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Abstract. We construct and analyze the “syntomic Steenrod algebra”, which acts on the mod p syntomic
cohomology (also known as étale-motivic cohomology) of algebraic varieties in characteristic p. We then
apply the resulting theory to resolve the last open cases of a 1966 Conjecture of Tate, concerning the existence
of a symplectic form on the Brauer groups of smooth proper surfaces over finite fields. More generally, we
exhibit symplectic structure on the higher Brauer groups of even dimensional varieties over finite fields.

Although the applications are classical, our methods rely on recent advances in perfectoid geometry
and prismatic cohomology, which we employ to define a theory of “spectral syntomic cohomology” with
coefficients in motivic spectra. We then organize the resulting cohomology theories into a category of
“spectral prismatic F -gauges”, generalizing the prismatic F -gauges of Drinfeld and Bhatt–Lurie, for which
we establish a “spectral Serre duality” extending classical coherent duality. These abstract constructions are
leveraged to explicitly compute the syntomic Steenrod operations.
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1. Introduction

1.1. Classical motivations. At the 1962 ICM, Tate announced his famous arithmetic duality theorems
[Tat63], which exhibited parallels between:

• the étale cohomology of global fields and the singular cohomology of 3-manifolds, and
• the étale cohomology of local fields and the singular cohomology of 2-manifolds.

Using these results, Tate constructed a perfect pairing between the (non-divisible quotient of) the Tate–
Shafarevich group of an abelian variety over a global field and its dual, and proved in [Tat63, Theorem 3.3]
that it is alternating under a technical hypothesis (which is always satisfied for elliptic curves). Therefore,
under the hypothesis, on this non-divisible quotient group there is a symplectic form, now known as the
Cassels–Tate pairing, which forces the group’s size to be a perfect square1 – a numerology which had been
empirically discovered by Selmer and proved by Cassels for elliptic curves. In fact, Venkatesh has suggested
that Tate’s discovery of arithmetic duality was motivated by a desire to explain this very numerology via a
symplectic duality, which he realized should come from an arithmetic analogue of Poincaré duality wherein
local and global fields played the role of manifolds.

A few years later, Tate’s 1966 Bourbaki seminar [Tat95] generalized the Birch and Swinnerton–Dyer
Conjecture to abelian varieties and formulated its geometric analogue – now called the Artin–Tate Con-
jecture – for a smooth, proper, geometrically connected surface X over a finite field k of characteristic
p. Moreover, Tate conjectured that there should be an analogous symplectic form on the Brauer group
Br(X) := H2

ét(X;Gm), a torsion and conjecturally finite abelian group which is closely connected to the
Tate–Shafarevich group.2 This conjecture has been studied in many works over the decades since, notably
[Man67, Man86, Ura96, LLR05, Fen20a], and in this paper we will settle its remaining open cases.

1.1.1. The size of the Brauer group. Let X be a smooth, proper, geometrically connected surface over a
finite field k of characteristic p. According to the Artin–Tate Conjecture, #Br(X) is the main invariant
featuring into a special value formula for the leading order term of the zeta function of X at the center of its
functional equation. Motivated by parallel properties of Tate–Shafarevich groups, Tate made the following
Conjecture about #Br(X).

Conjecture 1.1.1 (Tate, [Tat95]). The size of Br(X) is a (finite) perfect square.

Although the finiteness of Br(X) is unknown, we know unconditionally that its non-divisible quotient
Br(X)nd – the quotient of Br(X) by its subgroup of divisible elements – is finite, and is equal to Br(X) if
the latter is finite. Therefore, an unconditional version of Conjecture 1.1.1 is:

Conjecture 1.1.2 (Tate, [Tat95]). The size of Br(X)nd is a perfect square.

Conjecture 1.1.2 has been the subject of considerable attention. “Counterexamples” were found by Manin,
but later debunked Urabe, who then went on to prove Conjecture 1.1.2 for p ̸= 2 in [Ura96]. For all p, it
was proved by Liu-Lorenzini-Raynaud [LLR05] that if Br(X) is finite, then its size is a perfect square. (The
proof of [LLR05] proceeds by comparing #Br(X) to the size of a certain Tate–Shafarevich group, whose
finiteness is equivalent to the Birch and Swinnerton-Dyer Conjecture in that instance.) On the one hand,
this gives great confidence that the conjectures are true; but on the other hand, the finiteness assumption
is very strong: it is equivalent to the BSD Conjecture for Jacobians over function fields. The unconditional
statement that #Br(X)nd is a perfect square has remained open in characteristic p = 2 until now, when we
will finally prove:

Theorem 1.1.3. Let X be a smooth, proper, geometrically connected surface over a finite field of charac-
teristic 2. Then the size of Br(X)nd is a perfect square.

1.1.2. Tate’s Symplecticity Conjecture. As mentioned, Conjecture 1.1.1 was motivated by an analogy to the
Birch and Swinnerton-Dyer Conjecture. Under this analogy, the Brauer group Br(X) corresponds to the
Tate–Shafarevich group X of a Jacobian variety. Motivated by his proof that the Cassels–Tate pairing on

1We are implicitly invoking the fact that a finite abelian group with a symplectic form must have size a perfect square.
2For example, work of Milne [Mil75, Mil86] and Kato–Trihan [KT03] shows that the finiteness of Br(X), for all X, is

equivalent to finiteness of the Tate–Shafarevich group plus the Birch and Swinnerton-Dyer Conjecture for all Jacobian varieties
over function fields.
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(the non-divisible quotient of) such a X is symplectic3, Tate conjectured that there should be a natural
symplectic form on Br(X)nd as well.

Indeed, for every prime ℓ ̸= p, M. Artin and Tate defined in a non-degenerate skew-symmetric pairing on
Br(X)nd[ℓ

∞], which was named the Artin–Tate pairing in [Fen20a]. The restriction ℓ ̸= p was due to the
lack of a suitable p-adic cohomology theory at that time, and motivated the search for a p-adic cohomology
theory to play an analogous role to ℓ-adic cohomology, but at the defining characteristic. This problem was
solved by Milne’s discovery of the logarithmic de Rham–Witt cohomology, which is now also known under the
synonymous names of p-adic étale-motivic cohomology, and syntomic cohomology. Imitating Artin–Tate’s
construction, [Mil75] constructed a non-degenerate skew-symmetric pairing on Br(X)nd[p

∞] when p ̸= 2.
The restriction p ̸= 2 came from deficiencies in p-adic cohomology theory for p = 2 at the time, and was
removed in [Mil86] using Illusie’s development of the de Rham–Witt complex [Ill79]. The upshot is that we
now have a non-degenerate skew-symmetric form on all of Br(X)nd in all characteristics, which we call the
Milne–Artin–Tate pairing.

We remind the reader that a pairing ⟨−,−⟩ is said to be

skew-symmetric if ⟨u, v⟩ = −⟨v, u⟩ for all u, v

and alternating if ⟨u, u⟩ = 0 for all u.
Alternating implies skew-symmetric, but the converse can fail if the group has non-trivial 2-torsion. Finally,
a pairing is symplectic if it is both alternating and non-degenerate.

The skew-symmetry of the Artin–Tate pairing and Milne–Artin–Tate pairing can be proved in a couple
of lines, and together with non-degeneracy implies that the ℓ-primary part Br(X)nd[ℓ

∞] has size a perfect
square for ℓ ̸= 2. However, it is not enough to deduce that #Br(X)nd[2

∞] is a perfect square. We refer to
the assertion that the Milne–Artin–Tate pairing on Br(X)nd is actually symplectic as Tate’s Symplecticity
Conjecture.4

Conjecture 1.1.4 (Tate’s Symplecticity Conjecture, [Tat95]). The (Milne-)Artin–Tate pairing on Br(X)nd
is symplectic.

We emphasize again that Conjecture 1.1.4 implies Conjecture 1.1.2. Conjecture 1.1.4 has a long and
tortuous history, which is described in the introduction of [Fen20a]. Since the pairing is skew-symmetric,
the content of the Conjecture is concentrated at the 2-primary part of Br(X)nd. When p ̸= 2, it was
finally resolved in the second author’s thesis [Fen20a]. The methods of [Fen20a] were restricted to p ̸= 2 for
fundamental reasons, since they use aspects of ℓ-adic cohomology theory for ℓ = 2, which are only applicable
when ℓ ̸= p. The second author has been trying since 2018 to solve the p = 2 counterpart. One of our main
results finally settles this problem:

Theorem 1.1.5. Let X be a smooth, proper, geometrically connected surface over a finite field of any
characteristic p, including p = 2. Then the Milne–Artin–Tate pairing on Br(X)nd is symplectic.

Remark 1.1.6 (Higher dimensional generalizations). We construct a generalization of the Milne–Artin–Tate
pairing for any smooth, proper, geometrically connected variety of even dimension over Fp, and prove that
it is symplectic – see §14.3.

Remark 1.1.7. Conjecture 1.1.4 was motivated by the symplecticity of the Cassels–Tate pairing, but iron-
ically the Cassels–Tate pairing turned out not to be symplectic in the generality originally envisioned by
Tate in [Tat95], as was discovered by Poonen–Stoll [PS99]. The Milne–Artin–Tate pairing is also analogous
to a topological duality, the linking form on a 5-manifold, which is always skew–symmetric but also turns
out not to be alternating in general. Thus, Theorem 1.1.5 affirms a rather special feature of Brauer groups,
not witnessed in other closely analogous mathematical settings.

The proof of the p ̸= 2 case of Conjecture 1.1.4 in [Fen20a] exploited the étale Steenrod operations,
which are subtle symmetries of mod 2 étale cohomology. As has been mentioned, a historical difficulty
in constructing the pairing at p = 2 was the lack of an appropriate cohomology theory. The cohomology

3Under the technical hypothesis in [Tat63, Theorem 3.3], which however was mistakenly dropped in the discussion of [Tat95].
This led to a long misconception that was finally resolved in work of Poonen–Stoll [PS99].

4Milne’s extension of the Artin–Tate pairing did not exist yet at the time of [Tat95], but we interpret this extended version
of the question as fulfilling Tate’s conjecture in [Tat95].
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theory now exists and is called (among other names) “syntomic cohomology”, but its symmetries are not
satisfactorily understood. In order to prove Theorem 1.1.5, we therefore need to build a theory of syntomic
Steenrod operations acting on syntomic cohomology, which will we describe next. We emphasize that we
develop the theory of syntomic Steenrod operations for all primes p, even though the application to Theorem
1.1.5 concentrates on the case p = 2. That is, the bulk of the paper is devoted to developing a general theory,
which is not specific to characteristic 2.

1.2. The syntomic Steenrod algebra. Geisser-Levine [GL00] proved that for smooth varieties over finite
fields, syntomic cohomology coincides with p-adic étale-motivic cohomology. This contextualizes the issue
of constructing syntomic Steenrod operations in terms of a classic problem raised by Voevodsky in his
manuscript [Voe02] on “Open problems in motivic homotopy theory”: developing a theory of motivic Steenrod
operations at the defining characteristic.

We recall some historical context for this problem. Away from defining characteristic, the mod p motivic
Steenrod algebra for varieties in characteristic 0 was studied by Voevodsky [Voe03b, Voe10], and for varieties
in positive characteristic ℓ ̸= p by Hoyois–Kelly–Østvær [HKOsr17]. Thanks to their work, the mod p motivic
Steenrod algebra is now well-understood away from characteristic p, but in characteristic p it is still highly
mysterious. Voevodsky conjectured a description of it in [Voe02], which implies that it should be have a
Milnor basis of power operations over the motivic cohomology of the base field. This conjecture remains wide
open, but partial evidence was given by Frankland–Spitzweck [FS18] who showed that Voevodsky’s “expected
answer” for the dual motivic Steenrod algebra does at least appear as a (module-theoretic) summand of the
true answer. This allows one to define power operations on motivic cohomology, as was suggested already in
[FS18] and carried out by Primozic in [Pri20], but one would not be able to control the properties of these
operations. For example, our calculations require basic information such as:

• A formula for the product of power operations (which should be given by motivic Adem relations),
• A formula for the coproduct of power operations (which should be given by a motivic Cartan for-

mula).

In the special case of mod p Chow groups, these formulas were proved by Primozic [Pri20], but this case is not
enough for us, nor does the argument generalize. In this approach to motivic Steenrod operations, one can
control the product and coproduct only up to the “error” summand intervening between the motivic Steenrod
algebra and the submodule generated by power operations, which should vanish according to Voevodsky’s
conjectures (but again, this is wide open). In the special case of the H2i,i line considered in [Pri20], the
relevant “error” terms vanish by general vanishing properties of motivic cohomology.

For the aforementioned reasons, as well as subtler ones that will be mentioned later, we introduce a new
approach to mod p (étale-)motivic Steenrod operations in characteristic p. Very recently, Annala–Elmanto
[AE25] independently gave a new construction of motivic Steenrod operations in defining characteristic,
for which they can prove motivic Adem relations and a motivic Cartan formula. Their approach is some-
what similar to ours, as will be discussed further in Remark 1.2.2, but our applications require still more
information about the operations, which is only yielded by our method.

1.2.1. Structure of the syntomic Steenrod algebra. We write Hsyn(−) for syntomic cohomology (cf. §2.2),
and

Hi,jsyn(X) := Hisyn(X;Fp(j)) and H∗,∗
syn(X) :=

⊕
i,j∈Z

Hi,jsyn(X).

The index i is the degree and the index j is the weight. The cup product makes H∗,∗
syn(X) into a graded

Fp-algebra.
We construct and analyze syntomic Steenrod algebra A∗,∗

syn, which acts by natural transformations on the
syntomic cohomology of algebraic varieties in characteristic p. Here is a summary of what we will prove
about the syntomic Steenrod algebra.

