluster is further refined on the basis
of these two criteria. Now consider the hierarchy of macrocircuits shown on the
right of Figure 9.6. The bottom-most macrocircuit is trained with a comparatively
low vigilance so that it carries out a coarse grouping of parts. Successively finer
classification can be achieved by subsequently applying the pattern vector to
macrocircuits further up the hierarchy, which will have higher levels of vigilance.
Within each macrocircuit the design engineer can then specify a classification
based on shape, shape and bends, shape and holes, or on all three aspects of the
component part. The final system had over 5000 ART modules and dealt with a
database of over 10000 parts.

 Carpenter et al. (1989) describe a system for recognizing images that uses an ART2
module to develop the categories. Much of this paper is, however, devoted to the
image preprocessing that segments the region of interest and ensures a consistent
size, orientation and contrast for input to the ART network.

222

Figure 9.6 Aircraft part inventory system.

 The results of several simulation studies for ARTMAP are reported in Carpenter &
Grossberg (1992). In particular, they describe a letter recognition problem that
attempts to classify a database of 20000 noise-corrupted, black-and-white printed
characters into one of 26 upper case letter categories. The training set was a subset
of 16000 patterns and the other 4000 were used for testing. Training took only one
to five epochs (although note the comments below on training times) and there was
a 90 to 94 per cent success rate on the test set.

 ART was conceived with biological realism in mind and so one of its applications
has been in the modelling of brain function. Thus, Banquet & Grossberg (1987)
investigated EEG recordings under various conditions of human subject learning
and compared them successfully with predictions made on the basis of ART. In
connection with the primate visual system, Desimone (1992) identifies F1 and F2
with the prestriate and inferotemporal cortex respectively.

223

9.6 Further remarks

 Although not proven here, ART1 does lead to stable learning under arbitrary
Boolean training environments (Carpenter & Grossberg 1987b). However, as noted
by Lippmann (1987), the templates that emerge under ART are not always the most
useful. He uses an example (albeit a toy one) in the domain of character recognition
in which, in order to obtain separate categories for two well-formed letters (C and
E), it is necessary to allocate separate templates for two noisy versions of another
letter (F). This may, however, be a problem with any clustering technique—our
high-level intuitive understanding of what constitutes a class or template may not be
that which is discovered by the algorithm or network. It is then necessary to assign
many templates to each nominal category and to have a higher-level choice
mechanism to associate templates logically with classes.

 According to the result of Georgiopoulous et al. (1991), at most m epochs are
needed for a training set with m different sizes. The implication of this is that
training in ART is very fast. It should be realized, however, that, although the
number of epochs needed may be small, the time to execute each one may be large
if there are a large number of templates to be searched at each pattern presentation.
To help overcome this difficulty, Hung & Lin (1995) have proposed an ARTl-like
network that can search its template space much faster than the original ART1 net.

 Historically, ART was developed from the bottom up; that is, the design was
initially based at the signal level and the systemic approach came later. However,
the algorithm defines what occurs in many ART simulators and has similarities (as
does simple competitive learning) with conventional clustering analysis. This
comparison was noted by Lippmann (1987) and has been pursued by Cheng &
Titterington (1994) and Burke (1991). Nevertheless it is the system-level
implementation of the algorithm that distinguishes it as characteristically
connectionist and the neural-signal-level analysis as biologically plausible.

224

9.7 Summary

 ART describes a set of networks that undergo self-organization to learn a set of
stable cluster categories or templates. However, in contrast to simple competitive
self-organizing networks, ART systems allow the number of categories to be
determined using a single vigilance parameter. This is achieved by controlling the
degree of match between stored templates and new patterns, which is, in turn,
implemented by a set of top-down weights from the second to the first layer. An
explanation of the principles of ART is facilitated by describing the net at several
levels in a hierarchy. At the signal level it consists of biologically plausible
mechanisms and many aspects of system behaviour may be described in rigorous
mathematical terms (although this has not been addressed here). ART nets represent
one of the few attempts to incorporate all control mechanisms into the totality of the
architecture (rather than leaving them to some extrinsic control software). It is
necessary, however, to be aware that the learned templates may not match our
intuitive expectations and that the theoretical bounds on the time to learn may
obscure lengthy, single-epoch computation.

225

9.8 Notes

 1. This is not a Carpenter-Grossberg form although it is in the spirit of their notation.

 2. Carpenter & Grossberg refer to these as supraliminally—literally "above threshold"—active. This does not
imply that there is a simple threshold output function but that the neuron dynamics are able to generate large
outputs.

 3. These are known as differential equations because they make use of differentials (derivatives or slopes).

226

Chapter Ten
Nodes, nets and algorithms: further alternatives

 In this chapter we wish to disabuse the reader of some ideas that may have
inadvertently been imparted: namely, that artificial neurons always look something
like a semilinear node and that feedforward nets are always trained using
backpropagation or its variants.

227

10.1 Synapses revisited

 In everything we have seen so far the combination of input signals through a linear
weighted sum has been a recurrent theme. This has been the case in spite of many
variations in the way this is eventually used—semilinear nodes, TLUs, leaky
integrators—as they all perform this basic operation as a first stage. It is now time
to go back and review the validity of this assumption and, as with our first look at
node functionality, our initial approach will be biologically motivated because we
argue that real neurons have not developed their functional repertoire gratuitously
but in response to computational needs. The stereotypical synapse shown in Figure
10.1 is the inspiration for the weighted connection in simple models of neural
activation. It consists of an electrochemical connection between an axon and a
dendrite; it is therefore known as an axo-dendritic synapse and its basic operation
was discussed in Section 2.1.

Figure 10.1 Single axo-dendritic synapse.

Figure 10.2 Presynaptic inhibitory synapse.

There are, however, a large variety of synapses that do not conform to this structure
(Bullock et al. 1977). Of special importance for our discussion are the presynaptic
inhibitory synapses shown in Figure 10.2. Here, one axon terminal A2 impinges on
another A1 just as it, in turn, is making synaptic contact with a dendrite. A2 can now

228

modulate the efficiency of the synapse with A1 by inhibiting its action; thus, signals
a t A2 can "turn off" the (otherwise excitatory) effect of A1. This structure is
therefore of the axo-axonic type, it utilizes presynaptic inhibition, and it is
supposed to be of crucial importance in detecting image motion in early visual
processing (Koch et al. 1982).

 Elaborations of this structure occur when several synapses are grouped together
into so-called glomeruli (Steiger 1967)—see Figure 10.3. It is difficult to know
exactly what kind of intersynaptic processing is going on here but it is almost
certainly not linear. Even when regular axo-dendritic synapses occur in close
proximity (Fig. 10.4) they are liable to interact in nonlinear ways. The basic unit of
neural processing is starting to look like the synaptic cluster, an approach promoted
by Shepherd (1978) in which he refers to these as neural microcircuits.

Figure 10.3 Glomerulus.

Figure 10.4 Synaptic cluster.

229

230

10.2 Sigma-pi units

 How can we model these more complex situations? Consider, again, the double
synapse in Figure 10.2 and let the signals arriving from A1 and A2 be x1 and x2
respectively. If A1 existed in isolation we could write its contribution da to the
activity of the postsynaptic neuron as wx1. However, A2 modulates this by reducing
its value as x2 is increased. In order to express this mathematically it is useful to
ensure that all values are normalized (lie in the range 0 xi 1). This can be done by
letting the xi denote the original signal value divided by its maximum; in any case,
there will be no problem with artificial neurons that use the sigmoid output function
since signals are normalized by default. There is now a simple way of expressing
the inhibitory effect of A2 and that is to multiply by (1-w*x2) where w* 1, so that
da=wx1(1-w*x2). When x2=0 this expression reduces to wx1 and so A2 has no effect,
but when x2=1, da=wx1(1-w*), which can be made as small as we please by making
w* close enough to 1. This does indeed, therefore, capture the interaction between
A1 and A2.

 Expanding the expression for da we obtain da=wx1-ww*x1. This may now be
written in a way that allows generalization to other types of pairwise interaction.
Thus, we put

(10.1)

where, for the case of presynaptic inhibition, w1=w, w2=0 and w12=-ww*. Notice
that we have allowed the possibility that A2 can influence the postsynaptic cell
directly by including a term like w2x2. This may be the case, for example, in
expressing the effect of A1 and A2 in Figure 10.4. For a neuron with n inputs we
have to include all possible pairwise interactions (bearing in mind that a term
including x1x2 is not different from one with x2x1). This gives the following
expression for the total contribution to the activation a:

231

(10.2)

This is unwieldy because we have a compact notation for the linear sum but no
equivalent for the sum of product terms. What is required is a generic symbol for
product, which is provided by the Greek upper case pi (written II). Then, we may
rewrite (10.2) as

(10.3)

In general we may want to include products of more than two inputs to capture the
possibility that there are contributions that come only via the interaction of all
participants in this particular group of inputs. Thus, we need to incorporate terms
like xi1xi2…xij…xim where i1, i2,…, im are some set of indices and, of course, m<n.
Rather than deal with the input indices directly, it is easier to deal with them as sets
since we can enumerate these and write {i1, i2,…, im}=Ik where Ik is the kth index
set. How many such sets are there? One way to construct them is to write the
integers 1…n in sequence, run along from left to right, and either include or not
include each integer in the set. This process gives n two-way choices with each
particular combination yielding a different index set. Altogether then, there are 2n

sets giving this many product terms in the expansion. These also include terms like
xi on its own, where the index set contains one entry, and the "empty" term that
contains no variables and is therefore associated with a constant or threshold w0.
We can now write the entire activation in this most general case as

(10.4)

where the range i Ik means that we include all i in the index set Ik when forming
the product string from the variables xi. To summarize: this is just a compact way of
writing expressions like (10.2) where we have included terms like w0, wixi,
w12x1x2, w123x1x2x3, etc., all the way up to the single term w1…nx1x2…xn.

232

 The activation is now in the form of a sum of products or, using the notation itself,
in sigma-pi form—hence the name sigma-pi unit for one that uses (10.4) to define
its activation. Alternatively, they are also known as higher order units since they
contain products of pairs of inputs (second order or quadratic), products of three
inputs (third order or cubic) and so on. However, any term contains each variable
only in a linear way; that is, there are no expressions like or etc. The
activation is therefore sometimes referred to as a multilinear form.

 Sigma-pi units were introduced by Rumelhart et al. (1986d). Networks of units
with second order terms have been used to solve the so-called "contiguity problem"
(Maxwell et al. 1987) in which the task is to determine whether there are two or
three "clumps" of 1s in Boolean pattern strings. (A clump is just a group of
contiguous components of the same value so that, for example, 1100011100 and
1011100111 have two and three clumps of 1s respectively.) Heywood & Noakes
(1995) have shown how backpropagation and weight-pruning techniques may be
applied to nets of sigma-pi units to perform orientation-invariant classification of
alphabetic characters.

233

10.3 Digital neural networks

 In this section we deal with networks of nodes that lend themselves easily to being
implemented in digital computer hardware.

 10.3.1 Boolean functions as artificial neurons

 Consider once again the lowly TLU, which, when used with Boolean input, may be
represented by a population of 0s and 1s at the vertices of the n-dimensional
hypercube or n-cube. Recall that each input vector (string of 0s and 1s) locates a
cube vertex or site that has the corresponding TLU output associated with it. For
TLUs these values are, of course, constrained so that the cube can be divided by a
hyperplane reflecting the linear separability of TLU functionality. Normally we
think of a TLU as being specified by its weights and the geometric, pattern space
representation on the cube as secondary. However, it is possible to imagine
defining TLUs by endowing the cube sites with 0s and 1s while ensuring that the
resulting two populations may be separated by a hyperplane.

 Suppose now we allow any distribution of 0/1 values on the hypercube without
regard to linear separability. We can now implement any Boolean function of the
(Boolean) input vector. An example is given in Figure 10.5, which shows a three-
input function with its pattern space, three-cube representation, and as a table of
input-output correspondences. If there are more than three dimensions, we cannot
draw the n-cube but may represent the situation schematically as shown in Figure
10.6. Shown on the left is a cartoon diagram of an n-cube, which has been
populated so it can be implemented by a TLU. The cube on the right has had its site
values randomly assigned. The TLU function may be defined in alternative form by
supplying a suitable weight vector whereas the other function can only be defined
by specifying its table of input-output correspondences. The possible advantage in
breaking out of the linearly separable regime is that the increased functionality will
allow more compact nets that learn more efficiently.

 A table of Boolean assignments of the form shown in Figure 10.5 is, however,
exactly what a computer memory component known as a random access memory

234

Figure 10.5 Example of three-input Boolean function that is not linearly separable.

Figure 10.6 Schematic representation of TLUs and general Boolean functions.

(RAM) performs (see Fig. 10.7). The input to a RAM is referred to as the address
since it is used to select, via a decoder, one of a set of "pigeonholes" or cells in the
memory store. Upon selection, the cell may then have its contents read out, or
overwritten with a new value, depending on which mode (read or write) has been
selected. In computer engineering parlance, each component of a Boolean vector (0
or 1) is a bit so that, if the address is n bits wide, then there are 2n bits in the
memory store. This follows because each address bit has two possible values so
that there are 2×2×…×2 (n times) different addresses. In the diagram, the address
is 8 bits wide so that the memory store has 256 bits.

235

Figure 10.7 RAM as Boolean function.

It should now be clear that a RAM can be used to implement the table of input-
output values for an arbitrary Boolean function. There are, therefore, three views of
a Boolean function:

 Lookup table It is a table of correspondences between Boolean vectors and scalar
Boolean values. Such tables are sometimes called truth tables since the values 0
and 1 are able to represent "true" and "false" in the manipulation of statements in a
logical algebra (not dealt with here).

 Hypercube It is a population of Boolean values at the vertices or sites of the n-
dimensional hypercube (n-cube). This is the geometric viewpoint and yields useful
insights about generalization and learning—see Section 10.3.6.

 RAM It is a random access memory component in which the memory store contains
the values of the lookup table.

 A further viewpoint on Boolean functionality will be articulated in Section 10.3.5
focusing on the development of a mathematical form for node function.

 These different views give rise to their own terminologies, which, on occasion, are
used interchangeably: truth-table locations are cube sites (or just "sites") and, in the
RAM scheme, memory cells; the Boolean vector input is a RAM address or
sometimes an n-tuple; truth-table values or site values are also RAM bit values.
Note that the TLUs, when used with Boolean input, form a special subclass of
Boolean function.

 The development of the RAM implementation and its use in neural networks is
largely attributable to Aleksander and co-workers. This can be traced from its
beginnings with devices that used fusible links to store bit values (Aleksander
1965), through the use of "stored-logic adaptable microcircuits", or SLAMs (an

236

early form of semiconductor memory) (Aleksander & Albrow 1968), to the use of
what we now know today as RAMs (Aleksander et al. 1984).

 The use of RAM technology as a means of implementation has led to the name
digital nodes for these and a family of related node types, and their use in neural
networks has largely been fostered by workers in the UK. Unfortunately a
proliferation of acronyms has grown up, referring to essentially equivalent node
structures, and this has not helped to popularize the area. One of the reasons for this
is that many people were working on developing node structure at around the same
time (late 1980s) and each variant was described under its own name. The term
"digital node" appears the most neutral and will be adhered to as far as possible.
An overview of much of this work is available in Gurney & Wright (1992a), which
also serves to introduce several papers on digital nodes.

 10.3.2 Using Boolean functions in nets

 Recurrent nets

 Several workers in the 1960s and 1970s became interested in what we might
describe now as "Boolean Hopfield nets". That is, a set of interconnected units that
are allowed to take arbitrary Boolean functionality and that have many feedback
paths. However, since the size of the memory store, even in simulation, goes up
exponentially with the size of the input, the nets were incompletely interconnected,
often using units with only two or three inputs. Walker & Ashby (1966) examined
the dynamics of nets composed of three-input functions in which one of the inputs is
taken from the unit output and all functions are the same. They noted the appearance
of stable states and multiple-state cycles as described in Chapter 7. However, the
authors do not conceive of these systems as neural nets, there is no attempt to train
and, surprisingly, no connection is made with associative memory. Kauffman
(1969) investigated similar systems, but with variable functionality throughout the
net, as models of genetic switching in DNA.