Theorem 1.2.1. Let p be any prime and let k be a field of characteristic p. Then there is a cocommutative
Hopf algebra A∗,∗

syn over H∗,∗
syn(k), which we call the syntomic Steenrod algebra, equipped with an algebra

homomorphism to the ring of natural endomorphisms of syntomic cohomology H∗,∗
syn(−) viewed as a functor

from varieties over k to Fp-vector spaces. Moreover, A∗,∗
syn has the following the properties.
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• A∗,∗
syn is generated as an H∗,∗

syn(Spec k)-algebra by power operations Pisyn, βPisyn for i ≥ 0, which change
degree and weight as indicated:

Pisyn : H
a,b
syn(−)→ Ha+2i(p−1),b+i(p−1)

syn (−) (1.2.1)

βPisyn : H
a,b
syn(−)→ Ha+2i(p−1)+1,b+i(p−1)

syn (−) (1.2.2)

• A basis of A∗,∗
syn over H∗,∗

syn(Spec k) is given by

Pαsyn := βϵrPirsyn . . . β
ϵ1Pi1synβ

ϵ0

as α ranges over elements of the set

I := {(r, ϵr, ir, . . . ϵ1, i1, ϵ0) | r ≥ 0, ij > 0, ϵj ∈ {0, 1}, ij+1 ≥ pij + ϵj}.

• The product on A∗,∗
syn is given by explicit Adem relations (§6.1.3).

• The coproduct on A∗,∗
syn is given by an explicit Cartan formula (§6.4).

Theorem 1.2.1 is proved in §6 for k = Fp. It then follows for any extension k/Fp by tensoring over
H∗,∗

syn(Spec Fp) with H∗,∗
syn(Spec k).

By the aforementioned work of Geisser–Levine, Theorem 1.2.1 can be summarized as the construction of
an étale-motivic Steenrod algebra acting on mod p étale-motivic cohomology, which has exactly the structure
predicted by Voevodsky’s conjectures. Note however that we do not claim that A∗,∗

syn is the full ring of stable
cohomology operations on syntomic cohomology, so we are not proving (the étale localization of) Voevodsky’s
conjectures. Rather, we are showing that there is a Hopf sub-algebra of the true (étale-)motivic Steenrod
algebra that behaves “correctly” in all aspects.

We also emphasize that the results discussed here apply to all p, even though only the case p = 2 was is
invoked for the applications to Brauer groups in §1.1.

Remark 1.2.2. As we were completing an initial draft of this paper, Annala–Elmanto communicated to
us their independent work [AE25] which provides another construction of motivic Steenrod operations in
defining characteristic. They are able to establish the motivic Cartan formula and motivic Adem relations
in general, improving upon [Pri20]. Moreover, étale sheafifying their work gives another proof of Theorem
1.2.1, and we expect that their operations recover ours in this way.

The strategy of [AE25] follows a similar initial path to ours, both specializing from characteristic zero
via infinitely ramified mixed characteristic rings, though the implementation is different (even after étale
sheafification); according to our understanding, the approaches had a common origin in ideas of Lurie (to
be sketched below).

However, for our applications we would not be able to get away with using the operations of [AE25] as a
black box. For example, we also need the key compatibility statements in Theorem 1.3.1 and Theorem 1.4.1
below, which are bound up with our approach, and responsible for the bulk of this paper.

1.2.2. A hint of the construction. The construction of the syntomic Steenrod algebra A∗,∗
syn documented here

was explained to us by Jacob Lurie. It borrows elements of his vision for “prismatic stable homotopy theory”,
an extension of prismatic cohomology to extraordinary coefficients. Indeed, the classical Steenrod algebra
can be thought of as the (derived) endomorphism algebra of the Eilenberg–MacLane spectra Fp over the
sphere spectrum S, and we will ultimately realize the syntomic Steenrod algebras as endomorphisms of
syntomic cohomology over a certain “syntomic sphere spectrum”.

We set up some language needed to articulate our strategy more precisely. For a scheme S, let SHS be
Morel–Voevodsky’s p-complete motivic stable homotopy category of A1-invariant cohomology theories over S.
Thus SHS contains an object Fmot

p representing mod p motivic cohomology. Annala–Hoyois–Iwasa [AHI25]
constructed the category of p-complete motivic spectra MSS , an enlargement of SHS which includes non-
A1-invariant cohomology theories. In particular, mod p syntomic cohomology (which is not A1-invariant in
general) promotes to an object Fsyn

p ∈ MSS . The objects of MSS give rise to Nisnevich sheaves of (p-complete)
spectra on smooth schemes over S. If S = Spec R, we will also denote MSR := MSS and SHR := SHS .

The first instinct is to simply define the syntomic Steenrod algebra to be the algebra of (derived) endo-
morphisms of Fsyn

p over the symmetric monoidal unit of MSk. This indeed gives the universal algebra of
operations, but we would not be able to control the structure of this algebra. To define A∗,∗

syn in a way that
gives us a handle on the desired properties, we crucially use perfectoid geometry (which bridges characteristic
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0 and characteristic p) to make a construction that can be “controlled” in terms of characteristic 0 objects
which are already understood.

We will summarize the construction below, but in a slightly oversimplified way that elides some technical
issues. We start by considering the integral perfectoid ring O = Zp[µp∞ ]∧p obtained by adjoining all p-power
roots of unity to Zp and then p-adically completing. Its generic fiber will be denoted K and its special fiber
will be denoted k. Following a construction explained to us by Jacob Lurie (and credited by him to Akhil
Mathew), we define a “perfectoid nearby cycles” functor ψ : SHK → MSk. The key calculation is that ψ
carries the motivic cohomology spectrum Fmot

p ∈ SHK to the syntomic cohomology spectrum Fsyn
p ∈ MSk.

This fact ultimately allows us transmute information about the motivic Steenrod algebra in characteristic
0, which was explicated by Voevodsky in [Voe03b, Voe10], into information about the syntomic Steenrod
algebra in characteristic p. Indeed, the motivic Steenrod algebra over K can be defined as

Ext∗,∗Smot(Fmot
p ,Fmot

p )

where Smot ∈ SHK is the symmetric monoidal unit, which is the p-complete motivic sphere spectrum. Taking
inspiration from the key calculation mentioned above, we may regard ψ(Smot) as “the syntomic sphere
spectrum” over k, and then try to define our syntomic Steenrod algebra as

Ext∗,∗ψ(Smot)(ψ(F
mot
p ), ψ(Fmot

p )).

Our actual definition of A∗,∗
syn is a technical variation on this idea.

1.3. Application to arithmetic duality. We will describe how the syntomic Steenrod algebra is applied
to prove Theorem 1.1.5.

1.3.1. E∞ Steenrod operations. In fact, there is another flavor of Steenrod operations acting on H∗
syn(−),

thanks to the realization of H∗
syn(−) as the cohomology ring of a cochain complex RΓ∗

syn(−) which has a
natural E∞-structure. This leads to an action of E∞ Steenrod operations PiE and βPiEon H∗

syn(−).
On motivic cohomology, there would also be the action of two types of Steenrod operations: the motivic

Steenrod operations, and the E∞ Steenrod operations. Their interaction is invisible in topological coho-
mology and étale ℓ-adic cohomology, where they essentially coincide in either of those settings. In other
words, they are collapsed onto each other under the realization from motivic cohomology to Betti or ℓ-adic
cohomology. However, they are distinct on syntomic cohomology, as can already be seen from the fact that
they affect the degree and weights differently from the syntomic operations in (1.2.1),

PiE : H
a,b
syn(−)→ Ha+2i(p−1),pb

syn (−) (1.3.1)

βPiE : H
a,b
syn(−)→ Ha+2i(p−1)+1,pb

syn (−). (1.3.2)

In our story, the interaction of these two flavors (motivic and E∞) of Steenrod operations plays a key role.
Each individual flavor is by itself insufficient for the desired applications, but when combined they exactly
supplement each other’s deficiencies. Concretely, we can access the Milne–Artin–Tate pairing in terms of
E∞-Steenrod operations, but then we cannot compute these operations. On the other hand, we can compute
some syntomic Steenrod operations in terms of characteristic classes5, since they are of motivic nature, but
this is not useful a priori for understanding the pairing. We therefore also need a comparison theorem to
combine the two types of operations. We will proceed to describe the situation, and its resolution, more
precisely.

1.3.2. Connection to the Milne–Artin–Tate pairing. The connection between E∞ Steenrod operations and
the Milne–Artin–Tate pairing ⟨−,−⟩MAT comes from a formula

⟨u, u⟩MAT =

∫
X

P1
E(βu) for all u ∈ Br(X)[2] (1.3.3)

if X is a smooth, proper, geometrically connected surface over a finite k of characteristic p = 2. (There is a
generalization of this formula to varieties of higher dimension, in Theorem 15.0.1.) We want to prove that
the Milne–Artin–Tate pairing is alternating, so we want to show that ⟨u, u⟩MAT = 0; the formula (1.3.3)
allows us to translate this into a problem of calculating the effect of certain E∞ Steenrod operations. There

5Actually, this computation itself also uses some properties of syntomic Steenrod operations that we prove using the eventual
relation to E∞ Steenrod operations.
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is a generalization of (1.3.3) to u ∈ Br(X)[2n], and also to elements of the “higher Brauer groups” of higher
dimensional varieties, in Theorem 15.0.1, which we need but do not describe here.

For u ∈ Br(X)[2] where p ̸= 2, an analogous result was established in [Fen20a], and was a crucial part of
the strategy used there to show that the Artin–Tate pairing is alternating. The proof in loc. cit. reduced
to topological statements via étale homotopy theory, hence does not generalize immediately to the present
situation. More seriously, however, the rest of the strategy in [Fen20a] definitively fails when p = 2.

1.3.3. Calculation of Steenrod operations. At this point, it may be helpful for the reader to refer to the
Introduction of [Fen20a] for a summary of the proof. In brief, it draws inspiration from classical topology of
manifolds to calculate the relevant Steenrod operations in (1.3.3) in terms of characteristic classes, using an
arithmetic analogue of Wu’s theorem relating Steenrod operations and Stiefel–Whitney classes.

But in the context of syntomic cohomology, simple weight considerations (using for example that Chern
classes must live in the motivic line H2i,i) reveal that the analogous formulas are only plausible for the
syntomic Steenrod operations, rather than the E∞ operations.6 So at this point, the flavor of Steenrod
operations that we can calculate is not the relevant one for the Milne–Artin–Tate pairing, presenting a
major gap for our strategy. What saves us is a comparison theorem mediating between certain Steenrod
operations of different flavors, evaluated on certain syntomic cohomology groups, and we discuss this next.

1.3.4. The comparison theorem. As has been mentioned, the syntomic and E∞ operations cannot agree in
general, since they have different effects on weights: compare the codomains of (1.2.1) and (1.3.1). Note,
however, that the codomains sometimes agree. For example, a crucial instance for Theorem 1.1.5 is the case
p = 2, a = 3, and b = 1, where P1

E and P1
syn coincidentally both take the form H3,1

syn → H5,2
syn. We prove

the following comparison theorem asserting that the two flavors of operations agree whenever they have the
same domain and codomain.

Theorem 1.3.1. If b = i, so that the two maps

PiE : H
a,b
syn → Ha+2i(p−1),pb

syn and Pisyn : H
a,b
syn → Ha+2i(p−1),b+i(p−1)

syn

have the same source and target, then they agree.

In fact, we prove a more complete statement, Theorem 8.1.1, which determines the relationship between
PiE and Pisyn in all cases. To be clear, the main content comes from an analogous result of Bachmann–
Hopkins [BH25] for motivic cohomology, in characteristic 0, which we bootstrap to characteristic p using our
perfectoid nearby cycles functor.

Theorem 1.3.1 allows us to bridge the gap between the two halves of the strategy adapted from [Fen20a],
the first about calculating the Milne–Artin–Tate pairing in terms of E∞ Steenrod operations, and the second
about calculating motivic Steenrod operations in terms of characteristic classes. It turns out, however, that
the second half is much more difficult in our present setting, and we shall discuss this next.

1.4. Spectral prismatization. It turns out that our strategy requires a certain subtle compatibility of the
syntomic Steenrod operations with Poincaré duality (for the proof of the Arithmetic Wu formula, Theo-
rem 13.1.2). The statement is elementary, so we give it below. Perhaps more interestingly, the proof leads us
to develop an apparatus which is likely of deeper importance: a generalization of prismatization in the sense
of Drinfeld and Bhatt–Lurie, for the syntomic sphere spectrum, and an attendant “spectral Serre duality”.
In particular, we construct an approximation to Lurie’s conjectural prismatic stable homotopy category over
k, which is an extension of the category of prismatic F -gauges over k in the spirit of stable homotopy theory.
To be clear, the idea for how to do this was explained to us by Lurie. We emphasize that we develop this
story for general p, even though only the case p = 2 is invoked for the results on Brauer groups in §1.1.

6This issue does not arise in the p ̸= 2 situation considered in [Fen20a] because the étale sheaf µ2 is isomorphic to the
étale sheaf Z/2, so the weight index is negligible; this makes it plausible that the E∞ and étale motivic Steenrod operations
essentially coincide in that case, which turns out to be true.
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1.4.1. Arithmetic duality and Steenrod equivariance. Let us formulate the key compatibility that we require.
The Poincaré duality theorems for syntomic cohomology over finite fields were established by Milne in
[Mil76, Mil86]. Indeed, suppose that X is a smooth, proper, geometrically connected variety of dimension d
over a characteristic p finite field k. Then there is a trace map∫

X

: H2d+1,d
syn (X)

∼−→ Fp

and Milne proved that the pairing

Ha,bsyn(X)×H2d+1−a,d−b
syn (X)→ H2d+1,d

syn (X)

∫
X−−→ Fp

is perfect for every a, b ∈ Z. Dualizing the cup product

H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)→ H∗,∗

syn(X ×k X)

and then applying Poincaré duality, we obtain a commutative diagram

H∗,∗
syn(X)∨ ⊗Fp H

∗,∗
syn(X)∨ H∗,∗

syn(X ×k X)∨

H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X) H∗,∗

syn(X ×k X)

≀ ≀

φ∗

(1.4.1)

Note that the horizontal map φ∗ in the bottom row increases cohomological degree by +1. Both its source
and target have natural actions of the syntomic power operations, the source because it is the cohomology
of a variety, and the target by the coproduct on the syntomic Steenrod algebra (see §10.6), which is given
by the Cartan formula. Then our entire strategy hinges upon the following result.

Theorem 1.4.1. The map φ∗ is equivariant for the action of A∗,∗
syn.

The main difficulty in the proof of Theorem 1.4.1 comes from the arithmetic nature of the duality on
H∗,∗

syn(X), which combines the arithmetic duality on the ground field with the geometric duality on X. (See
the discussion at the beginning of Part 4 for more about this.)

Remark 1.4.2. We will give a toy metaphor for Theorem 1.4.1. Heuristically, φ∗ behaves like a pushforward
map7 on cohomology, hence the notation (even though there is no actual map φ which induces it). Indeed,
Spec k is topologically analogous to S1, so that X is topologically analogous to a manifold M fibered over
S1. Then X ×k X is analogous to M ×S1 M and H∗,∗

syn(X) ⊗Fp H∗,∗
syn(X) is analogous to the cohomology

of M ×M . In these terms, φ∗ would be analogous to the pushforward map on cohomology associated to
M ×S1 M →M ×M . Typically, pushforward maps are not equivariant with respect to Steenrod operations;
the failure of equivariance should be measured by the Stiefel–Whitney classes of the relative normal bundle.
But in this particular situation, because S1 has trivial tangent bundle, one would expect equivariance. Of
course, this discussion is all heuristic: in our actual situation, there is not even a geometric object whose
cohomology realizes H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X).

1.4.2. Spectral prismatic F -gauges. The authors were stymied by this point for a long time, before stumbling
upon a lifeline in the recent works of Drinfeld [Dri24] and Bhatt–Lurie [Bha22]. These works lift syntomic
cohomology to prismatic F -gauges (in the terminology of [Bha22]), which are quasicoherent sheaves on
certain stacks called prismatizations. In particular, for each smooth and proper f : X → Spec k, there is a
perfect complex HX/p of quasicoherent sheaves on a stack (Spec k)SynFp

, such that RΓ((Spec k)SynFp
;HX/p)

canonically identifies with RΓsyn(X;Fp). The category of mod p prismatic F -gauges over k is8

FGauge∆(k)Fp := QCoh((Spec k)SynFp
).

Our proof of Theorem 1.4.1 exploits prismatization in an essential way. While the full proof is too
complicated to explain here (the entirety of Part 3 is devoted to it), we can hint at the ideas.

Firstly, we may “prismatize” the problem by prismatizing the Steenrod algebra itself. This first involves
constructing (following ideas of Lurie) a category of spectral prismatic F -gauges FGauge∆(k)

pre
S that extends

7also sometimes called “Umkehr map” or “wrong-way map”
8In the body of the paper, we take a very different definition as our starting point, and show that it is equivalent to this

one.
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FGauge∆(k)Fp analogously to how the usual stable homotopy category extends the derived category of abelian
groups. This category FGauge∆(k)

pre
S is closely related to the “prismatic stable homotopy category” (over k)

envisioned by Lurie; the superscript “pre” reflects that it is only an approximation to the latter, which however
is an equivalence on all the objects that we consider in this paper (see Remark 9.2.4 for an explanation of
the precise meaning of this statement).

There is an adjunction
ι∗ : FGauge∆(k)

pre
S ⇆ FGauge∆(k)Fp : ι∗

which should morally be thought of as coming from an embedding ι of (Spec k)SynFp
into a “spectral prisma-

tization stack” (Spec k)SynS . Let 1 be the unit of FGauge∆(k)Fp , which in concrete terms corresponds the
structure sheaf O(Spec k)Syn

Fp

. We then define the internal Hom algebra in FGauge∆(k)
pre
S ,

Asyn := HomFGauge∆(k)preS
(ι∗1, ι∗1),

as the “prismatization of the syntomic Steenrod algebra”; it recovers A∗,∗
syn by taking global sections in

FGauge∆(k)
pre
S . By construction, all objects of FGauge∆(k)Fp which come via ι∗ from (Spec k)SynS are

equipped with a tautological action of Asyn.
Now let us explain how this helps for Theorem 1.4.1. It eventually allows us to “localize” the problem

onto (Spec k)SynFp
. After such localization, there is a new perspective on Milne’s Poincaré duality results due

to Bhatt–Lurie [Bha22, §4], which dissects arithmetic Poincaré duality for syntomic cohomology into two
more elemental phenomena:

(1) “geometric Poincaré duality” (proved by Longke Tang [Tan24b]) for the association X 7→ HX/p ∈
FGauge∆(k)Fp , and

(2) Serre duality for FGauge∆(k)Fp .

Ultimately, this enables us to distill a generalization of Theorem 1.4.1 which is local on the stack (Spec k)SynFp
.

It says that a certain map of quasicoherent sheaves φ∆, which may be viewed as the “prismatization of φ∗”,
is compatible with the Asyn-action; this recovers Theorem 1.4.1 after applying global sections. In turn, this
compatibility then has a conceptual explanation: if the map φ∆ can be lifted to the spectral prismatization
FGauge∆(k)

pre
S , then it would be compatible with the Asyn-action for formal reasons. We will discuss this

lifting next.

1.4.3. Spectral Serre duality. Serre duality is the key input for defining the map φ∆; correspondingly, the key
input for lifting φ∆ to (Spec k)SynS is to lift Serre duality to (Spec k)SynS . For this, the key is to find a good
candidate for the dualizing sheaf, and here we take our cue from the classical theory of Brown-Comenetz
duality [BC76], which is a generalization of Pontrjagin duality to spectra.

To be precise, let Sp be the category of p-complete spectra and I ∈ Sp be the p-completion of the
Brown-Comenetz spectrum. We “pull back” (in a suitable sense) I from Sp to define a dualizing sheaf
in FGauge∆(k)

pre
S , which we show fits into a good theory of “spectral Serre duality” on FGauge∆(k)

pre
S ,

compatible with the classical theory of coherent duality in FGauge∆(k)Fp . We moreover show that this
spectral Serre duality plays well with the prismatized Steenrod algebra Asyn, which supplies the key ingredient
to the proof of Theorem 1.4.1.

Remark 1.4.3. The lengths just described may seem fairly outrageous for proving such elementary state-
ments as Conjecture 1.1.2 and Conjecture 1.1.4. While the authors sympathize with this sentiment, they
can assure the reader that they have tried many less arduous routes over the past decade, and have resorted
to this one by necessity (and indeed, desperation). As noted already, these problems have resisted solution
for almost sixty years.

1.5. Outline of the paper. This paper is divided into five Parts. The contents of each Part are summarized
in more detail where it appears. Figure 1 depicts the logical flow to the classical applications to Brauer groups.

Part 1 is concerned with syntomic cohomology. It constructs what we call spectral syntomic cohomology,
which is short for “syntomic cohomology with coefficients in motivic spectra”. Furthermore, it defines certain
module categories of “coefficients” for these spectral cohomology theories, which we call syntomic spectra. It
also introduces the perfectoid nearby cycles functor.
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Part 2 is concerned with Steenrod operations. It constructs the syntomic Steenrod algebra and establishes
its formal properties (e.g., Theorem 1.2.1). It also defines the E∞ Steenrod operations and establishes the
comparison with syntomic Steenrod operations (e.g., Theorem 1.3.1).

Part 3 is about prismatization of spectral syntomic cohomology. It defines the category FGauge∆(k)
pre
S ,

studies a prismatized version of the syntomic Steenrod algebra, and establishes spectral Serre duality and,
finally, Theorem 1.4.1.

Part 4 develops a theory of certain characteristic classes in syntomic cohomology, namely Stiefel–Whitney
classes and Wu classes, and establishes their relation to the theory of Chern classes from [BL22]. It also
proves the arithmetic Wu formula relating syntomic Stiefel–Whitney classes and syntomic Wu classes; it is
for this proof that we need Theorem 1.4.1 and the entire theory of spectral prismatization. This yoga of
characteristic classes is used to eventually compute syntomic Steenrod operations.

Finally, Part 5 contains the applications to the main theorems on (higher) Brauer groups, including
Theorem 1.1.3, Theorem 1.1.5, and their higher dimensional generalizations.

Figure 1. This roadmap depicts the long, winding journey to the symplectic arithmetic
duality on higher Brauer groups.
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1.7. Notation. We fix a prime number p.

1.7.1. Conventions on spectra. We denote by Sp the ∞-category of p-complete spectra. We denote by
S the unit of Sp, which goes by the name of p-complete sphere spectrum. This boldface notation is to be
contrasted with the blackboard-bold notation used for motivic spectra: see Remark 3.6.3.

1.7.2. Conventions on coefficients. In this paper, we will consider two p-adic “directions”: one is the base,
which might (for example) be Qcyc

p ,Zcyc
p ,Fp, and the other is the coefficients, which might (for example) be

Fp,Zp,S, etc.
We will study cohomology theories defined on schemes over the base, which are modules over the coeffi-

cients. We allow the coefficients to be ring spectra, while our “test” schemes are classical.
To make these directions more visually distinct, we write O for a p-adic ring of integers, K := O[1/p] for

its fraction field, and k for its residue field, when they are being thought of as the “base” direction. Starting
with Part 2, we will specifically take O := Zcyc

p (the p-adic completion of Zp[µp∞ ]), so K = Qcyc
p , and k = Fp.

1.7.3. ∞-categories. We use the formalism of∞-categories following [Lur09, Lur17]. A phrase that does not
appear in loc. cit., but which we invoke frequently, is “presentably symmetric monoidal∞-category”. By this
we mean a symmetric monoidal∞-category C which is presentable and whose tensor bifunctor ⊗ : C×C → C
commutes with colimits in each variable (separately).

1.7.4. Sheaf and presheaf categories. For a (small)∞-category C and a presentable∞-category D, we denote
by P(C;D) the presentable∞-category of functors Cop → D. We think of this as the category of “presheaves
on C valued in D”. If C is equipped with a Grothendieck topology τ , we denote

Pτ (C;D) = Shv(Cτ ;D)

for the presentable ∞-category of sheaves on the site Cτ .
For a stack S, we denote by D(S) the ∞-category of quasicoherent sheaves on S, and Perf(S) ⊂ D(S)

the full subcategory of perfect complexes. For a commutative ring R, we abbreviate D(R) := D(Spec R).

Part 1. Spectral syntomic cohomology

This Part is concerned with the construction and properties of p-adic cohomology theories which include
and generalize syntomic cohomology. We first review what we mean by (classical) syntomic cohomology in
§2, and establish some technical properties for later use.

One of the goals of this Part is to expand the notion of syntomic cohomology to more general coefficients,
parallel to how the theory of spectra expands singular cohomology. We therefore refer to this expansion
as spectral syntomic cohomology, in order to evoke the image of “syntomic cohomology with coefficients in
spectra”.

With this in mind, we review in §3 the theory of motivic spectra, which will be used as an ambient category
to house our cohomology theories and constructions.

The heart of this Part is §4, which defines and analyzes a certain “perfectoid nearby cycles” functor ψ
from the motivic stable homotopy category over characteristic zero perfectoid fields K (such as Qcyc

p ) to
motivic spectra over their residue fields (k = Fp in the example). The main theorem of §4 is that ψ carries
motivic cohomology over K to syntomic cohomology over k. This calculation has to do with the idiosyncratic
behavior of algebraic K-theory and motivic cohomology of smooth algebras over perfectoid valuation rings.9

9For example, an inspiration (which we do not logically use) is the main theorem of [AMM22], which establishes that the
algebraic K-theory of a smooth algebra over a perfectoid valuation ring coincides with the algebraic K-theory of its generic
fiber.
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For a more general motivic spectrum E ∈ MSK , this justifies considering ψ(E) ∈ MSk as the associated
syntomic cohomology theory. Finally, in §5 we consider the case where E = Smot is the motivic sphere
spectrum, and define an associated module category, which we call the category of “syntomic spectra”.

2. Syntomic cohomology

In this section, we recall syntomic cohomology and related notions, and prove some vanishing properties
that will be needed later.

Historically, the concept of syntomic cohomology has been studied in varying levels of generality by various
different approaches. In this paper, we follow the recent perspective of Bhatt–Lurie [BL22], building on work
of Bhatt–Morrow–Scholze [BMS19]. The advantage of this approach over earlier ones (e.g., [FM87, Kat87,
Tsu99, CN17]) is that it works for all weights, and over very large (perfectoid) rings.

2.1. Syntomic cohomology of schemes. Bhatt–Morrow–Scholze [BMS19] defined the syntomic cohomol-
ogy of p-adic formal schemes. For each n ∈ Z, and a formal scheme X over Spf Zp, they define complexes
Zp(n)

syn
X on the quasisyntomic site of X , whose cohomology is the syntomic cohomology

RΓsyn(X ;Zp(n))

Bhatt–Lurie [BL22, §8] defined a “decompleted” version of the theory, extending syntomic cohomology to
schemes over Zp. Let us describe it for an affine scheme X = Spec R over Zp, the general case being deduced
from this one by Zariski descent. Let R̂ be the p-adic completion (in the derived sense) of R. Bhatt–Lurie
constructed in [BL22, §8.3] an étale comparison map

γét{n} : RΓsyn(Spf R̂;Zp(n))→ RΓét(Spec R̂[1/p];Zp(n)) (2.1.1)

and defined in [BL22, Construction 8.4.1] the “decompleted” syntomic cohomology RΓsyn(Spec R;Zp(n)) as
the homotopy fibered product in the derived category D(Zp) of p-complete abelian groups,

RΓsyn(Spec R;Zp(n)) RΓét(Spec R[1/p];Zp(n))

RΓsyn(Spf R̂;Zp(n)) RΓét(Spec R̂[1/p];Zp(n))
γét{n}

(2.1.2)

The resulting cohomology theory R 7→ RΓsyn(Spec R;Zp(n)) satisfies étale descent, and we denote by
Zp(n)

syn
X the corresponding étale complex on X = Spec R, so that

RΓsyn(X;Zp(n)) ∼= RΓét(X;Zp(n)
syn
X ).