 Aleksander & Mamdani (1968) are responsible for one of the first attempts to use a
recurrent net of digital nodes as an associative memory. Training a state cycle in
such a net is trivial. First, the desired pattern is clamped onto the net in its entirety;
then, for each node, the memory cell addressed by the part of the clamp that forms
its input is made to take on the value that the node currently has as output. The
clamp has then been made a stable state of the network. A desirable side effect (in
incompletely connected nets) is that other state transitions are created which are
associated with the confluent of the state cycle (Milligan 1988). Martland (1987)
provides an example of using these nets in a character recognition task.

237

 10.3.3 Feedforward nets

 Consider the system shown in Figure 10.8. There is an input layer of Boolean
values, which has been drawn as a two-dimensional array because we have image
recognition in mind. An input pattern has been indicated that is supposed to be a
character from the class of the letter "T". The input is randomly sampled by a
collection of two-input Boolean functions, representatives of which have been
shown by exhibiting their truth tables. These functions are all initialized to output 0
in response to any input. When a training pattern is presented, the locations
addressed in each function are then changed to a 1. Thus, each function acts as a
recorder of two-component features seen during training. In the figure, the truth
tables are those that pertain after initialization and training with the single pattern
shown at the input. Suppose now that a set of "T"s are presented whose members
differ slightly from each other; then any feature that is present in this set will be
recorded. However, if the patterns do not differ too much, many of their features
will be the same and, in this case, only a few locations in each function will be
altered to the value 1. Now suppose that another "T", not in the training set, is
presented at the input and the function outputs are read out and summed together.
Each feature that the new pattern has in common with all those seen during training
will generate a 1, while any new features will produce a 0. If there are N Boolean
functions and the pattern results in m previously seen features, then the response of
the net may be defined as the fraction m/N. If the unseen pattern is quite different
from anything seen during training, the response will be close to zero. If, on the
other hand, it is close (in Hamming distance) then it will yield a response close to
1. In this example two-input Boolean functions were used but, in general, we may
use functions with any number of inputs.

 The system described so far is a single discriminator allowing the possibility of
identifying a single class. Thus, in the example above we might hope to classify
"T"s from non-"T"s. In general we require one discriminator per class and, during
training, each discriminator adapts only to the class it is supposed to represent. In
testing, the input is applied to all discriminators simultaneously and that which
supplies the largest response is deemed to signify the pattern class.

 Systems like this were first described by Bledsoe & Browning (1959), who
referred to their technique as the n-tuple pattern recognition method. They used
computer simulation in which the mapping of the algorithm onto the computer
memory store was not suggestive of a hardware implementation. However,
Aleksander and co-workers realized the possibility of using the newly developed

238

Figure 10.8 n-tuple recognition system.

semiconductor memory devices (later to be called RAMs) to build physical
instantiations of n-tuple machines. Work initiated in the 1960s (Aleksander &
Albrow 1968) was mature by 1979 (Aleksander & Stonham 1979) and culminated
in the commercially available WISARD1 pattern recognition machine (Aleksander
et al. 1984). Aleksander was also responsible for casting the technique in the
language of neural networks.

 Suppose now that we have several WISARD discriminators whose pattern of
connectivity to the input array is identical. Suppose further that there is a threshold

 such that, if the discriminator's response r is less than , then we regard it as
signalling a 0 and if r> , we consider it as outputting a 1. In this way we obtain a
Boolean vector of outputs y. It is now possible to imagine training this
discriminator array to associate patterns at the input with desired target vectors t at
its output. To do this, those discriminators that are supposed to output 1 would be
trained in the normal way by setting their addressed feature locations to 1, whereas
those that are supposed to output 0 would leave their addressed locations at 0. This
is the basis of the ADAM2 architecture proposed by Austin (1987a). In addition,
this also uses a two-stage process in which a large input image is first associated
with a much smaller class code, which is associated, in turn, with the final (large)
target output image. This two-stage process requires much less memory than a
straightforward association between two large pattern vectors. The use of
feedforward architectures for associative memory is discussed further in Section
11.1.1.

 The learning scheme of writing 1s to a Boolean truth table can lead to several
problems in training. The first is that there is substantial loss of information in only
using two values (0, 1) for each n-tuple feature—a feature that gets accessed once
has the same effect in training as one that gets accessed many times. Bledsoe &
Bisson (1962) noted this deficiency in their original n-tuple technique and
proposed recording the frequency of feature occurrence at each location in the truth
table. Secondly, if the size of each class is too big then the number of features

239

recorded within each truth table will grow and eventually most of the table will be
filled. This saturation effect may be avoided if we allow site values to decrease as
well as increase so that, for the simple case of Boolean-valued sites, we allow
transitions 1 0 as well as 0 1. This scheme is contingent, however, on
developing more sophisticated learning rules. The development of such rules for
semilinear nodes hinged on our ability to analyze them mathematically and evaluate
things such as error gradients like . We have avoided the machinations that
actually deal with these calculations and chosen to focus on the conceptual basis
for learning rules. However, their formal development requires that the node output
be described by a smooth function of its input, which is not facilitated by any of the
viewpoints (truth tables, hypercubes, RAMs) developed so far. In summary, two
elements are required for progress in using digital-type nodes: an extension of the
node structure to allow multiple-valued sites and a way of describing the node
functionality in a mathematically closed form.

 10.3.4 Extending digital node functionality

 The frequency of occurrence scheme proposed by Bledsoe and Bisson is fine if we
simply read out this value but is no good if the output must be Boolean, as it must
be if it is to form part of the address of other nodes in a network. The first attempt
to overcome this was made by Kan & Aleksander (1987) who used a function with
three values in its truth table: 0, 1 and "u" or undecided. When "u" is addressed, a 1
is output with probability 0.5. These nodes were first used in recurrent Hopfield-
like nets and dubbed probabilistic logic nodes or PLNs. The natural extension was
to use more than three site values resulting in the multi-valued probabilistic logic
node (MPLN) (Myers & Aleksander 1988). The probability of outputting a 1 is then
related to the site value via a sigmoid function. Many people were experimenting
independently with node structures of this type at around the same time, which is
one of the reasons for the profusion of names in this field (my own term for the
MPLN is a type-2 cubic node).

 It is possible to formulate all classes of function dealt with so far in a unified
framework that makes contact with the more normal weighted nodes. First consider
the simple Boolean functions. We now suppose that cube sites store activation
values +1 or -1 rather than Boolean values 1, 0 and that these are then passed as
input to a threshold output function. For the purposes of subsequent development, it
is useful to think of the function output y as defining the probability of the node
emitting a 1 (of course, there is no distinction for a step function between this
interpretation and that of a simple deterministic relation). This use of the threshold
function in this way is shown in the top left of Figure 10.9. The three-valued PLN
now has the interpretation shown in the top right of the figure, in which a piecewise
linear function suffices. The MPLN has a finite set of activation values that have

240

some maximum absolute value Sm. The value at site µ therefore lies in the range -Sm

Sµ Sm. The activation-output form is then shown at the bottom left3. Of course,
any function f that obeys f(-1)=0, f(1)=1 would have served equally well for the
Boolean function but the use of the step function fits well with the development
shown here and allows contact to be made with the TLU. In another cube-based
variant—the so-called probabilistic RAM or pRAM (Gorse & Taylor 1989)—
output probabilities are stored directly at the site values and are allowed to vary
continuously. This results in the simple activation-output interpretation shown on
the bottom left of Figure 10.9.

Figure 10.9 Digital node output functions.

10.3.5 Expressions for cube activation

 The second requirement for progress with digital nodes was that it be possible to
write the output y as a continuous function of the inputs. To achieve this we use a
model in which the site values are continuous. Just as in the MPLN, the activation a
is just the currently addressed site value Sµ, the output y is the sigmoid of a and is
to be interpreted as a probability of outputting a 1. To reinstate the MPLN model
(which has a RAM-based hardware implementation) we can later restrict the site
value to a discrete set. This process of site quantization is not without
repercussions, however, and introduces noise into the learning process (Gurney
1992b).

 Our task now reduces to finding a form for a and, rather than exhibit a general
expression, we focus on a two-input example in which the site values may be
written S00, S01, S10, S11. The function of a node is effectively to choose the site
value Sµ for which the site label µ is just the address string x1x2. Therefore we
require a "choosing function" g(µ, x1, x2) which is zero unless µ=x1x2, for then we
may write

241

(10.5)

and only one term in the sum will survive because x1x2 can only match one address.

 To develop a form for g it is convenient to use the spin representation for Boolean
values discussed in Section 7.5.1 in which we make the correspondence 0 -1, 1

1 so that xi=±1. Now let µi be the ith component of site address µ(µi=±1) and
put

(10.6)

Then, if either µ1 x1 or µ2 x2, g=0 since the corresponding product µixi is -1. The
only way to avoid zero is if µ1=x1 and µ2=x2, in which case g= 1 as required.
Substituting this in (10.5)

(10.7)

The choosing function for n inputs involves n brackets multiplied together (one for
each input) so, collecting all the factors of 1/2 together, the general form of the
activation may be written

(10.8)

This is reminiscent of (although not identical to) the activation of a sigma-pi node

242

(10.4). However, after some rearrangement it is possible to show that (10.8) may
indeed be expressed in sigma-pi form (Gurney 1989, Gurney 1992d) where the
weights wk are linear combinations of the site values. Digital nodes may therefore
be thought of as an alternative parametrization of sigma-pi nodes so that any sigma-
pi node has its digital node equivalent and vice versa. Although we have only dealt
with Boolean values, it may be shown (Gurney 1989) that analogue values may be
incorporated into this scheme using stochastic bit-streams of the type shown in
Figure 2.8.

 Equation (10.8) is the required relation between the activation, site values and
inputs. It may now be used in a programme of training algorithm development for
digital nodes (Gurney 1989, Gurney 1992a). Thus, it may be shown that a
modification of backpropagation converges for nets of digital nodes. Further, two
other algorithms discussed in Section 10.5 also apply; these are the reward-penalty
scheme of Barto & Anandan (1985) and a new algorithm based on system
identification in control theory.

 10.3.6 Some problems and their solution

 Generalization

 Suppose a TLU has been trained to classify just two input vectors of different class.
This fixes a hyperplane in pattern space and every other possible input pattern will
now be classified according to its placement so that there is automatic
generalization across the whole input space.

 Consider now a cubic node (MPLN) which, in the untrained state, has all sites set
to zero. The response to any vector is totally random with there being equal
probability of a 1 or a 0. If this node is now trained on just two vectors, only the
two sites addressed by these patterns will have their values altered; any other
vector will produce a random output and there has been no generalization. We shall
call sites addressed by the training set centre sites or centres. In order to promote
Hamming distance generalization, sites close to the centres need to be trained to the
same or similar value as the centres themselves. That is, there should be a
clustering of site values around the centres. One way to do this is to "fracture" the
hypercube according to a Voronoi tessellation in which each site is assigned the
same value as its nearest centre (Gurney 1989, Gurney 1992c). Figure 10.10 shows
this schematically for Boolean functions. Centre sites

243

Figure 10.10 Voronoi tessellation

are shown as open or filled circles and clusters of 1s and 0s are indicated by
shaded and plain filled regions respectively. Clusters associated with each centre
can abut neighbouring clusters either of the same or different type. These have been
indicated by thin and thick lines respectively and, in the example, there are five
distinct regions produced from ten centres. This should be contrasted with the
random assignment of site values shown on the right in Figure 10.6 where we
would expect poor generalization. Notice that the linearly separable function shown
in the same figure has excellent generalization but this has been obtained at the
expense of functional generality.

 The method of tessellation is an "off-line" technique in so far as it is carried out in
a separate phase after the training set has been used to establish centre sites. An
alternative, "on-line" method makes use of noisy copies of the training set, thereby
visiting sites close to true centres, and is the basis of techniques developed by
Milligan (1988) (the on-line, off-line distinction is explored further in Sect. 11.2).
Noisy training patterns may be produced naturally using an enhancement of the
node's architecture as described in Gurney (1992a).

 Memory growth

 Consider a digital node with n inputs. It has N=2n sites and for n=8, N=256. For
n=32, N=232 109. Clearly there is an explosion in the number of sites as n grows,
which is not only impractical from an implementation point of view, but also
suspect from a theoretical viewpoint: do we really need to make use of all the
functional possibilities available in such nodes? The answer is almost certainly
"No" and one way of overcoming this is developed in the multi-cube unit or MCU
(Gurney 1992a, Gurney 1992d) where several small subcubes sum their outputs to
form the activation as shown in Figure 10.11. This also has a biological analogue
in that the subcubes may be likened to the synaptic clusters described in Section

244

10.1, which are then supposed to sum their contributions

Figure 10.11 Multi-cube unit (MCU).

linearly. In terms of the sigma-pi form, we are limiting the order of terms that are
used, so, for example, if all subcubes have four inputs, there can be terms of, at
most, order 4. It is also possible to make a link with other network types via the
perceptron. Recall that a perceptron has adaptive weights, predefined Boolean
association units and a threshold output function. An MCU, on the other hand, has a
superficially similar internal structure but has fixed unit weights, adaptive
association units with multiple-site values, and a sigmoid output function.

 Gurney (1995) has demonstrated several interesting properties of MCUs. Thus, it
can be shown that they offer an intermediate degree of site clustering between that
of linearly separable functions and randomly organized cubes. They therefore offer
a natural approach to an optimal trade-off between functional variety and
generalization. Further, it can be shown that they have the most "interesting"
information theoretic profiles in terms of an array of conditional mutual information
measures.

245

10.4 Radial basis functions

 We now continue our description of alternative node structures with a type of unit
that, like the semilinear node, makes use of a vector of parameters with the same
dimension as the input.

Figure 10.12 Vector difference as basis of node activation.

I n Chapter 8 it was shown that, if the weight and input vectors w and x are
normalized, then the activation term w·x gives an indication of the degree of
alignment between the two vectors. In the language of pattern space, it says how
well the input matches the feature template defined by the weights. If there is no
normalization then it is better to use the difference a point that was
discussed in connection with the SOM algorithm (Sect. 8.3.3). Therefore, if we
require a pattern match without normalization, it makes sense to use units that
incorporate the difference into their activation directly. The simplest way to
do this is simply to put so that patterns at the same distance from w have
the same activation. This is shown in 2D in Figure 10.12, which emphasizes the
radial symmetry of the situation, since patterns at a constant distance from the
weight vector lie on a circle with w as centre. We now require an output function
f(a) that falls off with increasing values of a. A suitable candidate is

Figure 10.13 One-dimensional Gaussian.

246

Figure 10.14 Radial basis function.

the Gaussian, a one-dimensional example of which is shown in Figure 10.13. The
new unit is therefore defined according to

(10.9)

where exp(x)=ex. Notice that (because the length of a vector is
independent of its sign or direction) so that both forms may be encountered. A plot
of y against (x1, x2) for an example in 2D is shown in Figure 10.14 in which the
output falls off in a circularly symmetrical way from a point w=(0.5, 0.5), and
should be compared with the plots of functionality for TLUs and semilinear nodes
given in Figure 6.10. This symmetry is responsible for the name radial basis
function (RBF) and, since the components of w are no longer used in a
multiplicative sense, we refer to w as a centre rather than a weight vector.

 RBFs were introduced in a network context by Broomhead & Lowe (1988)
although they had previously been studied in the context of function approximation
and interpolation (Powell 1987). Poggio & Girosi (1990a, 1990b) have
demonstrated the link between RBF networks and the theory of regularization,
which deals with fitting functions to sample data, subject to a smoothness
constraint. This is, of course, exactly the task of supervised learning, as Poggio &
Girosi also emphasize, since, in the language of connectionism, we have to learn
the training set (fit the function to the data) while simultaneously enforcing
generalization (making a smooth functional fit).

 RBFs are usually used in two-layer networks in which the first (hidden) layer is a
series of RBFs and the second (output) layer is a set of linear units that can be
thought of as computing a weighted sum of the evidence from each of the feature

247

template RBF units. A typical example of such a net is shown in Figure 10.15.
Notice that the node structure is quite different in the two layers (hidden and
output).

Figure 10.15 RBF network.

The function of such a net can be understood directly by examining the contributions
of the RBF templates in pattern space. Each one contributes a Gaussian "hump" of
the form shown in Figure 10.14 (albeit in n dimensions rather than in 2D), which is
weighted before being blended with the others at the output. This is shown
schematically on the left hand side of Figure 10.16 in which the individual RBF
contributions are depicted as circles (plan view of two-dimensional cartoon of
Gaussians) and their combined effect indicated by

Figure 10.16 RBF net function in pattern space.

the dashed outline. This is the region of pattern space in which an input vector will
produce significant output (assuming that there are no very small weights) and has
been drawn again for clarity on the right hand side of the figure. It is disconnected
and each part is non-convex. Thus, quite complex decision regions may be built up
from comparatively few nodes. In the figure the most general situation has been
shown in which the RBFs have different widths. In the simplest scheme, however, a
set of functions with constant width is used, in which case it may take very many

248

RBFs to cover the region of pattern space populated by the training data. It might be
thought that this problem could be surmounted by using functions with a large width
but there is then a risk that we will not be able to supply enough detail in the
structure of the decision region.

 The simplest scheme for training RBF networks is to take a series of centre values
chosen randomly from the training, use fixed width functions, and train only the
weights to the linear output units. This may be done in a single step by solving a set
of linear equations for minimizing the sum of square errors between targets and net
outputs (Broomhead & Lowe 1988). Alternatively it may be done iteratively
according to the delta rule, in which case the RBF node outputs are used as the
inputs in the algorithm. Further embellishments of training allow self-organization
of fixed width centres (combined with supervised learning of output weights) and,
in the most general case, learning of all network parameters including the width of
each RBF.

249

10.5 Learning by exploring the environment

 We now turn to look at alternative ways of training feedforward nets. The gradient
descent algorithms like backpropagation rely on substantial intervention by the
external "supervisor", which must calculate error signals for each output node.
Further, the weight adjustments for hidden nodes are made only after extensive
calculation to evaluate explicitly gradient information. In this section we look at
learning paradigms that are conceptually simpler and are based on the idea that a
network can learn by trial and error.

 10.5.1 Associative reward-penalty training

 Consider a single node (semilinear or digital) that has stochastic Boolean output.
Suppose that there is a set of input-output pairs so that each input vector is
associated with a 0 or 1. On applying a vector and noting the output, we compute a
signal, which is "1" (reward) if the node classified the input correctly, and "0"
(penalty) if it classified incorrectly. If the node is rewarded, it adjusts its internal
parameters (weights or site values) so that the current output is more likely with the
current input. If, on the other hand, the node is penalized, it adjusts its parameters
so that the current output is less likely. Two things make this paradigm distinctive:
first, the node is simply told whether it was "right" or "wrong"—no continuously
graded error is calculated; secondly, in order to "discover" what the correct output
should be, the node has to "experiment" with its two possible output options—it has
to risk getting the wrong answer in order to find the right one—so that it does
indeed use "trial and error".

 To formalize this, let the ith input and output be xi and y respectively (xi, yE {0,
1}), let the reward signal be r, and , be two positive constants, where , <1.
We now specialize to the case of semilinear nodes so that the weights wi are the
parameters to be adapted. The required action is taken using a learning rule of the
form

(10.10)

where is the mean or expected value of the Boolean output y given the input
vector x. If a sigmoid output relation is assumed then where ax is the

250

activation induced by x.

 To see how this works, suppose r=1. In general, but, for a sigmoid
output function, strict inequality always holds so that, if y=1, then .
Thus, if xi=1, then wi increases, tending to make the activation more positive and
enhancing the likelihood of outputting a 1 (the correct response) next time x appears
at the input. If, on the other hand, y=0, then and a positive xi enforces a
decrease in wi, tending to make the activation more negative, thereby making it
more likely to output a 0 (correctly) next time with x. In either case, an input with
xi=0 does not contribute to the activation and so it makes no sense to adjust its
weight. If now r=0 (node output is wrong) then the sense of the weight changes is
reversed since the the rule for penalty learning is obtained from its reward
counterpart by replacing y with 1-y (the opposite Boolean value to y). Thus, 1-y
replaces y in having subtracted from it, and 1-y is just the opposite Boolean
value to y. This means that, on failure, the node learns to enhance the chances of the
output opposite to the one it is currently producing.

 The learning rule in (10.10) was developed by Barto and co-workers (Barto &
Anandan 1985, Barto 1985) who call it the associative reward-penalty rule or AR-P.
In discussing the origins of their work, Barto et al. acknowledge its relation both to
psychological theories of learning—in particular Thorndike's law of effect
(Thorndike 1911)—and the theory of stochastic learning automata (Narendra &
Thathacar 1974).

 In Thorndike's scheme, a neural connection is supposed to be built up between
stimulus and response (input and output) when an animal is in a learning
environment. The law of effect then says that this connection is likely to be
strengthened if the response is followed by a satisfaction (reward) for the animal,
whereas it will be diminished if the animal is made to undergo discomfort
(penalized). In fact, Thorndike later modified this theory and denied the efficacy of
administering discomfort. Interestingly, this seems to be in line with empirical
simulation results, which show that small values of work best; that is, training
when the net has been penalized takes place much more slowly than training when it
has been rewarded.

 By way of developing the connection with automata theory, a deterministic
automaton is a machine that can exist in only a finite number of states and whose
next state depends on its current state and input; additionally, each state is
associated with a particular output. An example of such a machine is a Hopfield net
running under synchronous dynamics. In this case there is no explicit input (although
it is straightforward to allow external input to each node) and the output is just the
state vector itself. A stochastic automaton is one in which the next state is related

251

probabilistically to the current state and input (e.g. Hopfield net under
asynchronous dynamics) and, if learning is allowed, it corresponds to altering the
probabilities that govern each state transition. It is therefore a very general theory
and is not tied to any particular model of computation, neural or otherwise. It has
its roots in mathematical theories of animal learning, but was later developed as a
branch of adaptive control theory (see Sect. 10.5.2). The connection with reward-
penalty learning is that schemes very similar to it have been used to train stochastic
automata.

 There are some superficial similarities between the AR-P rule and the delta rule, in
so far as each uses a difference between two output quantities to determine a
weight change. Barto et al. (1983) have also developed a reward-penalty-style
rule, which is related more closely to the Hebb rule. This makes use of two
components: an adaptive search element or ASE and an adaptive critic element or
ACE. The ASE is the basic learning system while the ACE has the job of providing
reward-penalty signals for the ACE that are based not only on the externally
applied reward signal, but also on the current input. Further information on these
methods may be found in Barto (1992).

 Much of the early work on reward-penalty techniques considered single nodes or
very simple nets. However, Barto & Jordan (1987) have reported simulation
studies with multilayer networks of semilinear nodes, and network learning
convergence for these nets has been demonstrated by Williams (1987). In his proof,
Williams showed that the effect of the AR-P rule was to perform a noisy or
stochastic gradient ascent with respect to the mean value of the reward signal
(trained nets will have high values of). However, this computation is implicit
rather than explicit as it is with backpropagation. Further, the net can be trained
using a single scalar signal (the reward) being fed back to the net, rather than a
large array of delta values. In fact, Barto and Jordan trained the output layer of their
nets using the delta rule and the hidden layer using AR-P. This reduced training time
considerably and is indicative of a general principle: the more information
supplied to a node during training, the less time it takes to adapt successfully. Thus,
a single scalar signal is less informative than a signal vector and so the output layer
will take longer to develop useful weights under AR-P than it will under the delta
rule (in which each node has its own custom d). However, the non-specific signal r
is used to train the hidden layer, and the net does take longer to train than under
backpropagation. In spite of this, the algorithm is much simpler than
backpropagation and may take advantage of its inherent noise to escape local
minima.

 It remains to describe how the reward signal is determined for a network with more
than one output unit. One way of doing this is to define a sum of square differences
error e (just as if we were going to perform a gradient descent), normalize it, and

252

then put r=1 with probability 1-e. However, this is not necessary and Gullapalli
(1990) provides an interesting example that makes use of a custom-defined reward
signal for the control of a robot arm. This work also shows an extension of reward-
penalty-style training to nodes that output continuous variables.

 For digital nodes, Myers & Aleksander (1988) have developed an algorithm with a
reward-penalty "flavour", which they use to train nets of PLNs. However, this is
not amenable to analysis and proof of convergence. Gurney, however, showed
(Gurney 1989, Gurney 1992a) that the rule of Barto et al. may be adapted with little
change to digital nodes, as can the associated proof of learning convergence by
Williams. The digital learning rule—assuming a sigmoid output function—is
simply

(10.11)

where µ is the currently addressed site. Notice that the only difference from the rule
for semilinear nodes is that there is no input multiplier xi. Training MCUs with AR-P
also follows in a straightforward way and has been implemented in custom VLSI
hardware (Hui et al. 1991, Bolouri et al. 1994).

 10.5.2 System identification

 System identification is a branch of the engineering discipline of control theory that
attempts to solve the following problem. Suppose we have an input-output system
for which we know the underlying model description but which is not entirely fixed
because certain parameters are unknown; how can we go about finding these
parameters empirically? Figure 10.17 shows a system with unknown parameters
whose internal state description is not directly accessible. Instead, it is corrupted
by the addition of noise so that we only have access to imperfect data

Figure 10.17 System identification.

253

concerning the system. To obtain an estimate for the internal system parameters we
apply a set of test signals, observe the behaviour of the system output and then, by
measuring any input-output correlations, we can, in effect, "pin down" the system
parameters. How can this be used in training neural nets? Our strategy is to
consider the derivatives or slopes required for a gradient descent to be parameters
of the network viewed as a system whose model structure is known. In fact, we
will consider each node as a separate system, make estimates of the gradients
locally within each unit, and perform a noisy or stochastic gradient descent.

 We start by re-examining the relationship between small changes in function inputs
and output. Recall Equation (5.3) for a function y of one variable x, which is
rewritten here for convenience (with the small change in x denoted by dx)

(10.12)

The multidimensional equivalent of this is that y is now a function of several
variables (x1, x2,…, xn) and requires that we sum contributions from each

(10.13)

Returning to the network, we suppose (as with AR-P) that it is stochastic in its
behaviour. It is convenient to introduce another notation for the expectation value of
the output by writing it instead as . Then, we define the network error for a
single pattern by

(10.14)

254

where the summation is over the output layer and t is a target value (compare
(5.15)). Now, although this is an expression for E considered as a function of the
output layer variables, it is always possible to imagine that we focus on another
layer L by expressing each of the in the output layer in terms of the mean outputs
in L. Thus, we think of the error E as a function of the form where the
index i refers to nodes in L so that

(10.15)

Figure 10.18 System identification for estimating gradients.

We now single out a particular node k, say, and write

(10.16)

The reason for doing this is that we now wish to consider dE as a system output
signal in response to test signal and to treat the remaining sum as a noise term
nk. That is, we think of k as being responsible for the error and consider the effect
of the rest of the layer as noise superimposed on its influence. To clarify this it is
convenient to abbreviate to so that we have

(10.17)

255

This does indeed map onto the system identification (SID) paradigm in an almost
trivial way as indicated in Figure 10.18. The "system" in this case consists of the
operation of multiplication of the input by in a single node so that is the
system's single parameter to be estimated. Of course, there is nothing special about
any particular node in the net and we suppose that each one sees things from this
subjective perspective in order to find its error gradient. In order to calculate these,
it is necessary to provide a series of random signals of the type d k. This would be
unwieldy if it were not for the fact that this can be made to occur naturally in
stochastic units. Details of how this is done, techniques for making the estimates of
dk, together with the proof of convergence for SID training, are given in Gurney
(1989, 1992a). The effects of noise in the gradient descent and a comparison
between nets of digital and semilinear nodes can be found in Gurney (1992b).

 It is pertinent here to say a few words about the nature of gradient estimates and
noise. The description "noisy" was used for the estimates found under pattern-
update mode in backpropagation. However, this use of the term is more in the
nature of a paraphrase for a situation that is slightly more complicated. Thus, given
a particular input pattern and state of the network, the gradient estimate found in
backpropagation is quite deterministic; the "noise" arises in the sense that the
estimate may not be in the true direction of a gradient descent (we may sometimes
go uphill). The estimates in system identification, on the other hand, are truly noisy;
with a given pattern and network state the estimate is entirely dependent on the
random pattern of signals produced from a noise source.

 It can be shown that, when the gradient estimates are made using the minimum of
resources, the SID training rule reduces to something that has the appearance of
reward-penalty learning. This is consistent with the fact that both techniques are
rooted in the ability of the net to explore possible alternatives, although AR-P uses
this to allow the net to discover correct responses, whereas SID uses it to generate
test signals in a system identification task.

256

10.6 Summary

 This chapter has broadened the discussion of feedforward nets from semilinear
nodes and gradient descent algorithms. A re-evaluation of the function of local
synaptic circuits in real neurons leads to the conclusion that the simple linear
weighted sum form of the activation may not be fully biologically plausible. One
attempt to inject more realism occurs in the sigma-pi node, which uses multilinear
terms in its activation.

 Another starting point was to note that RAM components can implement arbitrary
Boolean functions of their input. These digital nodes were used in the construction
of the WISARD pattern discriminators and ADAM associative memories. By using
more than two values in each RAM cell (or at each site), it is possible to extend the
functionality of digital nodes. This prevents the loss of information in training and
opens up the possibility (in the limit of continuous site values) of dealing with
digital nodes on a principled mathematical basis. When this is done it transpires
that digital nodes and sigma-pi units are intimately related. One problem with
digital nodes occurs in their inherent inability to generalize. This may be overcome
by promoting clustering of similar site values around trained centres. A further
problem arises with the exponential growth of the number of sites with the number
of inputs, which may be solved by using multi-cube-type units.

 One further node type—the radial basis function—was examined. This implements
a Gaussian hump in pattern space and, by linearly combining several such
functions, it is possible to approximate any function as closely as we please. RBF
nets with fixed centres may be "trained" very quickly by analytically solving a least
squares problem for the weights to the output node.

 Two new training algorithms were described. The first (reward-penalty) makes use
of stochastic nodes to explore the space of possible solutions. It uses a single
scalar feedback signal in training, which informs the net whether its current output
was "right" or "wrong". A more information-rich technique makes use of ideas from
system identification in control theory. This identifies each error gradient (with
respect to each node output) as the parameter in a separate system that simply
multiplies its input by the gradient. System identification training reduces to
reward-penalty in circumstances that minimize the available resources.

257

10.7 Notes

 1. WIlkie Stonham Aleksander Recognition Device, after its inventors.

 2. Advanced Distributed Associative Memory.

 3. The notation used here is my own and not that used by Myers and Aleksander.

258

Chapter Eleven
Taxonomies, contexts and hierarchies

 Our intention in this chapter is to take a step back and to try and look at neural
networks from some high-level perspectives. First, we will attempt to impose some
order on the seemingly disparate set of structures, algorithms, etc., that make up the
network "zoo". Secondly, we will explore further the consequences of the
hierarchical scheme introduced in Chapter 9. Next, we will look at connectionism
alongside conventional AI and compare their relative merits in providing an
understanding of intelligent systems. Finally, an historical overview helps to
complement the structural taxonomy and provides an insight into the nature of the
scientific process.

259

11.1 Classifying neural net structures

 On first exposure to the neural net literature it may seem that the whole area is
simply a large collection of different architectures, node types, etc., which are
somewhat ad hoc and not related in any way. It is the intention of this section to try
and give a framework for classifying any network that enables it to be viewed as a
special instance of, or as a composite of, only a handful of structures. All of the
material discussed here has been introduced in previous chapters but is drawn
together for a comparative review. We start by looking at the types of task that
neural nets can perform and show that their definitions are not always mutually
exclusive. Thus, we have seen nets performing classification, associative recall,
and cluster template formation. However, these descriptions are in some sense "in
the eye of the network designer", and often shade into one another.