Now suppose R is an algebra over Zcyc
p . We record a consequence of this definition for later technical use.

As in [BL22, §8.5], we let ε := (1, ζp, ζp2 , . . .) be a choice of compatible system of primitive p-power roots of
unity in O. We may view ε ∈ H0

syn(Spec O;Zp(1)). Multiplication by ε then induces a map

RΓsyn(Spec R;Zp(n))
ε−→ RΓsyn(Spec R;Zp(n+ 1)).

Lemma 2.1.1. Suppose R is a commutative algebra over Zcyc
p . Then the commutative diagram

RΓsyn(Spec R;Zp(n)) RΓsyn(Spec R;Zp(n+ 1))

RΓsyn(Spf R̂;Zp(n)) RΓsyn(Spf R̂;Zp(n+ 1))

ε

ε

(2.1.3)

is derived Cartesian.

Proof. By the Cartesian nature of (2.1.2), it suffices to prove that the analogous commutative square

RΓét(Spec R[1/p];Zp(n)) RΓét(Spec R[1/p];Zp(n+ 1))

RΓét(Spec R̂[1/p];Zp(n)) RΓét(Spec R̂[1/p];Zp(n+ 1))

ε

ε
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is Cartesian. Indeed, since ε induces an isomorphism Zp(n) ∼= Zp(n+1) over Zcyc
p [1/p] = Qcyc

p , multiplication
by ε is in fact an isomorphism in both rows. □

2.2. Notation for syntomic cohomology. Let X be a scheme over Zp. For n ≥ 1 and b ∈ Z, we write
Z/pn(b)synX for the cone of multiplication by pn on Zp(b)

syn
X . When n = 1, we also write Fp(b)

syn
X := Z/p(b)synX .

We abbreviate the cohomology of these sheaves by

Hasyn(X;Z/pn(b)) := Haét(X;Z/pn(b)synX ), etc.

We use the notation Zp(b)
syn
X = Zsyn

p (b)X interchangeably.
For integers a, b ∈ Z, we write

Ha,bsyn(X) := Hasyn(X;Fp(b)).

We will use the abbreviation
H∗,∗

syn(X) :=
⊕
a,b∈Z

Hasyn(X;Fp(b))

and define Ha,∗syn(X) and H∗,b
syn(X) similarly. In all the “nice” situations that we consider, these are supported

on only finitely many a and b; for example, Proposition 2.3.3 provides an estimate for the support of the
cohomological degrees when X is a smooth qcqs scheme over Zcyc

p .
There is a map

Fp(b)X ⊗ Fp(b
′)X → Fp(b+ b′)X ,

which equips H∗,∗
syn(X) with a ring structure (and similarly with coefficients in (Zp)

syn
X or (Z/pn)synX instead).

2.3. Vanishing estimates for syntomic cohomology of formal schemes. We will establish some van-
ishing estimates on syntomic cohomology, which are needed later for technical purposes. Below, for a (formal)
scheme X over Zp we make use of the absolute prismatic cohomology RΓ∆(X) defined in [BL22], as well
as the relative prismatic cohomology RΓ∆(X/A) of Bhatt–Scholze [BS22] when X is defined over A/I for a
prism (A, I).

Lemma 2.3.1. Let X := Spec R be a smooth affine scheme of relative dimension d over a perfectoid ring
O, R̂ be the p-adic completion of R, and X̂ := Spf R̂. Then Hi∆(X̂) vanishes for i /∈ [0, d].

Proof. Since O is perfectoid, it corresponds to a perfect prism (A, I); in particular, O = A/I. Hence
the absolute prismatic cohomology RΓ∆(X̂) is canonically identified by [BL22, Proposition 4.4.12] with the
(relative) prismatic cohomology RΓ∆(X̂/A) in the sense of Bhatt–Scholze [BS22]. The prismatic cohomology
RΓ∆(X̂/A) is equipped with a filtration whose associated graded pieces are Breuil-Kisin twists of RΓ∆(X̂/A).

Hence it suffices to show that Hi
∆
(X̂/A) = 0 for i /∈ [0, d].

To this end, the Hodge-Tate comparison [BS22, Theorem 4.11] identifies

Hi
∆
(X̂/A) ∼= Ωi

X̂/O
{−i}.

Since X is smooth of relative dimension d over O, Ωi
X̂/O

= 0 for i /∈ [0, d], as desired. □

Proposition 2.3.2. Let X̂ be a smooth affine formal scheme of relative dimension d over a perfectoid ring
O. Then for all n ∈ Z, Hisyn(X̂;Zp(n)) vanishes for i /∈ [0, d+ 1].

Proof. By definition [BMS19, §7.4], the syntomic cohomology of X̂ is defined as the (derived) fiber

RΓsyn(X̂;Zp(n)) := Fib
(
FilnN RΓ∆(X̂)

φ−1−−−→ RΓ∆(X̂)
)

where φ is the Frobenius and FilnN RΓ∆ is the nth filtrant of the Nygaard filtration on prismatic cohomology.
Arguing as in the proof of Lemma 2.3.1: the associated graded of the Nygaard filtration is identified by
[BS22, Theorem 1.16(3)] up to Frobenius twist as truncations of Breuil–Kisin twists of RΓ∆(X̂/A), which

are concentrated in degrees [0, d]. Therefore, FilnN RΓ∆(X̂) is also concentrated in degrees [0, d]. Hence
RΓsyn(X̂;Zp(n)), being the derived fiber of a map between complexes concentrated in degrees [0, d], is itself
concentrated in degrees [0, d+ 1]. □
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Proposition 2.3.3. Let X := Spec R be a smooth affine scheme of relative dimension d over Zcyc
p . Then

for all n ∈ Z, Hisyn(X;Zp(n)) vanishes for i /∈ [0, d+ 2].10

Proof. Let ε := (1, ζp, ζp2 , . . .) be a choice of compatible system of primitive p-power roots of unity in Zcyc
p .

We may view ε ∈ H0
syn(Spec Zcyc

p ;Zp(1)). By Proposition 2.3.2, the bottom row of (2.1.3) vanishes on
cohomology in degree i > d + 1. Then the Cartesian nature of (2.1.3) implies that the top row is an
isomorphism on cohomology in degrees i > d+ 2. Therefore, for i > d+ 2 we have

Hi,∗syn(Spec R)
∼= lim−→

(
Hi,∗syn(Spec R)

ε−→ Hi,∗+1
syn (Spec R)

ε−→ . . .
)
∼= Hi,∗syn(Spec R)[ε

−1].

By [BL22, Theorem 8.5.1], the étale comparison map

Hi,∗syn(Spec R)[ε
−1]→ Hi,∗ét (Spec R[1/p]) :=

⊕
n∈Z

Hiét(Spec R[1/p];Fp(n))

is an isomorphism. It therefore suffices to show that Hiét(Spec R[1/p];Fp(n)) = 0 for i > d+ 2. Since Qcyc
p

has cohomological dimension 1, and Spec R[1/p] has dimension d, this follows from the Hochschild–Serre
spectral sequence

Hi(Qcyc
p ; Hjét(Spec R[1/p]⊗Qcyc

p
Qp;Fp(n))) =⇒ Hi+jét (Spec R[1/p];Fp(n))

and the vanishing of Hjét(Spec R[1/p]⊗Qcyc
p

Qp;Fp(n)) for j > d (by the Artin vanishing theorem). □

2.4. Syntomic cohomology over finite fields. A case of particular interest to us is when X is a smooth
variety over a finite field k. In this case, we recall some older and more concrete approaches to syntomic
cohomology.

2.4.1. Logarithmic de Rham–Witt sheaves. For smooth X over k, the cohomology groups H∗,∗
syn(X) were first

constructed by Milne, from the perspective of what he called logarithmic de Rham–Witt cohomology. For a
smooth variety X, Milne defined sheaves νn(b) in terms of the de Rham–Witt complex, which are shown in
[BMS19, Corollary 8.21 and Remark 8.22] to be isomorphic to the (derived) pushforward of Z/pn(b)[b] from
the quasisyntomic site to the étale site of X.

Example 2.4.1. For each n ≥ 1:
• νn(0) is isomorphic to the constant sheaf Z/pnZ.
• νn(1) ∼= λ∗µpn [1] where λ is the map from the flat site to the étale site.11

2.4.2. Mod p motivic cohomology. Let X be a smooth scheme over a field. For b ∈ Z, there is a motivic
complex Z(b)mot

X on X, which is a Nisnevich sheaf on X. The motivic cohomology of X is

RΓmot(X;Z(b)) := RΓNis(X;Z(b)mot
X ).

We denote by Z(b)étX the étale sheafification of Z(b)mot
X . The étale-motivic cohomology ofX is RΓét(X;Z(b)étX).

If ℓ is a prime number which is invertible in the base field, then it follows from a result of Suslin–Voevodsky
[SV00, Proposition 6.7] that the étale motivic complex Z/ℓn(b)étX := Z(b)étX ⊗Z Z/ℓn is identified with the
Tate twist Z/ℓn(b) := µ⊗b

ℓn . See [Gei05] for a survey of motivic cohomology, which provides references for
these facts.

On the other hand, if ℓ = p is the characteristic of the base field, then Geisser-Levine proved [GL00,
Theorem 8.3] that Z(b)étX ⊗Z Z/pn is isomorphic to Milne’s νn(b)[−b], which as discussed above is identified
with syntomic cohomology.

3. Motivic spectra

In this section, we review motivic spectra, and establish some machinery for promoting cohomology theories
of interest, such as motivic and syntomic cohomology, to motivic spectra.

To put this in context, recall that for a scheme S, Morel–Voevodsky defined the motivic stable homotopy
category over S: a universal category for A1-invariant cohomology theories on schemes over S. But many
of the cohomology theories that we care about (such as prismatic and syntomic cohomology) are not A1-
invariant. Annala–Hoyois–Iwasa [AHI25] defined the category of motivic spectra over S, an enlargement of

10We suspect that this bound can be improved to [0, d+ 1].
11For b > 1, we note that νn(b) is not in general isomorphic to λ∗µ

⊗b
pn .
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the motivic stable homotopy category which encompasses such cohomology theories. This seems to provide
the “right” ambient context in which to construct and consider our spectral syntomic cohomology theories.

3.1. Recollections on motivic spectra. Let S be a scheme. Following work of Annala–Hoyois–Iwasa
[AHI25], we will define a presentably symmetric monoidal stable ∞-category MSS of p-complete motivic
spectra over S.

3.2. Symmetric spectra objects. Given a presentably symmetric monoidal ∞-category C and an object
c ∈ C, one can form the ∞-category C[c−1], obtained by universally inverting the object c. The goal of
this subsection is to recall an explicit construction of C[c−1] using “symmetric c-spectra objects” and related
constructions.

Let Σ be the free commutative monoid on one element in the ∞-category of spaces. Concretely, Σ is
equivalent to the category of finite sets where maps are isomorphisms, so

Σ ∼=
∐
n

BΣn

where Σn is the symmetric group on n elements.
For an ∞-category C we let CΣ := Fun(Σ, C) be the ∞-category of functors from Σ to C; informally

speaking, CΣ is the ∞-category of tuples (Y0, Y1, . . . ) where each Yn ∈ C is endowed with an action of Σn.
A presentably symmetric monoidal structure on C induces one on CΣ, via Day convolution: for Y =

(Yn)n∈N and Z = (Zn)n∈N in CΣ, their Day convolution is Y ⊗ Z defined by12

(Y ⊗ Z)m =
⊕

a+b=m

IndΣmΣa×Σb
(Ya ⊗ Zb).

Example 3.2.1. In this situation, for each X ∈ C there is a canonical commutative algebra object

Sym(X) := (1, X,X⊗2, . . . ) ∈ ComAlg(CΣ)

where 1 is the unit of C. Here Σn acts on X⊗n by permuting the tensor factors. This Sym(X) can be
characterized as the free E∞-algebra on the object X⟨1⟩ := (0, X, 0, . . . ) ∈ CΣ, where 0 denotes the initial
object of C.

The construction of Example 3.2.1 upgrades to a functor

Sym: C → ComAlg(CΣ). (3.2.1)

3.2.1. Stabilization. We set up a general framework for “stabilization” with respect to tensoring with an
object.

Definition 3.2.2. Let C be a presentably symmetric monoidal ∞-category and let c ∈ C. Then we define

Splaxc (C) := ModSym(c)(CΣ).

An object of Splaxc (C) consists of, in particular, the data of a sequence (X0, X1, . . . ) of objects of C, and the
module structure over Sym(c) gives maps c⊗Xi → Xi+1 with adjoints σi : Xi → HomC(c,Xi+1). We let

Spc(C) ⊆ Splaxc (C) (3.2.2)

to be the full subcategory spanned by the objects (X0, X1, . . . ) for which σi : Xi → HomC(c,Xi+1) are all
isomorphisms. The inclusion (3.2.2) admits a left adjoint

τC : Splaxc (C)→ Spc(C) (3.2.3)

realizing Spc(C) as a localization of Splaxc (C).

By [AHI25, Proposition 1.3.14], there is a canonical colimit preserving symmetric monoidal functor
Σ∞
c : C → Spc(C) which identifies Spc(C) with C[c−1], i.e., it is obtained from C by universally inverting

the object c.