 11.1.1 Neural net tasks

 Consider the first network task we encountered, which was classification with
feedforward nets. This has the connotation that a pattern with a large number of
inputs is assigned a comparatively small code on the output layer. However, it is
perfectly feasible to allow any number of output units and, in particular, there may
be equal numbers of inputs and outputs. Then it is possible for the input and output
patterns to be the same and the net can be used as an associative memory (Sect.
7.2). Now suppose that the output pattern is still roughly the same size as the input
but their contents are quite different. This is still a kind of associative recall but, in
order to distinguish it from the previous case, it is referred to as hetero-associative
recall whereas, if the input and output are the same, we refer to auto-associative
recall. If there are just a few output nodes is the net performing classification or
hetero-association? Clearly there is no hard and fast way of deciding but
conventionally we tend to think of the case with few output nodes as classification
and that with many nodes as association.

 Typically (although not necessarily) classification will make use of Boolean-
valued target outputs to make clear the class distinctions. If a net then responds with
some nodes failing to reach saturation (i.e. close to Boolean values) we may either
interpret its output as an inconclusive result or look for the nearest Boolean class
vector.

 If, on the other hand, we are using a feedforward net with continuous output, then
we may wish to interpret all values of the output in response to arbitrary inputs.
This will occur if we are attempting to learn a smooth input-output function in
which case we refer to the net as performing function interpolation. An example

260

occurred in Section 6.11.2 in which a net was trained to forecast financial market
indices whose values were continuous.

 Within the context of auto-association in recurrent nets we saw two distinct modes
of operation (see Fig. 7.1). In one, the whole pattern was corrupted uniformly by
noise and so we think of the recall process as a kind of noise filtering. In the other
case, a part of the pattern was known to be intact and represented a key to initiate
recall of the remaining part. The network is then behaving as a content addressable
memory (CAM) since the contents of a pattern are the key to its retrieval. Recurrent
nets may also perform hetero-association as shown in Figure 11.1 in which,
conceptually, the pattern is divided into two parts and we always clamp one half
and recall on the other. By analogy with the feedforward case we may also perform
classification if the clamp occupies the bulk of the pattern and the nodes for recall
are small in number. Hetero-association is also clearly an example of CAM in
operation.

Figure 11.1 Hetero-associative recall in recurrent nets.

Turning to competitive nets, these can be thought of in two ways. On the one hand
they perform a cluster analysis and learn weight vector templates corresponding to
the centre of each cluster. Alternatively we can think of the net as a classifier if we
interpret winning nodes as signifying pattern classes. As an additional feature, self-

261

organizing feature maps (SOMs) allow us to discover topological relationships
(pattern proximities) between input vectors.

 The various network tasks and the nets used to perform them are summarized in
Table 11.1. The judicious use of the term "principally" in the left hand column
emphasizes the fact that the correspondence between task descriptions and nets is
not rigid.

 11.1.2 A taxonomy of artificial neurons

 Many artificial neurons have their functional behaviour defined within the
activation-output model shown in Figure 11.2. Here, the xi are a set of n inputs,
and qk a set of N internal parameters. The activation a is a function of the inputs
and parameters, a=a(qk, xi), and the output y is a function of the activation, y=y(a).

Figure 11.2 Activation-output model of artificial neuron.

Splitting up the node functionality like this can assist the understanding of what
"ingredients" have been used in the node make-up. In this model the TLUs and
semilinear nodes have as their parameters a set of weights wk, k=1…n, and a is just
given by the usual weighted sum of inputs. The sigma-pi units have 2n weights wk,
the radial basis functions have centres given by a set of n vector components wk,
and the digital nodes have their activation defined via a set of 2n site values Sµ. All
of this is summarized in Table 11.2. The point here is that what follows the
generation of a—the activation-output function (or, simply, output function)—is
wholly independent of the form a takes so that we are, in principle, free to "mix and
match" activation forms and output functions.

 Examples of output functions are shown in Figure 11.3 where we have chosen to
concentrate on their graphical form rather than their mathematical description, many
of which have been described previously. The only new member is the "ramp"
function, which is given by

262

(11.1)

and has been used by Fukushima (1980) in his neocognitron.

 There are two further aspects to node structure. First, the result of the output
function may not be used directly but, rather, as a probability in a source of
stochastic output that is usually Boolean. Secondly, what we have referred to so

Figure 11.3 Output functions.

far as the "activation" may instead be subject to some kind of temporal integration
and decay (recall the leaky integrators). In this case, the quantities in Table 11.2
are acting as an input "driving force" in a more complex relation that determines the
final activation. It is possible to modify Figure 11.2 to include these functional
additions but this will not be done here.

 To summarize: nodes can be specified according to the following criteria:

263

 – Particular choice of activation form (Table 11.2).

 – Form of output function (Fig. 11.3).

 – Whether the activation is given directly by an expression like those in Table 11.2,
or indirectly via leaky-integrator dynamics.

 – Stochastic or non-stochastic output.

 11.1.3 A taxonomy of network structures and dynamics

 The last section dealt with an analysis of the micro-structure of the net at node
level; here we deal with the large-scale topology and dynamics.

 We have seen three main network architectures: feedforward, recurrent and
competitive layers. Within the feedforward genre, the net may or may not be
layered, contain hidden units or be fully interconnected from layer to layer.
Feedforward nets have trivial dynamics—the input simply initiates a flow of
signals that propagate through to the output layer.

 The main example of a recurrent net we discussed was that due to Hopfield. The
nets described in Chapter 7 were fully connected, although this need not be the
case; Hopfield-like nets with incomplete connectivity turn out to have a smaller
training pattern capacity than their fully connected counterparts. Additionally, there
may or may not be symmetric connections or hidden units. The latter have been
used in the so-called Boltzmann machines (Hinton et al. 1984) where they help
form an internal representation of the training environment. Since there is no
special distinction between input and output units in a recurrent net, the non-hidden
units in the Boltzmann machine are referred to as visible units since they may
interact directly with the environment. The dynamics of recurrent nets may be
synchronous or asynchronous leading to deterministic or probabilistic behaviour
respectively.

 The final structure—the competitive layer—has a distinct, highly structured
architecture and the dynamics are governed by those of its individual, leaky-
integrator nodes.

 Not all networks are examples of one of these three categories but, if they are not,
then it is usually possible to break them down into these architectural building
blocks. For example, ART may be thought of as a competitive layer together with a
single-layer net whose input is partly derived via the top-down templates. Our

264

summary of network architectures is therefore as follows:

 – Is the net one of the three main types (recurrent, feedforward, competitive)? If
not, how can it be broken down into components of this form?

 – Are there hidden units?

 – If feedforward, is the network layered?

 – Is the connectivity complete (layer to layer in feedforward nets and node to node
in recurrent nets)?

 – Are any recurrent, reciprocal connections symmetric?

 – If recurrent, are the dynamics synchronous or asynchronous?

 11.1.4 A taxonomy of training algorithms

 The first kind of training encountered was supervised learning in the guise of the
perceptron rule, delta rule and backpropagation. The characteristic of this type of
training is that it necessitates a target output vector for each input pattern. Self-
organization, on the other hand, requires no such targets and each training pattern is
considered a complete whole. Examples of this occurred with the competitive nets
and the Kohonen SOMs. Characteristic of self-organization is the use of a Hebb-
like rule (possibly with a weight decay term). A further type of "training" took
place with the Hopfield nets in which the weights were set by fiat according to a
prescription formula. However, we saw that this was equivalent to learning
incrementally with a Hebb rule and, since there is no separate output with these
nets, training in this way is a type of self-organization. The reward-penalty rule and
system identification require target vectors of some kind but the signals fed back to
the net are less complex than those used in, say, backpropagation. Because of this,
some workers choose to think of R-P and the like as belonging to a separate class
of learning algorithms although they may also be thought of as part of the supervised
family.

 Our training taxonomy is then:

 – Supervised

 – Complex signal feedback (e.g. backpropagation)

 – Simple signal feedback (e.g. R-P).

265

 – Unsupervised (self-organized).

 – Weights given by formulaic prescription.

 Another dimension to training concerns the separation of the network operation into
distinct training and testing phases. This is the most common state of affairs but is
not necessary, as demonstrated by the ART networks, which do not make this
distinction.

266

11.2 Networks and the computational hierarchy

 In our description of the ART networks, we found it useful to separate out different
strands of the net's function and structure according to a hierarchical system based
on that originally propounded by Marr (1982). Here we will apply this scheme to
other types of net.

 Consider, first, the case of supervised learning using MLPs and backpropagation.
There is a training set consisting of input-output vector pairs xi, yi that are related
by being samples from some underlying mapping or functional relation f(x)=y. Let
the set of input-output mappings realizable by the network be F; this is restricted by
the network connection scheme, number of hidden units, etc. At the computational
level we seek a function a member of F, such that an error measure E (the sum of
square differences for is a minimum over F. Depending on the choice
available in F, the network function will approximate more or less to the
underlying function f. If it is indeed close to f then we expect there to be good
generalization.

 At the algorithmic level we perform a steepest descent gradient descent on E with
respect to the parameters (the weights) that define . Depending on whether this
occurs under serial or batch pattern update, the descent may or may not include
noise. In going further, it is useful to differentiate between the forward and
backward passes. The former calculates the following function of its hidden unit
outputs yj:

(11.2)

where each yj is, of course, a similar function of the network inputs. This
calculation may be thought of as a feature at the system level of implementation. It
has, of course, an immediate signal-level implementation in terms of the artificial
neurons supporting these functions. Indeed one may argue that the finesse of thinking
of the calculation at a higher level than its neural implementation is unwarranted
and that we should omit the system level in this case. However, the learning
process is quite different. The calculations may be articulated at the system level
but the consequent signal-level implementation is not consistent with artificial
neuron function. Examples of this are the forming of target-output differences, the
summation in the error calculation, and mechanisms to turn on and off the plasticity

267

of the weights between forward and backward passes. Grossberg (1987) has given
a graphical description of the signals in backpropagation training and notes that it
does not appear neurally inspired; that is, the signal-level implementation does not
appear to map well onto the combined function of a set of artificial neurons. The
lack of a neural-like signal-level description is sometimes appreciated intuitively
when a network is said to be "biologically implausible".

 Notice that what is attempted at each level in the description backpropagation is
independent of what occurs at the other levels. Thus, at the computational level we
are free to define alternative forms for the error E. At the algorithmic level we can
then choose to minimize it in any way we please—gradient descent does not have a
monopoly here. Other techniques include quasi-random search (Baba 1989) or
genetic algorithms Jones 1993, Nolfi & Parisi 1995). Indeed, even having chosen
gradient descent, we are still free to choose the particular technique out of many
available, which vary in speed and complexity, and are not bound to use only
backpropagation. For example, the so-called conjugate gradient method (Fletcher &
Reeves 1964) or second-order techniques (Battiti 1992), which make use of the
higher order gradients (rate of change of rate of change). Notice that what we have
previously referred to as an algorithm—"backpropagation"—is now viewed as a
particular implementation of gradient descent. However, we believe that teasing
out the description into the multi-level hierarchy does allow a deeper understanding
in terms of what the net is doing, alternatives available, and issues of biological
plausibility.

 We now turn to self-organization under competitive dynamics. There is still an
input set {xi} but no corresponding {yi}. Instead there are a fixed number of
templates wk, 1 k N (we have in mind, of course, the weight vectors in a
competitive layer), and a distance measure d(wk, xi) that defines how "close" the
pattern is to the template. Computationally, we now seek a set and a mapping

 (patterns to templates) that tends to minimize1 The motivation
here is that what constitutes "clustering" is defined via d, for patterns xi, xj that are
close together have small values of d(xi, xj). Finally, we require that the mapping is
many to one so that each pattern is assigned only one template. Examples of d that
we have seen before are the inner product xi·wk and the length of the vector
difference .

 A typical algorithm then proceeds as follows. Choose a pattern at random, find the
current best template match wj, and then update the template according to some rule
like (8.4).

 In terms of implementation, it is the search for best template match that highlights
the difference in network types. In the Kohonen SOMs this is done using a computer

268

supervised search, which constitutes a system-level implementation. There is then
no signal-level detail for these nets. On the other hand, the use of competitive
dynamics to find the closest match represents a feature of implementation at the
signal level.

 It is apparent from the discussion of both types of learning that it is usually the
training algorithm proper (rather than the operation of the net in its testing phase)
that fails to have a signal-level implementation. Another slant on this observation is
the distinction made by Williams (1987) between "on-line" and "off-line"
processes in networks. In our language, the former are able to be carried out at the
signal level using a network whereas the latter have no obvious network-bound,
signal-level description.

269

11.3 Networks and statistical analysis

 On several occasions it has been noted that there were similarities between a net's
training algorithm and some technique in statistics or data analysis. For example,
we can liken backpropagation to nonlinear regression and competitive learning to
some kinds of cluster analysis. Is it the case that all neural nets are simply a
reworking of familiar techniques? We claim that, although there are similarities to
be drawn out between "classical" methods and networks, the latter do retain a
novelty and utility that lies outside of the established methods.

 Consider again the MLP defined by (11.2). At the computational level this may be
thought of as a model for nonlinear regression that is parametrized by the weights.
However, as noted by Cheng & Titterington (1994), this does not correspond to any
model of regression previously developed and the form of (11.2) was not given a
priori but was based on the network. The network paradigm therefore has the
potential to inspire novel computational approaches in a bottom-up way; it is not
merely an implementation of given computational strategies and is indeed able to
stand on its own merits.

 Now suppose we discover a network in a biological setting that appears to have the
same architecture as one of those we have studied in its artificial guise. An
understanding of the computational and algorithmic aspects of the artificial network
promises to provide insight into the nature of these processes in its biological
counterpart. There are further benefits if we have a signal-level implementation of
the net endowing it with biological plausibility.

270

11.4 Neural networks and intelligent systems: symbols
versus neurons

 There are, as pointed out in the first chapter, many ways of viewing connectionist
systems depending on which intellectual stance one starts from. Here we wish to
focus on networks as one way of building intelligent machines. In attempting this, it
is not clear at the outset whether we are obliged to copy the physical structure of
the brain, or if it is possible somehow to skim off or extract the essential processes
responsible for intelligence and encapsulate them in computer programs. The first
approach is fulfilled in the connectionist programme, the latter by conventional
symbol-based artificial intelligence or AI. We now explore these issues in more
depth.

 11.4.1 The search for artificial intelligence

 What is artificial intelligence? One definition is that it is intelligent behaviour
embodied in human-made machines. In some sense, however, we have simply
reposed the question as "what is intelligence?" It appears then that we are in an
impasse, for to answer this would pre-empt the whole research programme of
artificial intelligence. One way out of this potential "Catch-22" situation is simply
to give examples of intelligent behaviour and then to say that achieving machine
performance in these tasks, as good as or better than humans, is the goal of artificial
intelligence research. Thus, we are typically interested in tasks such as: the
perception and understanding of the world from visual input; the generation and
understanding of speech; navigation in complex environments while avoiding
obstacles; the ability to argue in a common-sense manner about the world; playing
games of strategy like chess; doing mathematics; diagnosis of medical conditions;
making stock market predictions.

 From the early days of computing, in the late 1940s and early 1950s, there have
existed two quite different approaches to the problem of developing machines that
might embody such behaviour. One of these tries to capture knowledge as a set of
irreducible semantic objects or symbols, and to manipulate these according to a set
of formal rules. The rules, taken together, form a "recipe" or algorithm for
processing the symbols. The formal articulation of the symbolic-algorithmic
paradigm has been made most vigorously by Newell & Simon (1976) and has
represented the mainstream of research in artificial intelligence; indeed "Artificial
Intelligence" (capital "A" and "I")—or its acronym AI—is usually taken to refer to
this school of thought.

 Concurrent with this, however, has been another line of research, which has used

271

machines whose architecture is loosely based on that of the animal brain. These
artificial neural networks are supposed to learn from examples and their
"knowledge" is stored in representations that are distributed across a set of
weights. This is in contrast to the AI approach, which requires a computer to be
preprogrammed2 in some computer language and whose representations are
localized within a memory store.

 In order to appreciate the radical differences between these two approaches, it is
necessary to know something about symbolic AI. The following section must serve
as the briefest of outlines suitable for our comparison and readers are referred to
texts such as those by Winston (1984) and Rich & Knight (1991) for a
comprehensive introduction.

 11.4.2 The symbolic paradigm

 We will illustrate the symbolic approach with the example of playing a game like
chess although the details have been chosen for clarity rather than any relation to
genuine chess programs. The first ingredient is a method of describing the state of
the board at any time. This might easily be represented symbolically by assigning
lexical tokens to the pieces and using a grid system for the squares. It then makes
sense to say, for example, that "white_pawn(2) is on square(d2)". Next we need to
define what the initial state and final (or goal) states of the game are; the system
needs to know what constitutes checkmate. It must also have knowledge of what
constitutes a valid move. This will consist of a series of rules of the form "If there
is a white pawn at square(d2) AND square(d3) is empty THEN the pawn can move
to square(d3)". Of course, higher level abstractions of rules like this (which don't
require specific square labels, etc.) will almost certainly be used. The use of legal
moves should then guarantee that only legal board positions are obtained. Finally
we need some controlling strategy that tells the system how to find goal states. This
takes the form of a search through the space of board states a given number of
moves ahead. At each move a value is assigned to the final board position
according to its utility for the chess-playing system. For example, moves that result
in loss of pieces will (usually) score poorly. The search may be guided by more
rules or heuristics that embody further knowledge of the game: for example, "don't
put your queen under direct attack", or "material loss is OK if mate can be forced in
two moves".

 The main ingredients in such an approach are therefore well-defined rules and their
assembly into procedures that often constitute some kind of search strategy. In
addition, symbolic descriptions are all pervasive, both in describing the problem
explicitly and as tokens in defining the rules. Chess may be thought of as an
instantiation of one area of human expert knowledge and, quite generally, AI has

272

sought to articulate these domains in so-called expert systems in which each
fragment of knowledge is encapsulated in a construction of the form "if condition 1
and condition 2…then result". These have proven very successful in many areas
as, for example, in configuring computer systems (McDermott 1982) and giving
advice on mineral exploration (Hart et al. 1978).

 How are we to implement such systems? The answer lies in the fact that they all
represent computable procedures. One formal definition of computability is
couched directly in terms of a hypothetical machine, the universal Turing machine
(Turing 1937). Although all modern, general purpose computers are equivalent to
this abstract model they are more normally referenced to another that more closely
depicts the way they work. This model—the von Neumann machine—also
highlights their intimate relation with the symbolic paradigm and is illustrated in
Figure 11.4.

 The von Neumann machine/computer repeatedly performs the following cycle of
events:

 1. Fetch an instruction from memory.

 2. Fetch any data required by the instruction from memory.

 3. Execute the instruction (process the data).

 4. Store results in memory.

 5. Go back to step 1.

 Although the first computers were built to perform numerical calculations, it was
apparent to the early workers that the machines they had built were also capable of
manipulating symbols, since the machines themselves knew nothing of the semantics
of the bit-strings stored in their memories. Thus, Alan Turing, speaking in 1947
about the design for the proposed Automatic Computing Engine (ACE), saw the
potential to deal with complex game-playing situations like chess: "Given a
position in chess the machine could be made to list all the 'winning combinations' to
a depth of about three moves…" (Hodges 1985).

 We can now see how the von Neumann architecture lends itself naturally to
instantiating symbolic AI systems. The symbols are represented as bit-patterns in
memory locations that are accessed by the CPU. The algorithms (including

273

Figure 11.4 The von Neumann machine.

search strategies and rules) are then articulated as computer programs by gradually
breaking them down into successively smaller operations until these consist of the
instructions that the CPU can directly work on. The machines on which the modern
AI fraternity run their algorithms have not changed in any fundamental conceptual
way from the pilot ACE, all of these being examples of the classic von Neumann
architecture. Granted, there has been a speed increase of several orders of
magnitude, and hardware parallelism is sometimes available, but contemporary "AI
engines" are still vehicles for the instantiation of the theoretic stance which claims
that intelligent behaviour can be described completely as a process of formal,
algorithmic symbol manipulation.

 Mainstream AI has proved successful in many areas and, indeed, with the advent of
expert systems has become big business. For a brief history of its more noteworthy
achievements see Raj (1988). However, AI has not fulfilled much of the early
promise that was conjectured by the pioneers in the field. Dreyfus, in his book
What computers can't do (Dreyfus 1979), criticizes the early extravagant claims of
the AI practitioners and outlines the assumptions they made. Principal among these
is the belief that all knowledge or information can be formalized, and that the mind
can be viewed as a device that operates on information according to formal rules. It
is precisely in those domains of experience where it has proved extremely difficult
to formalize the environment that the "brittle" rule-based procedures of AI have
failed. The differentiation of knowledge into that which can be treated formally and
that which cannot has been further examined by Smolensky (1988) where he makes
the distinction between cultural or public knowledge and private or intuitive
knowledge. Stereotypical examples of cultural knowledge are found in science and
mathematics in which proofs, demonstrations and procedures can be made as clear
and as detailed as we wish. Examples of private knowledge include many areas of
everyday human activity: the skills of natural language understanding, fine motor
control in sport, visual navigation and scene understanding, or even the intuitive
knowledge of an expert in some narrow domain such as wine tasting. Public
knowledge can be displayed in its entirety in a well-defined way—Newton's laws
of motion can be stated unequivocally—and there is no more nor less to them than
their symbolic representation. Private or intuitive knowledge can be indicated or

274

pointed to but cannot be made explicit. A tennis professional can indicate how to
play a good serve but cannot transfer the required skill directly to the motor areas
of your brain—this needs much practice and may never be acquired.

 We may draw up a list of the essential characteristics of von Neumann machines
(computers) running symbolic AI systems for comparison with those of networks.

 – The machine must be told in advance, and in great detail, the exact series of steps
required to perform the algorithm. This series of steps is the computer program.

 – The types of data it deals with have to be in a precise format—noisy data confuse
the machine.

 – The hardware is easily degraded—destroy a few key memory locations and the
computer will stop functioning or "crash".

 – There is a clear correspondence between the semantic objects being dealt with
(numbers, words, database entries, etc.) and the computer hardware. Each object
can be "pointed to" in a block of memory.

 The first point here requires some qualification in the light of the possibility of the
machine learning from previous experience (Rich & Knight 1991, Thornton 1992).
However, learning in this case can only result in "more of the same" (rules and
symbols) and, further, this is constrained to be within the framework provided by
the programmer. So, notwithstanding this proviso, the success of the symbolic
approach in AI is predicated on the assumption that we can at least find an
algorithmic framework to describe the solution to the problem. As already noted, it
turns out that many everyday task domains we take for granted are difficult to
formalize in this way. Further specific examples are: how do we recognize
handwritten characters, the particular instances of which we may never have seen
before, or someone's face from an angle we have never encountered; how do we
recall whole visual scenes, given some obscure verbal cue?

 11.4.3 The connectionist paradigm

 The neural network or connectionist approach starts from the premise that intuitive
knowledge cannot be captured in a set of formalized rules and a completely
different strategy must be adopted. It assumes that, by copying more closely the
physical architecture of the brain, we may emulate brain function more closely and
build machines that can tackle some of these apparently intractable problems. Some
features of this approach are as follows:

275

 – Clearly the style of processing is completely different; it is more akin to signal
processing than symbol processing. The combining of signals and generation of
new ones is to be contrasted with the execution of instructions stored in a memory.

 – Information is stored in a set of weights rather than a program. In general, the
weights adapt by continually presenting examples from a set of training vectors to
the net.

 – Processing in a network occurs in a parallel rather than a serial fashion. There is
no single CPU and each node can operate independently and simultaneously with
other nodes in the net.

 – Nets are robust in the presence of noise; small changes in an input signal will not
drastically affect a node's output.

 – Nets are robust in the presence of hardware failure: a change in a weight may
only affect the output for a few of the possible input patterns.

 – There is often no simple correspondence between nodes and high-level semantic
objects. Rather, the representation of a "concept" or "idea" within the net is via the
complete pattern of unit activities, being distributed over the net as a whole. In this
way any given node may partake in many semantic representations (however, this is
not necessarily the case, a point taken up again in the next section).

 – A characteristic feature of their operation is that neural nets work by extracting
statistical regularities or features from the training set. This allows the net to
respond to novel inputs (not seen during training) by classifying them appropriately
with one of the previously seen patterns, or by assigning them to new classes. This
process of generalization is one of the key reasons for using neural nets.

 – Nets are good at "perceptual" tasks like pattern classification and associative
recall in the presence of noise. These are just the tasks that the symbolic approach
can have difficulties with.

 11.4.4 Symbols and neurons—a rapprochement

 We have tried to show that the conventional symbolic paradigm can fail to be
effective for tasks where it is difficult to formalize the procedures we use and that
an alternative, subsymbolic, network-based paradigm may be more suitable.
However, we must be careful not to throw the symbolic "baby" out with its "bath
water". AI has been moderately successful in some restricted domains of human
expertise and some high-level cognitive skills possessed by humans are most easily

276

formulated in symbolic terms. In particular, the usual applications to which
computers are put—mathematics, database retrieval, etc.—are clearly easier to
implement on a von Neumann machine than in a neural network.

 Further, the connectionist approach has one disadvantage in that, although a solution
to the problem may be available, it is usually not clear why that particular solution
is correct. This is the other edge of the distributed processing sword: patterns of
activity across a network are not semantically transparent and, even if we attempt
to interpret a node's activity as some kind of micro-feature, these may be difficult to
understand and their sheer number may conspire to obscure the reason for a
particular network output. Of course, in some sense it might be argued that it is just
this insistence on explanation that has hindered previous efforts in AI to develop
models of perception and cognition that may have to rely on subsymbolic operation.
However, in applications work it is often desirable to have some insight as to how
the model is working.

 It would appear, therefore, that there may be significant gains to be made by
attempting to integrate connectionist and symbolic styles of computing in a hybrid
system. In this spirit, the relation between networks and expert systems is reviewed
by Caudill (1991) from an applications viewpoint in which several ways of
integrating the two approaches are described. First, it may be possible to break a
problem down into subtasks, each of which may then be tackled with either an
expert system or a network, depending on which is more appropriate. A more
tightly bound scenario occurs if the networks are embedded as part of the expert
system. For example, the job of finding the appropriate set of rules for any
particular input may be likened to one of pattern matching. Thus, the series of
conditional clauses ("if" statements) that apply at any time constitute a pattern
vector of input statements. In this way, a network may be used to evaluate which
rule (or rules) should be used in response to the current state of the system
environment. Alternatively, the network may be the mechanism that is activated in
response to an "if-then" rule instantiated in the normal way If a network is clearly
superior to a symbol-based system for a particular task but a premium is placed on
explanation then it may be possible to run the network in parallel with an expert
system, which, although inadequate for solving the problem consistently, may
provide some insight as to why the net has chosen the solution it has.

 Finally, it is possible, in principle at least, to extract rules from networks. For
example, suppose a node in a single-layer net has two large positive weights wi, wj,
that the node has a threshold-type output function (or very steep sigmoid) and that
the inputs and outputs have clear semantic identities (e.g. medical symptoms and
diagnosis respectively). Then, if the other weights of the node are sufficiently small
it may be possible to write the node's function in the form "If symptom(i) and
symptom(j) then diagnosis(l)" where the latter is one of the two possible node

277

outputs. This is engendered if both inputs i and j are required to make the node fire
and the other inputs cannot contribute significantly to the activation. A full system
realization of this form is described by Gallant (1988).

 Other workers are not interested so much in providing explanations of the problem-
solving process as in providing a connectionist model for high-level, cognitive
human skills that have traditionally appeared to be tractable by the symbolic
approach. Sun and Bookman provide an introduction to these hybrid cognitive
models in a workshop report (Sun & Bookman 1993) and a comprehensive review
(Sun & Bookman 1994). The localist approach uses the theme (introduced above)
of assigning clear conceptual interpretation to individual nodes. This appears to
abandon one of the tenets of the connectionist philosophy, namely distributed
representations, and Smolensky (1988) has argued for the "proper treatment of
connectionism", in which nets can only operate at a subsymbolic level and where
there are no local high-level semantic representations. Nevertheless it would
appear that a useful bridge between symbols and neurons may be built in this way.
Other approaches are truly distributed in using whole networks to represent
concepts and ideas, and open up the possibility for the combination of local and
distributed representations working in concert.

 At the very highest level of analysis, Clark (1990) has speculated that we humans
may have to emulate a von Neumann architecture within the neural nets that are our
brains, in order to perform symbolic-based tasks. That this is a logical possibility
was made clear by McCulloch and Pitts in their original paper on the TLU (1943)
when they proved that networks of such units could evaluate any Turing computable
function.

278

11.5 A brief history of neural nets

 We draw together here some of the key contributions described in previous
chapters but in the context of a brief historical narrative that highlights the way
ideas in science can, just like hemlines, also be subject to the vagaries of fashion.
Many of the most significant papers on neural networks are reprinted in the
collection of Anderson & Rosenfeld (1988). Some interesting anecdotes and
reminiscences can be found in the article by Rumelhart & Zipser (1985).

 11.5.1 The early years

 The development of machines that incorporate neural features has always run in
parallel with work on their von Neumann-style counterparts. In fact the analogy
between computing and the operation of the brain was to the fore in much of the
early work on general purpose computing. Thus, in the first draft of a report on the
EDVAC, von Neumann (reprinted, 1987) makes several correspondences between
the proposed circuit elements and animal neurons.

 In 1942 Norbert Weiner (see Heims 1982) and his colleagues were formulating the
ideas that were later christened cybernetics by Weiner and that dealt with "control
and communication in the animal and the machine". Central to this programme, as
the description suggests, is the idea that biological mechanisms can be treated from
an engineering and mathematical perspective. With the rise of AI and cognitive
science, the term "cybernetics" became unfashionable (Aleksander 1980) although
it might be argued that, because of its interdisciplinary nature, connectionism
should properly be called a branch of cybernetics; certainly many of the early
neural net scientists would have described their activities in this way.

 In the same year that Weiner was formulating cybernetics, McCulloch and Pitts
published the first formal treatment of artificial neural nets and introduced the TLU.
Soon after this, Donald Hebb (1949) made his seminal contribution to learning
theory with his suggestion that synaptic strengths might change so as to reinforce
any simultaneous correspondence of activity levels between the presynaptic and
postsynaptic neurons.

 The use of the training algorithm in artificial nets was initiated by Rosenblatt
(1962) in his book Principles of neurodynamics, which gave a proof of
convergence of the perceptron rule. The delta rule was developed shortly
afterwards by Widrow & Hoff (1960) and neural nets seemed set for a bright
future. However, in 1969 this first flush of enthusiasm for neural nets was
dampened by the publication of Minsky and Papert's book Perceptrons (Minsky &

279

Papert 1969). Here, the authors show that there is an interesting class of problems
(those that are not linearly separable) that single-layer perceptron nets cannot
solve, and they held out little hope for the training of multilayer systems that might
deal successfully with some of these. Minsky had clearly had a change of heart
since 1951, when he had been involved in the construction of one of the earliest
connectionist machines in a project that motivated work on learning in his PhD
thesis. The fundamental obstacle to be overcome was the credit assignment
problem; in a multilayer system, how much does each unit (especially one not in the
output layer) contribute to the error the net has made in processing the current
training vector?