12In the formula below,
⊕

means the coproduct, so that it applies even if C is not additive. However, we shall only consider
it for additive categories.
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3.2.2. Functoriality. For a symmetric monoidal colimit preserving functor f∗ : C → D with right adjoint f∗,
we obtain an adjunction

(f∗)lax : Splaxc (C) ⇆ Splaxf∗c(D) : (f∗)lax

which are given by applying f∗ and f∗ pointwise.
These induce an adjunction

Spc(C) ⇆ Spf∗c(D)
in which the right adjoint is the restriction of f lax∗ and the left adjoint is the composition of (f∗)lax and
the localization functor τD : Splaxf∗c(D)→ Spf∗c(D). We abusively denote these functors again by f∗ and f∗
respectively. The following examples illustrate their calculation in more concrete terms.

Example 3.2.3. The functor f lax∗ hence also the functor f∗ from (3.3.3) – sends a c-spectrum Y =
(Y0, Y1, . . .) ∈ DΣ to f∗Y = (f∗Y0, f∗Y1, . . . ) ∈ CΣ, and the structure maps are given by the composition

f∗Yn
f∗σn(Y )−−−−−→f∗HomD(f

∗c, Yn+1)

∼=f∗HomD(f
∗c, Yn+1) ∼= HomC(c, f∗Yn+1).

Example 3.2.4. The functor (f∗)lax has a similar description. It is given on symmetric c-spectra objects
by

(f∗)lax(Y0, Y1, . . . ) = (f∗Y0, f
∗Y1, . . . ).

The structure maps σn((f∗)laxY ) are given by

f∗Yn
f∗σn(Y )−−−−−→ f∗HomC(c, Yn+1) −→ HomD(f

∗c, f∗Yn+1)

Since the second map in this composition is not an isomorphism in general, (f∗)lax does not necessarily carry
the full subcategory Spc(C) ⊂ Splaxc (C) to Spf∗c(D) ⊂ Splaxf∗c(D). In particular, f∗ : Spc(C)→ Spf∗(D) is not
simply given by restricting f∗. Instead, it is the composition

f∗ : Spc(C) ↪→ Splaxc (C) (f∗)lax−−−−→ Splaxf∗c(D)
τD−−→ Spf∗c(D). (3.2.4)

where τD is the left adjoint to the fully faithful embedding Spf∗c(D) ⊂ Splaxf∗c(D).

3.2.3. Motivic spectra. Recall that we are denoting by Sp the ∞-category of p-complete spectra. We denote
by SmS the category of smooth schemes over S. We will now consider the constructions of §3.2 for the
∞-category

CS := PNis,ebu(SmS ; Sp),

of Nisnevich sheaves of spectra on SmS satisfying elementary blowup excision. We denote by HomCS (−,−)
the internal Hom of CS .

We denote the Yoneda embedding of SmS into CS as

Σ∞
+ : SmS → CS . (3.2.5)

It factors as a composition
SmS → (SmS)⋆

Σ∞

−−→ CS
where (SmS)⋆ is the category of S-pointed smooth schemes over S, and the first functor sends X to X+ :=
X ⊔ S with the obvious section. We view P1

S ∈ (SmS)⋆ as pointed by the constant section at ∞, and we
abbreviate its image under Σ∞ by Σ∞P1

S , or if S is clear from the context, by Σ∞P1.

Definition 3.2.5. As a special case of Definition 3.2.2, we define the ∞-categories

MSlaxS := SplaxΣ∞P1(CS) and MSS := SpΣ∞P1(CS).

To unpack the definition: an object of MSlaxS can be represented by a sequence Y := (Y0, Y1, . . . ) ∈ CΣS
equipped with a module structure over Sym(Σ∞P1). This structure provides, in particular, canonical maps
(in the category CS)

σn = σn(Y ) : Yn → HomCS (Σ
∞P1, Yn+1), (3.2.6)

MSS is defined as the full subcategory of MSlaxS spanned by the objects Y for which the morphisms σn are
all isomorphisms.
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We write
τS : MSlaxS → MSS (3.2.7)

for the left adjoint (3.2.3) to the inclusion. This exhibits MSS as a symmetric monoidal localization of MSlaxS ,
so it inherits a symmetric monoidal structure.

Definition 3.2.6 (Motives of schemes). There is a tautological colimit-preserving symmetric monoidal
functor P(SmS ; Sp)→ MSS . Abusing notation, we also let Σ∞

+ be the composition

Σ∞
+ : SmS

Σ∞
+−−→P(SmS ; Sp)→ MSS

relying on context to make the target category clear (from now on, it will almost always be MSS). For
X ∈ SmS , we refer to Σ∞

+X as the “motive of X” in MSS .

We have the usual Tate twisting functor in MSS , defined as follows.

Definition 3.2.7 (Tate twist). Let Y ∈ MSS . For any n ∈ Z, we denote

Y (n) := Y ⊗ (Σ∞P1)⊗n[−2n]

and refer to Y (n) as the (n-th) Tate twist of Y . Note that since (tensoring with) P1 is formally inverted in
MSS , this makes sense also for negative values of n.

3.2.4. Remarks on p-completion. In the literature, MSS usually refers to a version without p-complete coeffi-
cients; in other words, using spectra instead of p-complete spectra. Since this paper is concerned with p-adic
cohomology theories, it is convenient for us to use p-complete coefficients everywhere. There is a standard
yoga for porting over results from the non-completed situation to the p-complete situation, which we will
describe now.

The Lurie tensor product of presentable ∞-categories [Lur17, §4.8.1] gives a purely categorical definition
of p-completing a category: namely, tensoring with the ∞ category of p-complete spectra Sp (over the usual
∞-category of spectra). In particular, our p-complete version of MSS is obtained from the one of Annala–
Hoyois–Iwasa via this operation. The analogous remarks apply when discussing the motivic stable homotopy
category SHS below.

For a presentable stable ∞-category C, let us denote by C∧p its p-completion, i.e., its tensor product with
the category of p-complete spectra. This is equipped with a canonical p-completion functor C → C∧p , which
is left adjoint to a fully faithful embedding C∧p ↪→ C. This construction has the following properties that
we shall repeatedly use when importing results regarding MS and other categories under consideration. Let
F : C → D be a colimit-preserving functor between presentable stable ∞-categories.

(1) There is an associated colimit preserving functor F∧
p : C∧p → D∧

p , given by the composition

F∧
p : C∧p ⊆ C

F−→ D → D∧
p , (3.2.8)

where the last functor is the p-completion functor.
(2) The right adjoint (F∧

p )
R of F∧

p : C∧p → D∧
p is the restriction of the right adjoint FR to the p-complete

objects.
(3) If FR preserves colimits, then so does (F∧

p )
R. Furthermore, if F admits a left adjoint then so does

F∧
p , which is the p-completion of the left adjoint FL in the sense of (3.2.8).

3.2.5. Relation to the motivic stable homotopy category. Following work of Morel–Voevodsky, we let SHS be
the p-complete stable homotopy category. It is a presentably symmetric monoidal stable ∞-category, given
by the formula

SHS = LA1PNis(SmS ; Sp)[(P
1)−1].

Here PNis(SmS ; Sp) is the ∞-category of Nisnevich sheaves on SmS valued in Sp, then LA1 is its A1-
localization, and finally [(P1)−1] inverts tensoring with the Tate motive. We emphasize that we demand
p-completeness in the definitions of SHS , in contrast to the usual conventions; results from the usual situation
will be ported over according to the p-completion yoga discussed in §3.2.4.

There is a fully faithful embedding SHS ↪→ MSS , whose essential image is spanned by objects which
are A1-invariant. This has both a left and a right adjoint, hence preserves all colimits and limits. The
left adjoint is A1-localization, and the right adjoint comes from [AHI24, Proposition 6.1], by the general
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procedure of §3.2.4. The left adjoint is symmetric monoidal, which gives a lax symmetric monoidal structure
to the inclusion SHS ↪→ MSS .

We denote by Smot
S (or just Smot when context makes S clear) the unit of SHS ; this goes by the name of

“p-complete (A1-invariant) motivic sphere spectrum”.

3.2.6. Comparison with sheaves of spectra. By construction, there is a colimit-preserving symmetric monoidal
functor PNis(SmS ; Sp)→ MSS , with right adjoint

(−)0 := Ω∞
P1 : MSS →PNis(SmS ; Sp). (3.2.9)

In terms of symmetric P1-spectra, this construction indeed extracts the 0-th object of the symmetric spec-
trum, justifying the notation. We think of Y0 as the cohomology theory on smooth S-schemes associated
with the motivic spectrum Y .

We turn to analyze the functor Y 7→ Y0. For this, we need the following feature of Nisnevich sheaves,
which we will repeatedly use.

Lemma 3.2.8. Let S be a qcqs scheme. Then the fully faithful embeddings (cf. §1.7.4 for notation)

PNis,ebu(SmS ; Sp) ⊆PNis(SmS ; Sp) ⊆P(SmS ; Sp)

are both colimit-preserving.

Remark 3.2.9. By definition of P(SmS ; Sp), the collection of evaluation functors

{P(SmS ; Sp)
F 7→F(X)−−−−−−−→ Sp}X∈SmS

is colimit preserving and jointly conservative. Hence Lemma 3.2.8 is equivalent to the statement that for
every X ∈ SmS , the functor

CS := PNis,ebu(SmS ; Sp)
F 7→F(X)−−−−−−−→ Sp

is colimit-preserving, and similarly for PNis(SmS ; Sp).

Proof. Since these are fully faithful embeddings, we need to check that each subcategory is closed under
colimits in the next. For the first inclusion, this is because the elementary blowup excision condition involves
only pullback squares, so it is clearly closed under colimits (as we work with stable ∞-categories). For the
second inclusion, Nisnevich descent is equivalent to satisfying Nisnevich excision, which is again a condition
involving only pullback squares (e.g., as in [Lur21, Theorem 2.9]). So this condition is also closed under
colimits among all presheaves valued in stable ∞-categories. □

Proposition 3.2.10. Let S be a qcqs scheme. For any n ∈ Z, the functor

Y 7→ Y (n)0 : MSS →PNis(SmS ; Sp)

is colimit-preserving, and the collection of all such functors for all n ∈ Z is jointly conservative.

Proof. For the colimit-preservation: since both the source and target are stable∞-categories, and the functor
Y 7→ Y (n)0 preserves limits as it is a right adjoint, it suffices to show that the functor in question preserves
filtered colimits. Since the target is p-complete, we can check this after reducing modulo p.

We claim that Σ∞P1/p ∈ CS – the cofiber of multiplication by p on Σ∞P1 – is a compact object. Given
the claim, it follows from [AI22a, Lemma 1.5.2] that Y 7→ Y (n)0 preserves filtered colimits. In order to
prove the claim, we observe that Σ∞P1 is compact in the non p-complete version of MSS from [AHI25]
because Map(Σ∞P1,−) is given by evaluation at P1, which preserves filtered colimits by the argument of
Lemma 3.2.8. This then implies that Σ∞P1/p is compact in the p-complete version of MSS that we are
considering here.

For the joint conservativity, since the shifts by −2n are invertible, it is equivalent to show that the
collection of functors

Y 7→ (Y ⊗ (Σ∞P1)⊗n)0

is jointly conservative. This follows directly from [AI22a, Lemma 1.6.2]. □

Another consequence is the compact generation of MSS .

Proposition 3.2.11. Let S be a qcqs scheme. The category MSS is compactly generated by the collection of
objects (cf. Definition 3.2.6) {Σ∞

+X/p(n)} for X ∈ SmS and n ∈ Z.
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Proof. First we argue that such objects generate MSS . Since our categories are p-complete, these objects
generate in particular the objects (where we have not reduced mod p) Σ∞

+X(n) for X ∈ SmS and n ∈ Z. So
it suffices to show that the collection of functors {HomMSS (Σ

∞
+X(n),−)} is conservative. For F ∈ MSS , we

have
HomMSS (Σ

∞
+X(n),F) = F(−n)(X)

factors as the composition F 7→ F(−n)0 from Proposition 3.2.10, followed by evaluation at X. The collection
of functors {F 7→ F(−n)0}n∈Z was proved to be conservative in Proposition 3.2.10. It therefore suffices to
see that collection of functors {F 7→ F(X)}X∈SmS on PNis(SmS ; Sp) is conservative, but this is tautological.

Next we argue that Σ∞
+X/p is compact for all X ∈ SmS . Note that the canonical functor P(SmS ; Sp)→

MSS has a colimit-preserving right adjoint by the combination of Proposition 3.2.10 and Lemma 3.2.8,
hence sends compact objects to compact objects. Since the Yoneda embedding of X in P(SmS ;Spectra) is
compact, its reduction mod p is compact in P(SmS ; Sp), and then its image Σ∞

+X/p in MSS is compact. □

3.3. Functoriality in the base. Let f : S → T be a morphism of qcqs schemes. We investigate the induced
functors on the categories of motivic spectra.

We have a symmetric monoidal adjunction13

f∗ : PNis,ebu(SmT ; Sp) ⇆ PNis,ebu(SmS ; Sp) : f∗. (3.3.1)

Moreover, the functor f∗ carries Σ∞P1
T to Σ∞P1

S . Hence, by the constructions of Section 3.2.2, we obtain
symmetric monoidal adjunction

(f∗)lax : MSlaxT ⇆ MSlaxS : f lax∗ (3.3.2)
of lax symmetric P1-spectra objects, and a corresponding symmetric monoidal adjunction

f∗ : MST ⇆ MSS : f∗ (3.3.3)

between the corresponding full subcategories of symmetric P1-spectra objects, The concrete descriptions of
these functors are summarized in Example 3.2.3.

3.3.1. Properties. We turn to some of the basic properties of these functors. First, we note that f∗ : MST →
MSS commutes with Tate twist:

f∗(Y (n)) ∼= f∗(Y ⊗ (Σ∞P1
T )

⊗n)[−2n] ∼= (f∗Y )⊗ (Σ∞P1
S)

⊗n[−2n] ∼= (f∗Y )(n).

Since the Tate twist functor Y 7→ Y (n) is invertible with inverse Y 7→ Y (−n), passing to the right adjoints
we deduce that f∗ : MSS → MST also commutes with Tate twist:

f∗(Y (−n)) ∼= (f∗Y )(−n).
Next, observe that by construction the functor (−)0 from (3.2.9) commutes with f∗ from (3.3.3). From

this, we deduce the following.