 In spite of Perceptrons, much work continued in what was now an unfashionable
area, living in the shadow of symbolic AI: Grossberg was laying the foundations
for his adaptive resonance theory (ART) (Carpenter & Grossberg 1987b,
Grossberg 1987); Fukushima was developing the cognitron (Fukushima 1975);
Kohonen (Kohonen 1984) was investigating nets that used topological feature
maps; and Aleksander (Aleksander & Stonham 1979) was building hardware
implementations of the nets based on the n-tuple technique of Bledsoe and
Browning (Bledsoe & Browning 1959).

 Several developments led to a resurgence of interest in neural networks. Some of
these factors are technical and show that Minsky and Papert had not had the last
word on the subject, while others are of a more general nature.

 11.5.2 The neural net renaissance

 In 1982 John Hopfield, then a physicist at Caltech, showed (Hopfield 1982) that a
highly interconnected network of threshold logic units could be analyzed by
considering it to be a physical dynamic system possessing an "energy". The process
of associative recall could then be framed in terms of the system falling into a state
of minimal energy.

 This novel approach to the treatment of recurrent nets led to the involvement of the
physics community, as the mathematics of these systems is very similar to that used
in the Ising spin model of magnetic phenomena in materials (Amit & Gutfreund
1985). Something very close to the "Hopfield model" had been introduced
previously by Little (1974), but remained comparatively unnoticed because of its
heavy technical emphasis.

 A similar breakthrough occurred in connection with feedforward nets, when it was
shown that the credit assignment problem had an exact solution. The resulting
algorithm, "back error propagation" or simply backpropagation also has claim to

280

multiple authorship. Thus it was discovered by Werbos (1974), rediscovered by
Parker (1982), and discovered again and made popular by Rumelhart et al.
(1986a). In fact it is possible to see the essential concept of backpropagation in
Rosenblatt's Principles of neurodynamics but the author appears not to have felt
able to develop these ideas to a formal conclusion.

 Aside from these technical advances in analysis, there is also a sense in which
neural networks are just one example of a wider class of systems that the physical
sciences started to investigate in the 1980s, which include chaotic phenomena
(Cvitanovic 1984), fractals (Mandelbrot 1977) and cellular automata (Farmer et al.
1983). These may all be thought of as dynamical systems governed by simple rules
but which give rise to complex emergent behaviour. Neural nets also fall into this
category and so one view is that they are part of the "new wave" of physical
science.

 Another factor in the birth of any new thread of scientific investigation is the
development of the appropriate tools. In order to investigate the new physical
models (including neural nets), it is usually necessary to resort to computer
simulation. The availability of this method increased dramatically in the 1980s with
the introduction of personal computers and workstations that provided computing
power that was previously the province of large, batch-run machines. These new
workstations also provided many new graphical tools that facilitated visualization
of what was going on inside the numeric simulations they were running. Further, the
new computers allowed simple, interactive use and so facilitated experiments that
would have been unthinkable 15 years previously by the average worker, given the
accessibility and power of the computing resources available.

 In summary, therefore, research in connectionism was revived after a setback in the
1970s because of new mathematical insights, a conducive scientific zeitgeist, and
enormous improvement in the ability to perform simulation.

281

11.6 Summary

 This chapter has looked at some high-level issues. First, we described the various
tasks that nets can perform and noted that, although it is convenient to distinguish
between them, it is often possible to think of one task as a special case of another.
Some order was imposed on the connectionist "menagerie" by introducing
taxonomies for artificial neurons, network structures and training algorithms. The
computational hierarchy was revisited and applied to MLPs, competitive nets and
SOMs. Its application led to the idea that the intuitive understanding of "biological
plausibility" may be captured more precisely by an articulation of the network and
the training algorithm at the signal level of implementation. The similarities and
differences between nets and statistical techniques were discussed. Network
architectures can lead to new variants of established statistical techniques and may
provide insight into the operation of biological networks. Next we looked at neural
networks in the context of artificial intelligence and discussed the contrast between
the connectionist and symbolic approaches. It was concluded that both have
something to offer, depending on the type of problem to be addressed. Finally, we
gave a brief history of neural networks, which noted the watershed created by the
publication of the book Perceptions. The technical objections raised there have
been met in principle but it remains to be seen whether the practice and application
can realize the potential offered by the theoretical foundation now being
established.

282

11.7 Notes

 1. It may not find the true minimum but should at least act to decrease this sum.

 2. This is subject to the proviso that learning has not been implemented in the program. This is discussed again in
Section 11.4.2.

283

Appendix A
The cosine function

 The cosine is defined in the context of a right-angled triangle, as shown in Figure
A.1. For an angle ø (Greek phi) in a right-angled triangle, the cosine of ø—written
cosø—is the ratio of the side a adjacent to ø, and the longest side, or hypotenuse h,
so that

(A.1)

To explore the properties of this definition, consider the series of triangles shown
i n Figure A.2. Each panel pertains to one of a series of representative angles ø
drawn in the range 0 ø 180°, in which all the triangles have the same hypotenuse
h. They may be thought of as being obtained by a process of rotating the radius of a
circle anti-clockwise around its centre and, at each stage, forming the right-angled
triangle whose hypotenuse is the radius and whose base (length a) is along a
horizontal diameter. The panels are numbered with increasing ø. When ø=0 (panel
1) the two sides a and h are equal and so cosø=1. As ø is gradually increased to
small values (panel 2) a is only slightly reduced, and so cosø 1 (read as "is
approximately equal to"). For larger values of ø (panel 3) cosø becomes
significantly less than 1. As ø approaches 90° (panel 4) a becomes very small and
so cosø is almost 0. When ø=90° (panel 5) a=0 and so cosø=0.

 Now, when ø is increased beyond 90° (panel 6), the angle must still be measured
with respect to the same horizontal reference but this results in ø lying on the
opposite side of the hypotenuse to that which it has occupied so far; that is, it lies
outside the triangle. This is expressed by making a negative so that the

Figure A.1 Cosine relations.

284

Figure A.2 The cosine function for various angles.

cosines are also negative for the rest of the series. Panels 7–9 show what happens
as ø increases towards 180°. It can be seen that it is equivalent to a reversal of the
sequence in panels 1 through to 3, albeit with the introduction of a negative sign.

 By evaluating cosø for all values of ø between 0 and 180°, a graph of cosø over
this angular range may be obtained, as shown in Figure A.3.

Figure A.3 Graph of cosine function.

285

References

 Aleksander, I. 1965. Fused logic element which learns by example. Electronics Letters 1, 73–4.

 Aleksander, I. 1980. Whatever happened to cybernetics? Technical Report N/S/103, Department of Electrical
Engineering, Brunel University.

 Aleksander, I. & R.C.Albrow 1968. Microcircuit learning nets: some tests with handwritten numerals.
Electronics Letters 4, 406–7.

 Aleksander, I. & H.Mamdani 1968. Microcircuit learning nets: improved recognition by means of pattern
feedback. Electronics Letters 4, 425–6.

 Aleksander, I. & T.J.Stonham 1979. Guide to pattern recognition using random-access memories. Computers
and Digital Techniques 2, 29–40.

 Aleksander, I., W.V.Thomas, P.A.Bowden 1984. WISARD: a radical step forward in image recognition.
Sensor Review 4, 120–24.

 Amit, D.J. 1989. Modelling brain function: the world of attractor neural networks. Cambridge: Cambridge
University Press.

 Amit, D.J. & H.Gutfreund 1985. Spin-glass models of neural networks. Physical Review A 32, 1007–18.

 Anderson, A. & E.Rosenfeld (eds) 1988. Neurocomputing: foundations of research . Cambridge, MA: MIT
Press.

 Anderson, J.A. 1972. A simple neural network generating an interactive memory. Mathematical Biosciences
14, 197–220.

 Austin, J. 1987a. ADAM: A distributed associative memory for scene analysis. In 1st IEEE International
Conference on Neural Networks, vol. IV, 285–92, San Diego.

 Austin, J. 1987b. The designs and application of associative memories for scene analysis. PhD thesis,
Department of Electrical Engineering, Brunel University.

 Baba, N. 1989. A new approach for finding the global minimum of error function of neural networks. Neural
Networks 2, 367–73.

 Banquet, J.P. & S.Grossberg 1987. Probing cognitive processes through the structure of event related potentials
during learning: an experimental and theoretical analysis. Applied Optics 26, 4931–46.

 Barto, A.G. 1985. Learning by statistical cooperation of self-interested neuron-like computing elements. Human
Neurobiology 4, 229–56.

 Barto, A.G. 1992. Reinforcement learning and adaptive. In Handbook of intelligent control D.A.White &
D.A.Sofge (eds), 469–91. New York: Van Nostrand Reinhold.

 Barto, A.G. & P.Anandan 1985. Pattern-recognizing stochastic learning automata. IEEE Transactions on

286

Systems, Man and Cybernetics SMC-15, 360–75.

 Barto, A.G. & M.I.Jordan 1987. Gradient following without backpropagation in layered networks. In 1st IEEE
International Conference on Neural Networks, vol. II, San Diego.

 Barto, A.G., R.S.Sutton, C.Anderson 1983. Neuronlike adaptive elements that can solve difficult learning control
problems. IEEE Transactions on Systems, Man and Cybernetics SMC-13, 834–6.

 Battiti, R. 1992. First- and second-order methods for learning: between steepest descent and Newton's method.
Neural Computation 4, 141–66.

 Baum, E. & D.Haussler 1989. What size net gives valid generalisation? Neural Computation 1, 151–60.

 Bezdek, J.C. & N.R.Pal 1995. A note on self-organizing semantic maps. IEEE Transactions on Neural
Networks 6, 1029–36.

 Bledsoe, W.W. & C.L.Bisson 1962. Improved memory matrices for the n-tuple pattern recognition method. IRE
Transactions on Electronic Computers EC-11, 414–15.

 Bledsoe, W.W. & I.Browning 1959. Pattern recognition and reading by machines. I n Proceedings of the
Eastern Joint Computer Conference, 225–32.

 Bolouri, H., P.Morgan, K.Gurney 1994. Design, manufacture and evaluation of a scalable high-performance
neural system. Electronics Letters 30, 426.

 Bonhoeffer, T. & A.Grinvald 1991. Iso-orientation domains in cat visual cortex are arranged in pin wheel-like
patterns. Nature 353, 429–31.

 Broomhead, D.S. & D.Lowe 1988. Multivariable functional interpolation and adaptive networks. Complex
Systems 2, 321–55.

 Bruce, V. & P.Green 1990. Visual perception: physiology, psychology and ecology , 2nd edn. Hove:
Erlbaum.

 Bullock, T.H., R.Orkand, A.Grinnell 1977. Introduction to nervous systems. San Francisco: Freeman. (Neural
coding—Ch. 6, Sect. B.)

 Burke, L.I. 1991. Clustering characterisation of adaptive resonance. Neural Networks 4, 485–91.

 Carpenter, G.A. & S.Grossberg 1987a. ART-2: self-organization of stable category recognition codes for analog
input patterns. Applied Optics 26, 4919–30.

 Carpenter, G.A. & S.Grossberg 1987b. A massively parallel architecture for a self-organizing neural pattern
recognition machine. Computer Vision, Graphics, and Image Processing 37, 54–115.

 Carpenter, G.A. & S.Grossberg 1988. The ART of adaptive pattern recognition by a self-organizing neural
network. Computer 21, 77–90.

 Carpenter, G.A. & S.Grossberg 1990. ART 3: hierarchical search using chemical transmitters in self-organizing
pattern recognition architectures. Neural Networks 3, 129–52.

287

 Carpenter, G.A. & S.Grossberg 1992. A self-organizing neural network for supervised learning, recognition and
prediction. IEEE Communications Magazine, 38–49.

 Carpenter, G.A., S.Grossberg, C.Mehanian 1989. Invariant recognition of cluttered scenes by a self-organizing
ART architecture: CORT-X boundary segmentation. Neural Networks 2, 169–81.

 Carpenter, G.A., S.Grossberg, J.H.Reynolds 1991a. ARTMAP: supervised real-time learning and classification
of nonstationary data by a self-organising neural network. Neural Networks 4, 565–88.

 Carpenter, G.A., S.Grossberg, D.B.Rosen 1991b. ART2 A: an adaptive resonance algorithm for rapid category
learning and recognition. Neural Networks 4, 493–504.

 Carpenter, G.A., S.Grossberg, D.B.Rosen 1991c. Fuzzy ART: fast stable learning and categorization of analog
patterns by an adaptive resonance system. Neural Networks 4, 759–71.

 Carpenter, G.A., S.Grossberg, D.B.Rosen 1991d. A neural network realization of fuzzy ART. Technical Report
CAS/CNS-91-021, Boston University.

 Caudell, T.P., S.D.G.Smith, R.Escobedo, M.Anderson 1994. NIRS: large scale ART-1 architectures for
engineering design retrieval. Neural Networks 7, 1339–50.

 Caudill, M. 1991. Expert networks. Byte, 108–16.

 Cheng, B. & D.M.Titterington 1994. Neural networks: a review from a statistical perspective. Statistical
Science 9, 2–54.

 Churchland, P.S. & T.J.Sejnowski 1992. The computational brain. Cambridge, MA: MIT Press (Bradford
Books).

 Clark, A. 1990. Microcognition: philosophy, cognitive science and parallel distributed processing.
Cambridge, MA: MIT Press (Bradford Books).

 Conners, B.W. & M.J.Gutnick 1990. Intrinsic firing patterns of diverse neocortical neurons. Trends in
Neuroscience 13, 99–104.

 Connolly, M. & D.Van Essen 1984. The representation of the visual field in parvocellular and magnocellular
layers of the lateral geniculate nucleus in the macaque monkey. Journal of Comparative Neurology 226, 544–
64.

 Cover, T.M. 1965. Geometrical and statistical properties of systems of linear inequalities with applications on
pattern recognition. IEEE Transactions on Electronic Computers EC-14, 326–34.

 Cvitanovic, P. 1984. Universality in chaos. Bristol: Adam Hilger.

 Davis, G.E., W.E.Lowell, G.L.Davis 1993. A neural network that predicts psychiatric length of stay. MD
Computing 10, 87–92.

 Desimone, R. 1992. Neural circuits for visual attention in the primate brain. In Neural networks for vision and
image processing, G.A.Carpenter & S.Grossberg (eds), 343–64. Cambridge, MA: MIT Press.

 Dreyfus, H.L. 1979. What computers can't do—the limits of artificial intelligence. New York: Harper and
Row.

288

 Durbin, R. & G.Mitchison 1990. A dimension reduction framework for understanding cortical maps. Nature
343, 644–7.

 Fahlman, S.E. & C.Lebiere 1990. The cascade-correlation learning architecture. I n Advances in neural
information processing systems, D.S.Touretzky (ed.), vol. 2, 875–82. San Mateo, CA: Morgan Kaufmann.

 Farmer, D., T.Toffoli, S.Wolfram 1983. Cellular automata—proceedings of an interdisciplinary workshop, Los
Alamos. In Physica, vol. 10D (special volume). Amsterdam: North-Holland.

 Fletcher, R. & C.M.Reeves 1964. Function minimisation by conjugate gradients. Computer Journal 7, 149–54.

 Fukushima, K. 1975. Cognitron: a self-organizing multilayered neural network. Biological Cybernetics 20, 121–
36.

 Fukushima, K. 1980. Neocognitron: a self-organizing neural network model for a mechanism of pattern
recognition unaffected by shift in position. Biological Cybernetics 36, 193–202.

 Fukushima, K. 1988. A neural network for visual pattern recognition. Computer 21, 65–75.

 Fukushima, K. 1989. Analysis of the process of visual pattern recognition by the neocognitron. Neural
Networks 2, 413–20.

 Funahashi, K. 1989. On the approximate realization of continuous mappings by neural networks. Neural
Networks 2, 183–92.

 Gallant, S.I. 1988. Connectionist expert systems. Communications of the ACM 31, 152–69.

 Georgiopoulous, M., G.L.Heileman, J.Huang 1991. Properties of learning related pattern diversity in ART1.
Neural Networks 4, 751–7.

 Goodhill, G.J. 1993. Topography and ocular dominance—a model exploring positive correlations. Biological
Cybernetics 69, 109–18.

 Gorse, D. & J.G.Taylor 1989. An analysis of noisy RAM and neural nets. Physica D 34, 90–114.

 Graf, H.P., W.Hubbard, L.D.Jackel, P.G.N.deVegvar 1987. A CMOS associative memory chip. In 1st IEEE
International Conference on Neural Networks, vol. III, 469–77, San Diego.

 Gray, R.M. 1984. Vector quantization. IEEE ASSP Magazine 1, 4–29.

 Grossberg, S. 1973. Contour enhancement, short-term memory, and constancies in reverberating neural
networks. Studies in Applied Mathematics 52, 217–57.

 Grossberg, S. 1976a. Adaptive pattern classification and universal recoding: I. parallel development and coding
of neural feature detectors. Biological Cybernetics 23, 121–34.

 Grossberg, S. 1976b. Adaptive pattern classification and universal recoding: II. feedback, expectation, olfaction,
illusions. Biological Cybernetics 23, 187–202.

289

 Grossberg, S. 1980. How does a brain build a cognitive code? Psychological Review 87, 1–51.

 Grossberg, S. 1987. Competitive learning: from interactive activation to adaptive resonance. Cognitive Science
11, 23–63.

 Grossberg, S. 1988. Nonlinear neural networks: principles, mechanisms, and architectures. Neural Networks 1,
17–61.

 Gullapalli, V. 1990. A stochastic reinforcement learning algorithm for learning real-valued functions. Neural
Networks 3, 671–92.

 Gurney, K.N. 1989. Learning in networks of structured hypercubes . PhD thesis, Department of Electrical
Engineering, Brunel University. Available as Technical Memorandum CN/R/144.

 Gurney, K.N. 1992a. Training nets of hardware realisable sigma-pi units. Neural Networks 5, 289–303.

 Gurney, K.N. 1992b. Training nets of stochastic units using system identification. Neural Networks 6, 133–45.

 Gurney, K.N. 1992c. Training recurrent nets of hardware realisable sigma-pi units. International Journal of
Neural Systems 3, 31–42.

 Gurney, K.N. 1992d. Weighted nodes and RAM-nets: a unified approach. Journal of Intelligent Systems 2,
155–86.

 Gurney, K.N. 1995. Towards a theory of neural-processing complexity. In Proceedings of IPCAT'95 ,
Liverpool, UK.

 Gurney, K.N. & M.J.Wright 1992a. Digital nets and intelligent systems. Journal of Intelligent Systems 2, 1–
10. (Special issue on advances in digital neural networks.)

 Gurney, K.N. & M.J.Wright 1992b. A self-organising neural network model of image velocity encoding.
Biological Cybernetics 68, 173–81.

 Hart, P.E., R.O.Duda, M.T.Einaudi 1978. A computer-based consultation system for mineral exploration.
Technical Report, SRI International.

 Hartline, H.K. 1934. Journal of Cell and Comparative Physiology 5, 229.

 Hartline, H.K. 1940. The nerve messages in the fibers of the visual pathway. Journal of the Optical Society of
America 30, 239–47.

 Haykin, S. 1994. Neural networks: a comprehensive foundation. New York: Macmillan.

 Hebb, D.O. 1949. The organization of behaviour. New York: John Wiley.

 Heims, S.J. 1982. John von Neumann and Norbert Weiner—from mathematics to the technologies of life
and death. Cambridge, MA: Academic Press.

 Heywood, M. & P.Noakes 1995. A framework for improved training of sigma-pi networks. IEEE Transactions
on Neural Networks 6, 893–903.

290

 Hinton, G.E. 1987. Connectionist learning principles. Technical Report CMU-CS-87–115, Carnegie-Mellon
University. (Reproduced in Artificial Intelligence 40, 185–234, 1989.)

 Hinton, G.E., T.J.Sejnowski, D.Ackley 1984. Boltzmann machines: constraint satisfaction networks that learn.
Technical Report CMU-CS-84–119, Carnegie-Mellon University.

 Hodges, A. 1985. Alan Turing—the enigma of intelligence. London: Counterpoint (Unwin).

 Hodgkin, A.L. & A.L.Huxley 1952. A quantitative description of membrane current and its application to
conduction and excitation in nerve. Journal of Physiology (London) 117, 500–44.

 Hopfield, J.J. 1982. Neural networks and physical systems with emergent collective computational properties.
Proceedings of the National Academy of Sciences of the USA 79, 2554–88.

 Hopfield, J.J. 1984. Neurons with graded response have collective computational properties like those of two-
state neurons. Proceedings of the National Academy of Sciences of the USA 81, 3088–92.

 Hopfield, J.J. & D.W.Tank 1985. Neural computation of decisions in optimization problems. Biological
Cybernetics 52, 141–52.

 Hornik, K., M.Stinchcombe, H.White 1989. Multilayer feedforward networks are universal approximators.
Neural Networks 2, 359–66.

 Huang, Z. & A.Kuh 1992. A combined self-organizing feature map and multilayer perceptron for isolated word
recognition. IEEE Transactions on Signal Processing 40, 2651–7.

 Hubel, D. & T.N.Wiesel 1962. Receptive fields, binocular interaction and functional architecture in the cat's
visual cortex. Journal of Physiology 160, 106–54.

 Hubel, D. & T.N.Wiesel 1974. Sequence regularity and geometry of orientation columns in the monkey striate
cortex. Journal of Comparative Neurology 158, 267–94.

 Hui, T., P.Morgan, K.Gurney, H.Bolouri 1991. A cascadable 2048-neuron VLSI artificial neural network with
on-board learning. In Artificial neural networks 2, I.Aleksander & J.Taylor (eds), 647–51. Amsterdam:
Elsevier.

 Hung, C.A. & S.F.Lin 1995. Adaptive Hamming net: a fast-learning ART1 model without searching. Neural
Networks 8, 605–18.

 Jacobs, R.A. 1988. Increased rates of convergence through learning rate adaptation. Neural Networks 1, 295–
307.

 Jagota, A. 1995. Approximating maximum clique with a Hopfield net. IEEE Transactions on Neural Networks
6, 724–35.

 Jones, A.J. 1993. Genetic algorithms and their applications to the design of neural networks. Neural Computing
and Applications 1, 32–45.

 Jones, D.S. 1979. Elementary information theory. Oxford: Clarendon Press.

 Kan, W.K. & I.Aleksander 1987. A probabilistic logic neuron network for associative learning. In 1st IEEE

291

International Conference on Neural Networks, vol. II, 541–8, San Diego.

 Kandel, E.F., J.H.Schwartz, T.J.Jessell 1991. Principles of neural science, 3rd edn. Amsterdam: Elsevier.

 Karhunan, J. & J.Joutsensalo 1995. Generalization of principal component analysis, optimization problems and
neural networks. Neural Networks 8, 549–62.

 Kauffman, S.A. 1969. Metabolic stability and epigenesis in randomly constructed genetic nets. Journal of
Theoretical Biology 22, 437–67.

 Kendall, M. 1975. Multivariate analysis. London: Charles Griffin.

 Kim, E.J. & Y.Lee 1991. Handwritten Hangul recognition using a modified neocognitron. Neural Networks 4,
743–50.

 Kirkpatrick, S., C.D.Gelatt, M.P.Vechi 1983. Optimization by simulated annealing. Science 230, 671–9.

 Koch, C. & I.Segev (eds) 1989. Methods in neuronal modeling. Cambridge, MA: MIT Press (Bradford
Books).

 Koch, C., T.Poggio, V.Torre 1982. Retinal ganglion cells: a functional interpretation of dendritic morphology.
Philosophical Transactions of the Royal Society B 298, 227–64.

 Kohonen, T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43,
59–69.

 Kohonen, T. 1984. Self-organization and associative memory. Berlin: Springer-Verlag.

 Kohonen, T. 1988a. Learning vector quantization. Neural Networks 1, suppl. 1, 303.

 Kohonen, T. 1988b. The 'neural' phonetic typewriter. Computer 21, 11–22.

 Kohonen, T. 1990. The self-organizing map. Proceedings of the IEEE 78, 1464–80.

 Kohonen, T., K.Mäkisara, T.Saramäki 1984. Phontopic maps—insightful representation of phonological features
for speech recognition. In Proceedings of Seventh International Conference on Pattern Recognition, 182–
5, Montreal, Canada.

 Kosko, B. 1992. Neural networks and fuzzy systems. Englewood Cliffs, NJ: Prentice Hall.

 Kuffler, S.W., J.G.Nicholls, A.R.Martin 1984. From neuron to brain: a cellular approach to the function of
the nervous system, 2nd edn. Sunderland, MA: Sinauer Associates.

 Lee, Y., S.Oh, M.Kim 1991. The effect of initial weights on premature saturation in back-propagation learning.
In International Joint Conference on Neural Nets, vol. 1, Seattle.

 Linsker,R. 1986. From basic network principles to neural architecture. Proceedings of the National Academy
of Sciences of the USA 83, 7508–12, 8390–4, 8779–83. (Series of three articles.)

 Linsker, R. 1988. Self-organization in a perceptual network. Computer 21, 105–17.

292

 Lippmann, R.P. 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22.

 Little, W.A. 1974. The existence of persistent states in the brain. Mathematical Biosciences 19, 101–20.

 Makhoul, J., A.El-Jaroudi, R.Schwartz 1989. Formation of disconnected decision regions with a single hidden
layer. In International Joint Conference on Neural Nets, vol. 1, 455–60, Seattle.

 Mandelbrot, B.B. 1977. The fractal geometry of nature. New York: Freeman.

 Marr, D. 1982. Vision. New York: Freeman.

 Martland, D. 1987. Auto-associative pattern storage using synchronous Boolean nets. In 1st IEEE International
Conference on Neural Networks, vol. III, San Diego.

 Maxwell, T., C.L.Giles, Y.C.Lee 1987. Generalization in neural networks: the contiguity problem. In 1st IEEE
International Conference on Neural Networks, vol. II, 41–5, San Diego.

 McCulloch, W. & W.Pitts 1943. A logical calculus of the ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics 7, 115–33.

 McDermott, J. 1982. R1: a rule-based configurer of computer systems. Artificial Intelligence 19, 39–88.

 McEliece, R.J., E.C.Posner, E.R.Rodemich, S.S.Venkatesh 1987. The capacity of the Hopfield associative
memory. IEEE Transactions on Information Theory IT-33, 461–82.

 Milligan, D.K. 1988. Annealing in RAM-based learning networks. Technical Report CN/R/142, Department of
Electrical Engineering, Brunel University.

 Minsky, M. & S.Papert 1969. Perceptrons. Cambridge, MA: MIT Press.

 Murre, J.M.J. 1995. Neurosimulators. In The handbook of brain theory and neural networks, M.A.Arbib
(ed.), 634–9. Cambridge, MA: MIT Press.

 Myers, C.E. & I.Aleksander 1988. Learning algorithms for probabilistic neural nets. In 1st INNS Annual
Meeting, Boston.

 Nabhan, T.M. & A.Y.Zomaya 1994. Toward generating neural network structures for function approximation.
Neural Networks 7, 89–99.

 Narendra, K.S. & M.A.L.Thathacar 1974. Learning automata—a survey. IEEE Transactions on Systems,
Man and Cybernetics SMC-4, 323–34.

 Newell, A. & H.A.Simon 1976. Computer science as empirical enquiry: symbols and search. Communications
of the ACM 19, 113–26.

 Nolfi, S. & D.Parisi 1995. 'Genotypes' for neural networks. In The handbook of brain theory and neural
networks, M.A.Arbib (ed.), 431–4. Cambridge, MA: MIT Press.

 Obermayer, K., H.Ritter, K.Schulten 1990. A principle for the formation of the spatial structure of cortical
feature maps. Proceedings of the National Academy of Sciences of the USA 87, 8345–9.

293

 Oja, E. 1982. A simplified neuron model as a principal component analyzer. Journal of Mathematical Biology
15, 267–73.

 Parker, D.B. 1982. Learning-logic. Technical Report 581–64, Office of Technology Licensing, Stanford
University.

 Plumbley, M.D. 1993. Efficient information transfer and anti-Hebbian neural networks. Neural Networks 6,
823–33.

 Poggio, T. & F.Girosi 1990a. Networks for approximation and learning. Proceedings of the IEEE 78, 1481–97.

 Poggio, T. & F.Girosi 1990b. Regularization algorithms for learning that are equivalent to multilayer networks.
Science 247, 978–82.

 Powell, M.J.D. 1987. Radial basis functions for multivariable interpolation: a review. In Algorithms for
approximation, J.C.Mason & M.G.Cox (eds). Oxford: Clarendon Press.

 Raj, R. 1988. Foundations and grand challenges of artificial intelligence. AI Magazine 9, 9–21.

 Rail, W. 1957. Membrane time constant of motoneurons. Science 126, 454.

 Rall, W. 1959. Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology 2,
503–32.

 Reed, R. 1993. Pruning algorithms—a survey. IEEE Transactions on Neural Networks 4, 740–7.

 Refenes, A.N., A.Zapranis, G.Francis 1994. Stock performance modelling using neural networks: a comparative
study with regression models. Neural Networks 7, 375–88.

 Rich, E. & K.Knight 1991. Artificial intelligence. New York: McGraw-Hill.

 Ritter, H. & T.Kohonen 1989. Self-organizing semantic maps. Biological Cybernetics 61, 241–54.

 Rosenblatt, F. 1962. Principles of neurodynamics. New York: Spartan Books.

 Rosin, P.L. & F.Fierens 1995. Improving neural net generalisation. In International Geoscience and Remote
Sensing Symposium, Florence.

 Rumelhart, D. & D.Zipser 1985. Feature discovery by competitive learning. Cognitive Science 9, 75–112.

 Rumelhart, D.E., G.E.Hinton, R.J.Williams 1986a. Learning representations by back-propagating errors. Nature
323, 533–6.

 Rumelhart, D.E., J.L.McCllelland, The PDP Research Group 1986b. Parallel distributed processing, vol. 1,
ch. 9. Cambridge, MA: MIT Press (Bradford Books).

 Rumelhart, D.E., J.L.McCllelland, The PDP Research Group 1986c. Parallel distributed processing, vol. 1,
ch. 5. Cambridge, MA: MIT Press (Bradford Books).

 Rumelhart, D.E., J.L.McCllelland, The PDP Research Group 1986d. Parallel distributed processing, vol. 1,
ch. 2. Cambridge, MA: MIT Press (Bradford Books).

294

 Sánchez-Sinencio, E. & R.W.Newcomb 1992a. Guest editorial for special issue on neural network hardware .
IEEE Transactions on Neural Networks 3, 345–518.

 Sánchez-Sinencio, E. & R.W.Newcomb 1992b. Guest editorial for special issue on neural network hardware.
IEEE Transactions on Neural Networks 4, 385–541.

 Sanger, T. 1989. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural
Networks 2, 459–73.

 Shawe-Taylor, J. 1992. Threshold network learning in the presence of equivalence. I n Advances in neural
information processing systems, J.E.Moody, S.J.Hanson, R.P.Lippmann (eds), vol. 4, 879–86. San Mateo, CA:
Morgan Kaufmann.

 Shepherd, G.M. 1978. Microcircuits in the nervous system. Scientific American 238, 92–103.

 Smolensky, P. 1988. On the proper treatment of connectionism. Behavioural and Brain Sciences 11, 1–74.

 Steiger, U. 1967. Über den Feinbau des Neuopils im Corpus Pedunculatum der Waldemeise. Zeitschrift fur
Zellfbrschung 81, 511–36. (As reproduced in Bullock, T.H. et al. 1977. Introduction to nervous systems. San
Francisco: Freeman .)

 Stone, M. 1974. Cross-validatory choice and assessment of statistical predictions. Journal of the Royal
Statistical Society B36, 111–33.

 Sun, R. & L.Bookman 1993. How do symbols and networks fit together? AI Magazine, 20–23. (A report on the
workshop on integrating neural and symbolic processes sponsored by the American Association for Artificial
Intelligence (AAAI).)