Proposition 3.3.1. Let f : S → T be a morphism of qcqs schemes. Then the functor f∗ : MSS → MST is
colimit-preserving.

Proof. Since the functors Y 7→ Y (n)0 are colimit-preserving and jointly conservative by Proposition 3.2.10,
it suffices to show that the functors

Y 7→ (f∗Y (n))0

are colimit-preserving for all n ∈ Z. The Tate twist functor is an equivalence, so it suffices to consider the
case n = 0. Since (f∗Y )0 ∼= f∗(Y0), it suffices to show that

f∗ : PNis(SmS ; Sp)→PNis(SmT ; Sp)

is colimit-preserving. Consider the commutative square

PNis(SmS ; Sp)
f∗ //

� _

��

PNis(SmT ; Sp)� _

��
P(SmS ; Sp)

f∗ //P(SmT ; Sp).

13By definition, this means that the left adjoint is symmetric monoidal, so the right adjoint is lax symmetric monoidal.
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By Lemma 3.2.8, the vertical fully faithful functors are colimit-preserving. Therefore, in order to show that
the upper horizontal functor is colimit-preserving, it suffices to show that the lower horizontal one

f∗ : P(SmS ; Sp)→P(SmT ; Sp)

is colimit-preserving, which is clear. □

Note that in general we have a map f∗(Y0) → (f∗Y )0, but this map may not be an isomorphism. We
next record a simple criterion for when it does.

Corollary 3.3.2. Let f : S → T be a morphism of qcqs schemes, and let Y = (Y0, Y1, . . . ) ∈ MST . If for all
n ∈ N the maps

f∗HomCT (Σ
∞P1

T , Yn)→ HomCS (Σ
∞P1

S , f
∗Yn) (3.3.4)

are isomorphisms, then
f∗(Y0)

∼−→ (f∗Y )0.

Proof. By (3.2.4), it would suffice to show that (f∗)lax(Y ) ∈ MSS . In view of the description of σn((f∗)laxY )
from (3.2.4), this follows immediately from the hypothesis that (3.3.4) is an isomorphism for all n ∈ N. □

3.4. Étale sheafification. There is an étale version of motivic spectra, which is obtained by repeating the
constructions of §3.2.3 with the étale topology replacing the Nisnevich topology.

There is an obvious forgetful functor MSétS → MSS , with left adjoint the “étale sheafification” functor
MSS → MSétS . We denote the composition MSS → MSétS → MSS by Lét.

Remark 3.4.1. The functor Lét can also be described more or less explicitly. Namely, étale sheafification
(followed by the forgetful functor) induces an analogous functor Lét : PNis,ebu(SmS ; Sp)→PNis,ebu(SmS ; Sp),
which in turn induces

Llax
ét : MSlaxS → MSlaxS

given by Llax
ét (Y0, Y1, . . . ) = (LétY0, LétY1, . . . ). Then Lét : MSS → MSS is given by the composition

Lét : MSS ↪→ MSlaxS
Llax

ét−−−→ MSlaxS
τS−→ MSS . (3.4.1)

where τS is as in (3.2.7).

3.5. Oriented graded algebras. In [AHI25, §6] the authors develop a useful technique to produce com-
mutative algebras in MSS . We recall a simplified version of their construction here. It will be convenient to
develop the theory in full generality for an object of a symmetric monoidal ∞-category.

Definition 3.5.1. Let C be a presentably symmetric monoidal ∞-category and let c ∈ C. A c-preoriented
graded algebra in C is a graded commutative algebra E• ∈ ComAlg(CN) together with a map ω : c → E1.
Equivalently, it is a map c⟨1⟩ → E in CN of graded objects, where c⟨1⟩ is the object c concentrated in degree
1. The c-preoriented graded algebras in C organize into a presentably symmetric monoidal ∞-category
ComAlgporc (CN).

Definition 3.5.2. Let C be a presentably symmetric monoidal∞-category and let c ∈ C and let (E•, ω) be a
c-preoriented graded algebra in C. For each i ∈ N, the map ω : c→ E1 gives a map c⊗Ei → E1⊗Ei → Ei+1

which adjoints to a map σi : Ei → Hom(c, Ei+1). We say that E is c-oriented if σi is an isomorphism for all
i. We let ComAlgorc (CN) ⊆ ComAlgporc (CN) be the full subcategory spanned by the oriented graded algebras.

3.5.1. Turning oriented graded algebras into symmetric spectra objects. There is a truncation functor π : Σ→
N which induces a lax symmetric monoidal functor π∗ : CN → CΣ. Recall from Example 3.2.1 that Sym(c) ∼=
FrE∞(π∗c⟨1⟩) is the free E∞-algebra on π∗c⟨1⟩, so the data of a map from π∗c⟨1⟩ into a commutative algebra
in CΣ is the same as that of a Sym(c)-algebra. We thus obtain a functor

ν := π∗ : ComAlgporc (CN)→ ComAlg(Splaxc (C)).

In fact, as explained in [AHI24, §6], by “doubling the grading” this functor canonically promotes to a functor
into the category of graded algebras ComAlg(Splaxc (C)N), and we denote this promotion abusively by the
same notation.
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Remark 3.5.3. Unwinding the definitions, we see that the map ν takes a graded algebra (E0, E1, . . . ) to
the symmetric sequence (E0, E1, . . . ) in which Σn acts trivially on En, and the maps σi : Ei → Hom(c, Ei+1)
induced from the oriented graded algebra and lax spectrum structures agree. It follows immediately that ν
carries ComAlgorc (CN) into ComAlg(Spc(C)); in fact, we have a pullback square of ∞-categories

ComAlgorc (CN) //

ν

��

ComAlgpor(CN)

ν

��
ComAlg(Spc(C)) // ComAlglax(Spc(C))

Example 3.5.4. Assume that c is already invertible in C, so that C ∼−→ Spc(C). Then, an oriented graded
algebra in C is a graded algebra (E0, E1, . . . ) together with a map c → E1 such that Ei ∼−→ Hom(c, Ei+1).
Since c is invertible, this is equivalent to the original map c⊗Ei → Ei+1 being an isomorphism, so that E•
assumes the form (E0, E0 ⊗ c, E0 ⊗ c⊗2, . . . ). Hence, an object of ComAlgorc (CN) is the data of

• a commutative algebra E0 ∈ ComAlg(C), together with
• a structure of graded commutative algebra on

⊕
n∈N(E0 ⊗ c⊗n).

This latter datum is equivalent to what is called a strict structure on E0 ⊗ c (see for example [Car23]): a
factorization of the map

Jc : S
c−→ Pic(C) (−)⊗E0−−−−−→ Pic(E0)

through the truncation map of spectra S→ Z. In this situation, the functor

ν : ComAlgorc (CN)→ ComAlg(Spc(C)N) ∼= ComAlg(CN)

(in which the second functor is induced by the equivalence Ω∞
c : Spc(C) → C) agrees with the forgetful

functor ComAlgorc (CN)→ ComAlg(CN) that forgets the orientation.

3.5.2. Naturality of ν. Let f∗ : C → D be a colimit preserving symmetric monoidal functor with right adjoint
f∗. They induce an adjunction

(f∗)por : ComAlgporc (CN) ⇆ ComAlgporf∗c(D
N) : (f∗)

por

in which the functor (f∗)por carries (E•, ω : c→ E1) to (f∗E•, f
∗ω : f∗c→ f∗E1), and the right adjoint fpor∗

carries (E•, ω : f
∗c→ E1) to (f∗E•, c

unit−−→ f∗f
∗c

f∗ω−−→ f∗E1).
Since the functor π∗ is given by pre-composition with a symmetric monoidal functor p : Σ → N, it is

compatible with post-composition with arbitrary colimit preserving symmetric monoidal functors f∗ : C → D.
We immediately deduce the following.

Proposition 3.5.5. Let f∗ : C → D be a colimit preserving symmetric monoidal functor between presentably
symmetric monoidal ∞-categories. Then the square

ComAlgporc (CN)

ν

��

(f∗)por

// ComAlgporf∗(c)(D
N)

ν

��
ComAlg(Splaxc (C))

(f∗)lax// ComAlg(Splaxc (D))

canonically commutes.

Since the horizontal functors in this square have right adjoints, we obtain a Beck–Chevalley transformation
νfpor∗ → f lax∗ ν.

Proposition 3.5.6. Let f∗ : C → D be a colimit preserving symmetric monoidal functor between presentably
symmetric monoidal ∞-categories. Then the Beck–Chevalley transformation νfpor∗ → f lax∗ ν is an isomor-
phism. Hence, we obtain a canonical homotopy rendering the diagram

ComAlgporc (CN)

ν

��

ComAlgporf∗(c)(D
N)

ν

��

(f∗)
por

oo

ComAlg(Splaxc (C)) ComAlg(Splaxc (D))
f lax
∗

oo
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commutative.

Remark 3.5.7. The analogous compatibilities hold for the factorization of ν through N-graded motivic
spectra, which was mentioned in the first paragraph of §3.5.1, by essentially the same arguments.

Proof. Both νfpor∗ (E•, ω) and f lax∗ ν(E•, ω) have underlying symmetric sequence (f∗E0, f∗E1, . . . ) by Ex-
ample 3.2.3 and its analogue for pre-oriented graded algebras. Moreover, from the definition of ν we see
that the Beck–Chevalley map restricts to the identity on the underlying symmetric sequences, hence is an
isomorphism. □

Corollary 3.5.8. With the same settings as in Proposition 3.5.6, the functor fpor∗ restricts to a functor
for∗ : ComAlgorc (DN)→ ComAlgorc (CN).

Proof. We have to check that if (E•, ω) ∈ ComAlgorc (DN) then f∗ω is an orientation of f∗E•. This is
equivalent to the claim that νfpor∗ (E•, ω) ∈ Spc(C), which follows from νfpor∗ (E•, ω) ∼= f lax∗ ν(E•, ω) since
f lax∗ carries specta objects to spectra objects. □

Note that the functor for∗ has a left adjoint (f∗)or given by the composition

ComAlgorc (CN)→ ComAlgporc (CN)
(f∗)por

−−−−→ ComAlgporc (DN)→ ComAlgorc (DN)

in which the last functor is the left adjoint to the inclusion of the oriented algebras into the preoriented ones.

Corollary 3.5.9. Let C be a presentably symmetric monoidal∞-category and let c ∈ C. Let Σ∞
c : C → Spc(C)

be the c-stabilization functor, with right adjoint Ω∞
c . Then, for (E•, ω) ∈ ComAlgorc (Spc(C)N) there is a

natural isomorphism
ν((Ω∞

c )por(E•, ω)) ∼= E•

in ComAlg(Spc(C)N).

Proof. Let c̃ ∈ Spc(C) be the image of c under Σ∞
c . Applying Proposition 3.5.6 to f∗ = Σ∞

c , and using the
observation at the end of Example 3.5.4, we obtain

ν((Ω∞
c )por(E•, ω)) ∼= (Ω∞

c̃ )laxν(E•, ω) ∼= E•,

as desired. □

3.5.3. Oriented graded algebras in CS. Recall that we defined CS := PNis,ebu(SmS ; Sp)

Definition 3.5.10. Specializing the construction of oriented graded algebras to the case C = CS and c =
Σ∞P1

S , we can form the ∞-category of P1-pre-oriented graded algebras in CS , which we denote

ComAlgporP1 (CNS ) := ComAlgporΣ∞P1(CNS )

We further have the full subcategory

ComAlgorP1(CNS ) := ComAlgorΣ∞P1(CNS )

spanned by the P1-oriented graded algebras. Recall that these are the pre-oriented graded algebras for which
the resulting maps

σn : En → HomCS (Σ
∞P1, En+1) (3.5.1)

are isomorphisms.
We denote the ∞-categories of pre-oriented and oriented graded algebras in CS by

ComAlgorP1(CNS ) ⊆ ComAlgporP1 (CNS ).

There is also a variant of this definition which will be useful later.

Variant 3.5.11. Let Pic = BGm be the Nisnevich sheaf of (connective, 1-truncated) spectra on schemes,
assigning to a scheme X its Picard stack Pic(X), so that π0 Pic(X) is the Picard group of X and π1 Pic(X) =
O(X)×. We implicitly restrict Pic to smooth S-schemes. A Pic-pre-oriented graded algebra in CS is a graded
algebra E ∈ ComAlg(CNS ) together with a map Σ∞ Pic⟨1⟩ → E, or equivalently, a map Σ∞ Pic → E1. We
denote by ComAlgporPic(CNS ) the ∞-category of Pic-pre-oriented graded algebras in CS .

The canonical (pointed) map P1 → Pic induces a forgetful functor ComAlgporPic(CNS ) → ComAlgporP1 (CNS ).
We define the∞-category of Pic-oriented graded algebras ComAlgorPic(CNS ) to be the preimage of ComAlgorP1(CNS )
along this forgetful functor. In other words, we say that a Pic-pre-oriented graded algebra is oriented if the
underlying P1-pre-oriented algebra is oriented.
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Remark 3.5.12. Roughly speaking, a Pic-orientation of E ∈ ComAlg(CNS ) is responsible for the existence
of Thom isomorphisms for E-valued cohomology.

3.5.4. Constructing motivic spectra from oriented graded algebras. Applying the construction from Sec-
tion 3.5.1 to the case where C = CS and c = Σ∞P1, we obtain a functor

ν : ComAlgporP1 (CNS )→ ComAlg((MSlaxS )). (3.5.2)

By Remark 3.5.3, this functor restricts to a functor from P1-oriented algebras to ComAlg(MSNS ), namely,
we have a commutative diagram

ComAlgorP1(CNS )
ν //

� _

��

ComAlg(MSS)� _

��
ComAlgporP1 (CNS )

ν
// ComAlg(MSlaxS )

(3.5.3)

3.5.5. The fully faithful inclusion ComAlgorP1(CNS ) ⊂ ComAlgporP1 (CNS ) admits a left adjoint which we call

τS : ComAlgporP1 (CNS )→ ComAlgorP1(CNS ). (3.5.4)

It is compatible with the τS from (3.2.7) under the realization functor ν (3.5.2), in the sense that the following
diagram commutes

ComAlgporP1 (CNS ) ComAlgorP1(CNS )

ComAlg(MSlaxS ) ComAlg(MSS)

τS

ν ν

τS

(3.5.5)

and analogous remarks apply to the Pic-oriented variant.

3.5.6. Functoriality in the base. Let f : S → T be a morphism of qcqs schemes. The functor f∗ : CT → CS
carries the object Σ∞P1

T to the object Σ∞P1
S , hence gives a functor

(f∗)por : ComAlgporP1 (CNT )→ ComAlgporP1 (CNS ). (3.5.6)

defined as the composition

f∗ : ComAlgorP1(CNT ) ↪→ ComAlgporP1 (CNT )
(f∗)por

−−−−→ ComAlgporP1 (CNS )
τS−→ ComAlgorP1(CNS ). (3.5.7)

By Proposition 3.5.5 it fits into a commutative square

ComAlgporP1 (CNT )

ν

��

(f∗)por

// ComAlgporP1 (CNS )

ν

��
ComAlg(MSlaxT )

(f∗)lax // ComAlg(MSlaxS )

(3.5.8)

As in Section 3.5.2 the functor (f∗)por admits a right adjoint

(f∗)
por : ComAlgporP1 (CNS )→ ComAlgporP1 (CNT ),

which by Proposition 3.5.6 fits into a commutative diagram

ComAlgporP1 (CNS ) ComAlgporP1 (CNT )

ComAlg(MSlaxS ) ComAlg(MSlaxT )

ν

fpor
∗

ν

f lax
∗

and restricts to a functor between the full subcategories of P1-oriented algebras, namely:

Corollary 3.5.13. Let f : S → T be a morphism of qcqs schemes. The functor

fpor∗ : ComAlgporP1 (CNS )→ ComAlgporP1 (CNT )

carries P1-oriented algebras to P1-oriented algebras.
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Corollary 3.5.13 says in other words that (f∗)
por restricts to a functor

f∗ : ComAlgorP1(CNS )→ ComAlgorP1(CNT ). (3.5.9)

This f∗ is right adjoint to (3.5.7), and fits into a commutative diagram

ComAlgorP1(CNS ) ComAlgorP1(CNT )

ComAlg(MSS) ComAlg(MST )

ν

f∗

ν

f∗

(3.5.10)

Remark 3.5.14. Since the étale sheafification functor is a composition of a symmetric monoidal left adjoint
and a right adjoint, similar considerations apply to it. Namely, for every qcqs scheme S, we have a functor

Lpor
ét : ComAlgporP1 (CNS )→ ComAlgporP1 (CNS )

fitting into a commutative square

ComAlgporP1 (CNS )

ν

��

Lpor
ét // ComAlgporP1 (CNS )

ν

��
ComAlg(MSlaxS )

Llax
ét // ComAlg(MSlaxS )

(3.5.11)

Composing Lpor
ét with the functor τS from (3.5.5), we obtain the oriented version of étale sheafification:

Lét : ComAlgorP1(CNS )
Lpor

ét−−−→ ComAlgporP1 (CNS )
τS−→ ComAlgorP1(CNS ). (3.5.12)

From the definition of étale sheafification and (3.5.5), it is clear that these functors are compatible with étale
sheafification of (lax) motivic spectra, in the sense of the commutative diagrams

ComAlgorP1(CNS ) ComAlgorP1(CNS )

ComAlg(MSS) ComAlg(MSS)

Lét

ν ν

Lét

ComAlgporP1 (CNS ) ComAlgporP1 (CNS )

ComAlg(MSlaxS ) ComAlg(MSlaxS )

Lpor
ét

ν ν

Llax
ét

3.6. Promoting motivic and syntomic cohomology to motivic spectra. The language of oriented
graded algebras allows us to lift syntomic cohomology into a motivic spectrum. Apart from that, it will be
a convenient language to compare syntomic cohomology with motivic and étale cohomology, so we shall now
explain how all three theories organize into P1-oriented graded algebras, resulting in motivic spectra.

3.6.1. Syntomic cohomology. For n ∈ Z, let Zsyn
p (n) denote the absolute syntomic cohomology functor of

[BL22, §8.4]. Taking the direct sum over n ∈ Z, these assemble into a functor Zsyn
p (•) :=

⊕
n∈Z Zsyn

p (n)
from schemes to graded commutative algebras in D(Zp), the p-completed derived category of abelian groups.
Since it satisfies Nisnevich descent and elementary blowup excision, we may regard

Zsyn
p (•) = (Zsyn

p (n))n∈N ∈ ComAlg(CNS ).

Then we can shear it to get a new graded commutative algebra14

Zsyn
p (•)[2•] = (Zsyn

p (n)[2n])n∈N ∈ ComAlg(CNS ).

In [BL22, Proposition 7.5.2], Bhatt–Lurie construct the syntomic first Chern class

csyn1 : Pic→ Zsyn
p (1)[2].

Forgetting the spectrum structure, we may regard Pic as sheaf of pointed spaces together with a map of
sheaves of spectra Σ∞ Pic→ Pic. Composing with it, we obtain a Pic-pre-orientation

ξsyn : Σ∞ Pic→ Pic
csyn1−−→ Zsyn

p (1)[2].

14Note that the commutative algebra structure on the shearing uses the fact that Zsyn
p (•) lands in Z-algebras. In general,

such a shearing of a graded commutative algebra is only an E2-algebra.
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Proposition 3.6.1. The Pic-pre-orientation ξsyn is an orientation, so that

(Zsyn
p (•)[2•]S , ξsyn) ∈ ComAlgorPic(CNS )

for every qcqs scheme S.

Proof. By definition of orientation, we have to show that the map

Zsyn
p (n)→ HomCS (Σ

∞P1,Zsyn
p (n+ 1)[2])

induced from ξsyn is an isomorphism. This can be checked after taking sections over an arbitrary smooth
S-scheme X, so it suffices to show that ξsyn and evaluation at the basepoint of P1 together induce an
isomorphism

H∗+2,∗+1
syn (X ×P1;Zp(n))

∼−→ H∗+2,∗+1
syn (X;Zp(n))⊕H∗,∗

syn(X;Zp(n)).

This is a special case of the projective bundle formula of [BL22, Theorem 9.1.1]. □

This leads to the following construction.

Definition 3.6.2 (Syntomic cohomology as a motivic spectrum). Let S be a qcqs scheme. We define the
commutative algebra

(Zsyn
p )S = Zsyn

p (0)S ∈ ComAlg(MSS)

to be the commutative algebra in motivic spectra corresponding to (Zsyn
p (•)[2•]S , ξsyn), or in other words

(Zsyn
p )S := ν(Zsyn

p (•)[2•]S , ξsyn).

We further define Zsyn
p (n)S := (Zsyn

p )S(n). When S is clear from the context, we shall omit it from the
notation. We also denote Fsyn

p := Zsyn
p ⊗Zp Fp (the tensor product being derived, of course).

Remark 3.6.3. One can view “syntomic cohomology” as a cohomology theory or as a motivic spectrum.
These are morally similar but the latter is a more refined piece of structure, and we distinguish them by the
font, with boldface indicating syntomic sheaves and blackboard-bold indicating the corresponding motivic
spectra.

The most important property of Zsyn
p (n)S from our perspective is that it comes equipped with a natural

isomorphism
(Zsyn
p (n)S)0 ∼= Zsyn

p (n)S ;

in other words, the cohomology theory represented by Zsyn
p (n)S is the restriction of absolute syntomic

cohomology with nth Tate twist to smooth S-schemes.
Syntomic cohomology is an “absolute” cohomology theory for schemes, not restricted to any specific base.

This claim has a motivic refinement. Namely, Zsyn
p (n)S is the S-component of an “absolute motivic spectrum”.

We shall only consider the incarnation of this fact for individual morphisms.

Proposition 3.6.4. Let f : S → T be a morphism of qcqs schemes. Then there is a canonical isomorphism

f∗(Zsyn
p (n)T ) ∼= Zsyn

p (n)S .

Proof. Since f∗ intertwines the Tate twists, it suffices to treat the case n = 0. Let (Zsyn
p (•)[2•]T , ξsynT ) be the

Pic-oriented graded algebra from Definition 3.6.2 and similarly for S. First, we shall construct a canonical
isomorphism

(f∗)por(Zsyn
p (•)[2•]T , ξsynT ) ∼= (Zsyn

p (•)[2•]T , ξsynT ). (3.6.1)

By definition, f∗Zsyn
p (n)T is constructed by applying the following sequence of operations:

(1) Left Kan extension from smooth T -schemes to all (qcqs) T -schemes. Let us denote the inclusion of
smooth T -schemes into all qcqs T -schemes by µ : SmT → SchT , and the relevant left Kan extension
of presheaves by µ♯, with right adjoint µ∗.

(2) Restriction to smooth S-schemes; note that every smooth S-scheme acquires the structure of a qcqs
T -scheme via f .

(3) Nisnevich sheafification.
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Let Zsyn
p (•)[2•] be the absolute syntomic cohomology complex, regarded as a sheaf of commutative graded

algebras on qcqs schemes. Then Zsyn
p (•)S [2•] is obtained from Zsyn

p (•)[2•] by restriction to smooth S-schemes,
and similary for T . The counit of the symmetric monoidal adjunction µ♯ ⊣ µ∗ is a natural transformation

µ♯Z
syn
p (•)T [2•] ∼= µ♯µ

∗(Zsyn
p (•)[2•]|SchT )→ Zsyn

p (•)[2•]|SchT , (3.6.2)

which restricts to a map

(µ♯Z
syn
p (•)T [2•])|SmS → Zsyn

p (•)[2•]|SmS = Zsyn
p (•)S [2•]. (3.6.3)

We want to show that (3.6.1) is an isomorphism; since both sides are Nisnevich sheaves, it suffices to assume
that T, S are affine and that (3.6.3) is an isomorphism. As that arises as restriction from (3.6.2), it suffices
to show that the latter map is an isomorphism, which means in other words that syntomic cohomology for
qcqs T -schemes is the left Kan extension of its restriction to smooth T -schemes. For T = Spec Z, this is
[BL22, Proposition 8.4.10], but the proof applies to an arbitrary affine base.

To construct (3.6.1), it remains to verify that f∗ carries the Pic-pre-orientation ξsynT to ξsynS ; this would
follow from the functoriality of the first Chern class csyn1 : Pic→ Zsyn

p (1)[2] in arbitrary maps of qcqs schemes.
In turn, this functoriality follows by Zariski descent from the affine case, where it is part of the definition of
csyn1 in [BL22, §7]. This completes the construction of (3.6.1).

Now, recalling that τS : MSlaxS → MSS is the left adjoint to the inclusion, we have

f∗(Zsyn
p )T

(1)∼=τS(f∗)laxν(Zsyn
p (•)[2•]T , ξsynT )

(2)∼=τSν(f∗)por(Zsyn
p (•)[2•]T , ξsynT )

(3)∼=τSν(Zsyn
p (•)[2•]S , ξsynS )

(4)∼=τS(Zsyn
p )S

(5)∼= (Zsyn
p )S ,

where the isomorphisms are explained as follows:
(1) is direct from the definitions of (Zsyn

p )T and f∗ (cf. (3.2.4)),
(2) is the commutativity (3.5.8),
(3) is (3.6.1),
(4) is by definition of (Zsyn

p )S , and
(5) follows from the fact that (Zsyn

p )S already belongs to MSS ⊆ MSlaxS .
This completes the proof. □

3.6.2. Motivic cohomology. Our next goal is to explain how the motivic cohomology spectrum arises from
an oriented graded algebra. This will be done by running the machinary of Section 3.5.1 in reverse. The
task is easier over a field of characteristic zero, and since this is the only case we need, we only consider this
generality.

Let K be a field of characteristic 0. Voevodsky defined the Eilenberg–MacLane spectra in [Voe10], thanks
to which we have the p-adic motivic cohomology spectrum Zmot

p ∈ SHK . We want to upgrade it to a Pic-
oriented graded commutative algebra (Zmot

p (•)[2•], ξmot) ∈ ComAlgorPic(CNK ). To achieve this, we will promote
Zmot
p into a Pic-oriented graded algebra in SHK ⊆ MSK in the following sense.

Definition 3.6.5. A Pic-oriented graded algebra in MSK is a graded algebra E• ∈ ComAlg(MSNK) together
with a map Σ∞ Pic→ E1 such that its restriction along Σ∞P1 → Σ∞ Pic is a P1-orientation of E• in MSK .

The forgetful functor (−)0 : MSK → CK induces a functor

(−)or0 : ComAlgorPic(MSNK)→ ComAlgorPic(CNK ).

Our strategy is to construct the Pic-oriented graded algebra Zmot
p (•)[2•] as the image under (−)or0 of a

Pic-oriented graded algebra Zmot
p (•)[2•] in SHK ⊆ MSK .

We will realize Zmot
p (•)[2•] as the associated graded for Voevodsky’s slice filtration [Voe02, §2] on the

motivic K-theory spectrum. First, we need to recall some aspects of the formalism of the slice filtration.
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Define F≥0
slice SHK ⊂ SHK to be the full subcategory generated under colimits and shifts from objects of the

form Σ∞
+X for X ∈ SmK . Then for all n ∈ Z,

F≥n
slice SHK = (Σ∞P1)⊗n ⊗ F≥0

slice SHK .

This defines a Z-indexed filtration by full stable subcategories closed under colimits and compatible with
the symmetric monoidal structure, i.e.,

F≥i
slice SHK ⊗F

≥j
slice SHK → F≥i+j

slice SHK .