 Sun, R. & L.A.Bookman (eds) 1994. Computational architectures integrating neural and symbolic
processes. The Kluwer International Series in Engineering and Computer Science 292. Norwell, MA: Kluwer
Academic.

 Tanenbaum, A.S. 1990. Structured computer organization. Englewood Cliffs, NJ: Prentice Hall.

 Thompson, R.F. 1993. The brain: a neuroscience primer. New York: Freeman.

 Thorndike, E.L. 1911. Animal learning. New York: Macmillan. (For a modern discussion, see Hergenhahn,
B.R. 1988. An introduction to theories of learning. Englewood Cliffs, NJ: Prentice Hall.)

 Thornton, C.J. 1992. Techniques in computational learning. London: Chapman and Hall Computing.

 Turing, A.M. 1937. On computable numbers with an application to the Entscheidungsproblem. Proceedings of
the London Mathematical Society 42, 230–65.

 von der Malsburg, C. 1973. Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14,
85–100.

 von Neumann, J. 1987. First draft of a report on the EDVAC. In Papers of John von Neumann on computing
and computer theory, vol. 12 in the Charles Babbage Institute Reprint Series for the History of Computing,
W.Aspray & A.Burks (eds). Cambridge, MA: MIT Press.

295

 Walker, C.C. & W.R.Ashby 1966. On temporal characteristics of behaviour in certain complex systems.
Kybernetik 3, 100–8.

 Werbos, P. 1974. Beyond regression: new tools for prediction and analysis in the behavioural sciences.
PhD thesis, Harvard University.

 Weymare, N. & J.P.Martens 1994. On the initialization and optimization of multilayer perceptrons. IEEE
Transactions on Neural Networks 5, 738–51.

 Widrow, B. & M.E.Hoff, Jr 1960. Adaptive switching circuits. In 1960 IRE WESCON convention record, 96–
104. New York: IRE. (Reprinted in Anderson, A. & E.Rosenfeld (eds) 1988. Neurocomputing—foundations
of research. Cambridge, MA: MIT Press .)

 Widrow, B. & S.D.Stearns 1985. Adaptive signal processing. Englewood Cliffs, NJ: Prentice-Hall.

 Widrow, B., R.G.Winter, R.A.Baxter 1987. Learning phenomena in layered neural networks. In 1st IEEE
International Conference on Neural Networks, vol. II, 411–29, San Diego.

 Wieland, A. & R.Leighton 1987. Geometric analysis of neural network capabilities. In 1st IEEE International
Conference on Neural Networks, vol. III, San Diego.

 Williams, R.J. 1987. Reinforcement-learning connectionist systems. Technical Report NU-CCS-87–3,
Northeastern University, Boston.

 Willshaw, D.J., O.P.Buneman, H.C.Longuet-Higgins 1969. Non-holographic associative memory. Nature 222,
960–62.

 Willshaw, D.J. & C.von der Malsburg 1976. How patterned neural connections can be set up by self-
organization. Proceedings of the Royal Society B 194, 431–45.

 Winston, P.H. 1984. Artificial intelligence. Reading, MA: Addison-Wesley.

 Yu, X.H., G.A.Chen, S.X.Cheng 1995. Dynamic learning rate optimization of the backpropagation algorithm.
IEEE Transactions on Neural Networks 6, 669–77.

 Zadeh, L. 1965. Fuzzy sets. Information and Control 8, 338–53.

296

Index

Note on Index Page Hyperlinks

 This Index retains the "Print Book Page Numbers" as links to embedded targets within the content. Navigating
from a "Page Number" link will take you to within three Mobipocket Reader "Page Forward" clicks of the
original Index reference point.

 This strategy retains the full value of the academic Index, and presents the relative positions and distribution of
Index references within this book. The Index Page Numbers are hyperlink pointers and have no relationship to
the Mobipocket Reader soft-generated page numbers.

, 21

 , 21

 d, 44

 , 27

 x, 27

 , 71

 , 19

 , 19

 , 19

 '(a), 60

 E, 15

 , 14

 , 55

 dy/dxi, 56

 da/dt, 21

 dx/dt, 20

297

 dy/dx, 55

 e, 19

 v, 29

 ║v║, 29

 v·w, 33

 vw, 35

 w1, wi, 14, 15

 x1, xi, 13, 15

 2/3 rule, 159

A-unit, 44

 ACE, 187

 action potential, 9

 refractory period, 11

 activation, 2, 14

 activation decay, 21

 activation-output model, 195

 ADALINEs, 58

 ADAM, 176

 adaptive critic element, 187

 adaptive search element, 187

 additive STM model, 23

 afferent neuron, 8

 algorithm

 ART1, 153

298

 training, 4

 algorithmic level, 150, 152

 alpha, 21

 anti-Hebbian learning, 144

 arbor, dendritic, 8

 arousal burst, 160

 AR-P, 186, 187

 ART, 147

 ART1, 151

 algorithm, 153

 ART2, 162

 ART3, 163

 artificial intelligence, 202

 ARTMAP, 163

 ASE, 187

 association unit, 44

 associative decay rule, 162

 associative memory, 93

 associative net

 feedforward, 111

 recurrent, 112

 associative reward-penalty training, 186

 asynchronous dynamics, 103

 attentional subsystem, 158

 attractor, 100

299

 augmented weight vector, 40

 auto-associative recall, 194

 axo-axonic synapse, 168

 axo-dendritic synapse, 167

 axon, 2, 7

 collaterals, 8

 myelin, 10

 axon hillock, 10

 axon terminal, 8

backpropagation, 65

 applications, 86

 backward pass, 68

 basin of attraction, 97, 100, 104

 batch training, 58

 beta, 21

 bias, 40

 binarized image, 50, 93

 binary signal, 13

 biological plausibility, 148

 bit, 173

 Boolean signal, 13

 bottom-up weights, 152

calculus, 20, 54

300

 CAM, 194

 cartesian co-ordinate system, 29

 cascade-correlation, 86

 cell body, 7

 cell membrane, 1, 7

 centre site, 180

 clamp, 105

 class labels, 135

 and clusters, 135

 classification, 25, 27

 cluster, 115, 119, 135

 synaptic, 168

 code-book, 135

 collaterals, 8

 combinatorial optimization, 109, 111

 competitive dynamics, 116

 competitive layer, 116

 competitive learning, 118

 complexity penalty, 85

 computable procedure, 204

 computational level, 150, 151

 computational neuroscience, 5

 confluent, 100

 connectedness, 74

 connectionism, 2

301

 connectionist, 2

 connectionist paradigm, 206

 connectivity, 72

 constraint satisfaction network, 101

 content addressable memory, 194

 contiguity problem, 171

 convergence, 43, 59

 convexity, 74

 cortical map, 124, 137

 cosine, 32, 213

 credit assignment problem, 66

 cross-validation, 83

 cube site, 173

 cybernetics, 209

decision hyperplane, 28

 decision line, 28

 decision plane, 28

 decision surface, 28, 74

 degrees of freedom, 84

 "d", the, 66, 67

 delta, 27, 44

 delta rule, 53, 58

 generalized, 69

 delta-bar-delta, 90

302

 dendrite, 1, 7

 dendritic arbor, 8

 depolarization, 10

 derivative, 55

 differential, 55

 differential calculus, 54

 digital neural network, 171

 digital node, 174

 dimension reduction, 133

 dipole field, 162

 discriminator, 175

 distributed code, 136

efferent neuron, 8

 energy, 95, 100

 energy minimum, 95, 97

 EPSP, 10

 error, 56

 Euclidean length, 121

 expert system, 203

fast-learning regime, 162

 feature, 78

 feature extractor, 78

 feedback net, 73

 feedforward net, 4, 73

303

 forward pass, 68

 fovea, 124

 framestore, 50

 frequency of firing, 18

 function fitting, 76

 function interpolation, 194

 fuzzy ART, 162

 fuzzy ARTMAP, 163

 fuzzy set theory, 163

generalization, 4, 80

 generalized delta rule, 69

 global minimum, 69

 glomerulus, 168

 graceful degradation, 17

 graded signal, 11, 18

 gradient descent, 53, 55

 gradient estimate, 58

 grey level, 49

 grey-scale, 49

Hamming distance, 81, 100

 hard-limiter, 14

 hardware, 50

 hardware accelerator, 51

304

 hardware failure, resilience to, 16

 Hebb rule, 105, 107

 hetero-associative recall, 194

 hidden node, 65

 higher order unit, 170

 Hodgkin-Huxley dynamics, 11

 Hodgkin-Huxley equations, 9

 Hopfield net, 94

 analogue, 109

 storage capacity, 108

 Hopfield storage prescription, 105, 106

 hyperplane, 28

 hyperpolarization, 10

implementation level, 150

 in-star learning, 161

 indices, 15

 information theory, 144

 inner product, 32

 innervation, 8

 input vector, 29

 intuitive knowledge, 205

 ion, 9

 IPSP, 10

K-means clustering, 140

305

 Kohonen nets, 123

lambda, 71

 lateral connection, 116

 layered structure (of networks), 73

 leaky integrator, 21, 116

 learning, 1

 anti-Hebbian, 144

 competitive, 118

 in-star, 161

 out-star, 161

 supervised, 4, 39

 unsupervised, 115

 learning rate, 43

 learning rule, 4, 39

 Limulus, 18

 linear classifier, 28, 37

 linear separation, 27

 linear vector quantization, 135

 linearly separable patterns, 28

 local minimum, 69

 localism, 208

 logistic sigmoid, 18

 long-term memory, 158

 LTM, 158

306

 LVQ, 135

map, 123, 124, 126, 136, 137

 map field, 163

 MCU, 181

 membrane

 depolarization, 10

 hyperpolarization, 10

 neural, 1, 7

 postsynaptic, 8

 potential difference, 9

 presynaptic, 8

 membrane equation, 161

 membrane potential, 9

 MLP, 69

 momentum, 71

 momentum constant, 71

 MPLN, 177

 multi-cube unit, 181

 multi-valued probabilistic logic node, 177

 multidimensional spaces, 25

 multilayer nets, 65

 multilayer perception, 69

 multiple hidden layers, 71

 multiple-state cycle, 104

307

 myelin, 10

neocognitron, 144

 net pruning, 85

 network dynamics, 98

 network topology, 86

 networks, hierarchical description of, 149

 neural firing, 2

 neural firing patterns, 17

 frequency, 18

 neural microcircuit, 168

 neural network

 chips, 51

 definition, 1

 tasks, 193

 neuron, 1, 7

 afferent, 8

 efferent, 8

 receptive field, 73

 neurotransmitter, 10

 node, 1

 digital, 174

 hidden, 65

 semilinear, 19

 stochastic semilinear, 19

308

 TLU, 13

 node activation, 2

 nodes of Ranvier, 10

 noise, 17

 resilience to, 16

 non-layered network, 73

 nonlinear systems, 16

 nonlinearly separable classes, 46, 74

 normalization, 118

on-centre, off-surround, 116

 orientation map, 127

 orientation tuning, 125

 orienting subsystem, 159

 orthogonal vectors, 33

 out-star learning, 161

 overtraining, 80

parallel computer, 51

 parallel distributed computing, 5

 partial derivative, 56

 pattern cluster, 115, 119

 pattern space, 25, 74

 pattern training, 58

 pattern vector, 119

309

 PCA, 141

 perceptron, 39, 44

 perceptron convergence theorem, 43

 perceptron learning algorithm, 43

 perceptron rule, 39

 perceptron training rule, 43

 performance measure, 85

 phonemic map, 138

 piece wise-linear, 19

 pixel, 49

 plasticity-stability dilemma, 147

 PLN, 177

 polarized representation, 106

 postsynaptic membrane, 8

 postsynaptic potential, 10

 potential difference, 9

 pRAM, 178

 premature saturation, 68

 presynaptic inhibition, 168

 presynaptic membrane, 8

 principal component analysis, 141

 probabilistic logic node, 177

 probabilistic RAM, 178

 pruning, 85

 PSP, 10

310

 spatial integration, 10

 temporal integration, 10

 public knowledge, 205

 Pythagoras's theorem, 32

radial basis function, 182, 184

 RAM, 173

 RAM address, 173, 174

 random access memory, 171

 rate of change, 20, 55

 RBF, 184, 185

 recall

 auto-associative, 194

 hetero-associative, 194

 receptive field, 73

 receptor site, 10

 recurrent net, 73, 98

 refractory period, 11, 18

 regression analysis, 83

 regularization, 184

 resilience

 to hardware failure, 16

 to noise, 16

 resonance, 153, 159

 retinotopic map, 124

311

 reward-penalty (R-P), 186

 rho, 19

scalar, 29

 self-organization, 115

 self-organizing feature map, 127

 self-scaling property, 154

 semilinear node, 19

 short-term memory, 158

 shunting STM model, 23

 sigma, 15, 19

 sigma-pi unit, 169, 170

 sigmoid, 18

 signal implementation level, 150

 simulation, 50

 simulator, 51

 single-layer nets, 45

 single-state cycle, 104

 SLAM, 174

 slope, 27, 54, 55

 SOFM, 127

 SOM, 127

 neighbourhood, 127

 soma, 7

 spatial integration, 10

312

 spin glass, 5, 106

 spin representation, 106

 spurious state, 106, 108

 squashing function, 18

 stable state, 95, 96

 state

 spurious, 106, 108

 stable, 95, 96

 state space, 99, 104

 state transition, 98

 state transition diagram, 98, 103

 state vector, 96

 step function, 14

 STM, 158

 stochastic learning automata, 187

 stochastic processes, 19

 stochastic semilinear unit, 19

 stopping criterion, 59, 70

 stored templates, 152

 subscript, 15

 subsymbolic level, 208

 summation, 15

 superscript, 15

 supervised learning, 4, 39

 supervised training, 39

313

 symbol, 202

 symbolic paradigm, 203

 synapse, 1, 8, 10

 axo-axonic, 168

 axo-dendritic, 167

 synaptic cleft, 8

 synaptic cluster, 168

 synchronous dynamics, 103

 system identification, 188

 system implementation level, 150

tangent, 54

 target class, 39

 template match, 152, 154

 templates, 121, 147

 stored, 152

 temporal integration, 10

 test pattern, 80

 theta, 14

 threshold, 11, 14

 threshold logic unit, 2, 13, 14, 171

 TLU, 2, 13, 14, 171

 top-down expectation, 159

 top-down weights, 152

 topographic map, 124, 126, 136

314

 topography, 123

 topology, 124

 topology, network, 86

 training, 39

 supervised, 39

 underconstrained, 84

 training algorithm, 4

 training convergence, 43, 59

 training set, 39, 49

 travelling salesman problem, 109, 111

 TSP, 109, 111

underconstrained training, 84

 underlying dimensionality, 133, 134

 unimodal function, 78

 unit, 1

 unsupervised learning, 115

validation set, 83

 vector, 25, 29

 components, 29

 length, 32

 magnitude, 29

 normalized, 118

 notation, 29

 vector addition, 30

315

 vector inner product, 32

 vector projection, 35

 vector quantization, 135

 vector scalar multiplication, 30

 vesicle, 10

 vigilance, 151, 163

 virtual machine, 50

 visual cortex, 124, 125

 von Neumann machine, 94, 204

 Voronoi tessellation, 180

Weber law rule, 155

 weight, 1, 2, 14, 105

 weight template, 121

 weight vector, 29, 119

 augmented, 40

 weight vector template, 147

 Widrow-Hoff rule, 58

 winner-takes-all, 117, 118, 120

 winning node, 120, 126

 WISARD, 176

316

eBook Info

Title:
An Introduction to Neural Networks

Creator:
Kevin Gurney

Subject:
Computing & Information Technology

Description:
This undergraduate text introduces the fundamentals of neural networks in a
gentle but practical fashion with minimal mathematics. It should be of use to
students of computer science and engineering, and graduate students in the
allied neural.

Publisher:
ROUTLEDGE

Date:
2003-11-05

Type:
Reference

Identifier:
0-203-45151-1

Language:
English

Rights:
© Kevin Gurney 1997

317