It follows formally that there is a symmetric monoidal functor f≥• : SHK → Fil(SHK) (the target being the
∞-category of Z-filtered objects in SHK) such that f≥i is the coreflection of SHK onto SH≥i(K), i.e., f≥i
is right adjoint to the embedding SH≥i(K) ⊆ SHK . For X ∈ SHK , we further denote by f≤iX ∈ SHK the
cofiber of the counit map f≥i+1X → X, and by fiX ∈ SHK the cofiber of the map f≥i+1X → f≥iX. Hence
for the associated graded functor gr : Fil(SHK)→ (SHK)Z, we have

gr(f≥•X) ∼=
⊕
n∈Z

fnX ∈ SHZ
K .

Let KGL ∈ ComAlg(SHK) be the p-completion of the A1-invariant algebraic K-theory spectrum [AI22b].
Recall that Smot denotes the motivic p-adic sphere spectrum. Voevodsky proved in [Voe03a] (in the setting
that K has characteristic zero) that

f0Smot ∼−→ f0KGL ∼= Zmot
p (3.6.4)

as commutative algebras in SHK . Using the Bott periodicity isomorphism KGL(1)[2] ∼= KGL, we obtain that
the associated graded algebra of f≥•KGL is given by

gr(f≥•KGL) ∼= Zmot
p (•)[2•] ∈ (SHK)Z. (3.6.5)

Note that this identification holds for all • ∈ Z. Restricting to the non-negative part of the grading, we
obtain an identification

gr(f≥•KGL) ∼= Zmot
p (•)[2•] ∈ (SHK)N (3.6.6)

of N-graded motivic spectra. The LHS has a tautological commutative algebra structure induced by that
on KGL, which restricts to the isomorphism (3.6.4) of commutative algebras in degree 0. Henceforth, by
gr(f≥•KGL) we meant this N-graded commutative algebra. We may therefore transfer the commutative
algebra structure to the RHS, to view Zmot

p (•)[2•] ∈ ComAlg((SHK)N).
As explained in [AHI24, §6], there is a canonical map β : Σ∞ Pic→ f≥1KGL, which turns f≥•KGL into a

Pic-oriented filtered algebra in SHK in the sense that after restriction along the map P1 → Pic, the resuling
maps

f≥iKGL→ HomSH(F )(Σ
∞P1, f≥i+1KGL) ∼= f≥i+1KGL(−1)[−2]

(where Σ∞P1 refers to the image in SHK) are all isomorphisms. Passing to the associated graded algebra
of the filtration, we thus obtain a Pic-orientation ξ : Σ∞ Pic→ Zmot

p (1)[2] of Zmot
p (•)[2•].

Definition 3.6.6 (Motivic cohomology as an Oriented Algebra). Let K be a field of characteristic zero.
We define the oriented graded algebra (Zmot

p (•)[2•], ξmot) ∈ ComAlgorPic(CNK ) be the image of (Zmot
p (•)[2•], ξ)

under the functor (−)or0 : ComAlgorPic(SH
N
K)→ ComAlgorPic(CK).

By design, this oriented graded algebra models motivic cohomology.

Proposition 3.6.7. We have
ν(Zmot

p (•)[2•], ξmot) ∼= Zmot
p

in ComAlg(SHK).

Proof. Since (Zmot
p (•)[2•], ξmot) = (Zmot

p (•)[2•], ξ)or0 , the claim follows from Corollary 3.5.9 (where (−)0 is
denoted Ω∞

c ). □

Remark 3.6.8. The map ξmot : Σ∞ Pic → Zmot
p (1)[2] decomposes as Σ∞ Pic → Pic → Zmot

p (1)[2] where
the first one is the canonical map coming from the fact that Pic is a sheaf of spectra and the second map is
the p-completion and shift of the classical isomorphism Zmot(1)[1] ∼= Gm.
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4. Perfectoid nearby cycles

Let O be a rank-one p-adic perfectoid valuation ring, which we moreover assume15 can be written as a
p-completed filtered colimit O = (lim−→n

On)∧p where On is a local finite Zp-algebra. Let K := O[1/p] be the
fraction field of O and k be the residue field of O.

Example 4.0.1. The main example of interest to us is O = Zcyc
p , in which case we may for example take

On = Zp[µpn ].

In this section we define a functor ψ : SHK → MSk, whose form is reminiscent of the nearby cycles
functor. (This ψ in fact arises as the restriction of a functor MSK → MSk to SHK ⊂ MSK .) We will see
that, thanks to certain miraculous properties of perfectoid rings, this functor is well-behaved, and carries
motivic cohomology (as a motivic spectrum over K) to syntomic cohomology (as a motivic spectrum over
k). One significance of this fact is that it will eventually allow us to transport knowledge about the motivic
Steenrod algebra from characteristic 0 to knowledge about the syntomic Steenrod algebra in characteristic p,
the latter of which is a priori mysterious. In characteristic 0, the motivic Steenrod algebra was calculated
by Voevodsky [Voe03b, Voe10], and through ψ this will give our initial traction on the syntomic Steenrod
algebra.

Remark 4.0.2. Some of our results in this section are similar to some results discovered independently by
Bouis–Kundu in the recent paper [BK25]. The technical arguments appear to share some similarities, which
we have not attempted to analyze in detail.

By combining [BK25] with forthcoming results of Bachman–Elmanto–Morrow on motivic cohomology in
mixed characteristic, it should be possible to “descend” our results to the motivic level. A more precise
statement is made in Remark 4.3.4 below.

4.1. The functor. We define the (lax symmetric monoidal) functor

Ψ: SHK → MSO (4.1.1)

as the composition of the (lax symmetric monoidal) functors

Ψ: SHK ↪→ MSK
j∗−→ MSO

Lét−−→ MSO

from §3.2.5, (3.3.3), and §3.4 respectively.

Remark 4.1.1. We emphasize that although Lét factors through MSétO , we are forgetting back down to
MSO in the definition of Ψ. (Later, we use the notation Lét for étale sheafification without forgetting back
down to the Nisnevich topology.)

Remark 4.1.2. The definition of Ψ could have been made starting over a general extension K/Qp, but it
would not behave well in general. The highly ramified nature of the perfectoid field K is needed for Ψ to
have good properties, a phenomenon that can be traced back to observations of Niziol in [Niz98]. We do
expect the analogous definition to behave well whenever O is a perfectoid valuation ring over Zp.

Consider the closed embedding i : Spec k ↪→ Spec O. We define the (lax symmetric monoidal) functor

ψ : SHK → MSk (4.1.2)

as the composition of Ψ with i∗ : MSO → MSk.

Remark 4.1.3. The definition of ψ resembles that of the p-adic nearby cycles, except we have not base
changed to an algebraic closure ofK as we would do for the formation of nearby cycles. That this construction
behaves well relies crucially on the perfectoid nature of K (and that we are taking p-adic coefficients). A
related phenomenon appears in [BMS19, Theorem 10.1]16.

Over the rest of the section, we will investigate the properties of this functor when evaluated on motivic
cohomology (viewed as a motivic spectrum via Definition 3.6.6). In particular, the goal of this section is to
construct an isomorphism

ψ((Zmot
p )K) ∼= (Zsyn

p )k ∈ MSk .

15This assumption is likely superfluous, and should be removable using forthcoming work of Bouis–Kundu [BK25] and
Bachmann–Elmanto–Morrow [BEM]

16Although the result there is stated with C algebraically closed, it is not necessary for the proof.
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Remark 4.1.4. The functors Ψ and ψ are each compositions of the functors considered in §3, all of which
are compatible with the Tate twist in the obvious way. Hence we have (compatible) isomorphisms of functors

ψ(−(n)) ∼= ψ(−)(n) : SHK → MSk

for all n ∈ Z, and similarly for Ψ.

4.2. “Local constancy” of syntomic cohomology. Our first goal is to show that the functor Ψ carries
the motivic cohomology spectrum over K to the syntomic cohomology spectrum over O, or more precisely
to construct an isomorphism

Ψ((Zmot
p )K) ∼= (Zsyn

p )O ∈ MSO . (4.2.1)
We will do this by comparing the oriented graded algebras (Zsyn

p (•)[2•]O , ξsyn) and (Zmot
p (•)[2•]K , ξmot). In

fact, rather than comparing them directly, we shall compare each with the oriented graded algebra computing
p-adic étale cohomology.

4.2.1. Étale comparison for syntomic cohomology. Let Zét
p (n)K = lim←−N µ

⊗n
pN

, regarded as an étale sheaf on
smooth schemes over Spec K. There is an obvious commutative algebra structure on

⊕
n∈N Zét

p (n)K , which
we shear to obtain a commutative algebra

Zét
p (•)[2•]K = (Zét

p (n)[2n]K)n∈N ∈ ComAlg(Pét(SmK ; Sp)N).

The first Chern class for étale cohomology of BGm equips Zét
p (•)[2•]K with an orientation, promoting

Zét
p (•)[2•]K to an object of ComAlgorPic(Pét(SmK ; Sp)N).

Proposition 4.2.1 (Bhatt–Lurie). There exists a canonical morphism of étale Pic-oriented graded algebras
over O,

γét : (Z
syn
p (•)[2•]O , ξsyn)→ j∗(Z

ét
p (•)[2•]K , ξét) ∈ ComAlgorPic(Pét(SmO ; Sp)

N).

Proof. This follows from the étale comparison morphism of Bhatt–Lurie [BL22, Theorem 8.3.1]. □

4.2.2. Étale sheafification of motivic cohomology. Let us write

Lét : PNis(SmK ; Sp)→Pét(SmK ; Sp) (4.2.2)

for the étale sheafification functor. Note the distinction from Lét, which is the composition

PNis(SmK ; Sp) Pét(SmK ; Sp)

PNis(SmK ; Sp)

Lét

Lét

forget

Next we use that the étale sheafification of p-adic motivic cohomology is p-adic étale cohomology. Such
statements were initially proved by Suslin–Voevodsky [SV00], and reproved by Geisser–Levine in [GL01], but
we want to invoke a more structured version involving the commutative algebra structure on

⊕
n∈Z Zmot

p (n)[2n]K
constructed in (3.6.2), that does not seem to have been established in the literature until [BEM]. More pre-
cisely, [BEM, Proposition 6.5] implies that

Lét(Z
mot
p (•)[2•]K , ξmot) ∼= (Zét

p (n)[2n]K , ξ
ét) ∈ ComAlgorPic(Pét(SmK ; Sp)N). (4.2.3)

Now, we have a Beck–Chevalley comparison map

δ : Létj∗(Z
mot
p (•)[2•]K , ξmot)→ j∗Lét(Z

mot
p (•)[2•]K , ξmot)

(4.2.3)∼= j∗(Z
ét
p (•)[2•]K , ξét).

.

4.2.3. Upshot. In summary, we have a diagram of solid arrows in ComAlgorPic(Pét(SmO ; Sp)),

Létj∗(Z
mot
p (•)[2•]K , ξmot)

δ

��
(Zsyn

p (•)[2•], ξsyn)
γét //

∼
44

j∗(Z
ét
p (•)[2•]K , ξét)

(4.2.4)

Our next goal is to construct the dashed isomorphism in (4.2.4), making the triangle commute. This will
require some preparations.
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4.2.4. Beilinson’s t-structure on graded objects. Recall that if C is a stably symmetric monoidal ∞-category
with a compatible17 t-structure τ≤∗, then the∞-category CN (of N-graded objects in C) inherits a symmetric
monoidal t-structure τ≤∗

gr with

τ≤ngr (X0, X1, . . . ) = (τ≤nX0, τ
≤n−1X1, . . . , τ

≤n−mXm, . . . ).

This is a graded version of Beilinson’s t-structure [Bei87], and we shall therefore refer to it as the Beilinson
t-structure on CN.

Example 4.2.2. For a qcqs scheme S, the ∞-category Pét(SmS ; Sp) of étale sheaves of p-complete spectra
admits a canonical t-structure for which F is connective (i.e., concentrated in non-positive degrees) if
and only if F/p is connective as an ordinary sheaf of spectra. This induces a Beilinson t-structure on
Pét(SmS ; Sp)

N.

We will start by constructing the dashed arrow in (4.2.4) at the level of commutative graded algebras,
ignoring the pre-orientations. At this level, we may regard the objects as lying in Pét(SmS ; Sp)

N with the
t-structure of Example 4.2.2, and we will show that both maps γét and δ from (4.2.4) identify their respective
sources as the connective cover of Zét

p (•)[2•]; this will show in particular that they are canonically isomorphic
to each other.

4.2.5. The map γét is a connective cover. We begin by focusing on the map γét from (4.2.4).

Proposition 4.2.3. The map
γét : Z

syn
p (•)[2•]O → j∗Z

ét
p (•)[2•]K

exhibits Zsyn
p (•)[2•]O as the connective cover18 of j∗Zét

p (•)[2•]K in Pét(SmS ; Sp)
N, with respect to the t-

structure of Example 4.2.2. In other words, for every n ∈ N the étale comparison map induces an isomor-
phism

γét{n} : Zsyn
p (n)O

∼−→ τ≤nj∗Z
ét
p (n)K ∈Pét(SmS ; Sp). (4.2.5)

Proof. Using the definition of the Beilinson t-structure and the universal coefficients cofiber sequence, the
assertion can be checked after reduction modulo p. Hence, it suffices to prove the analogous question with
Fp coefficients instead: the étale comparison map γét{n} : Fsyn

p (n)O → j∗(F
ét
p (n)K) induces an isomorphism

Fsyn
p (n)O

∼−→ τ≤nj∗(F
ét
p (n)K).

Since all the sheaves in question are cohomologically bounded below, hence hypercomplete, we can check
both properties on the stalks. Let X ∈ SmO , and let x ∈ X with strictly Henselian local ring R := Osh

X,x.
Note that by (4.2.3), we have

j∗(F
ét
p (n)K)(Spec R) ∼= RΓét(Spec R[1/p];µ

⊗n
p ).

Then it would suffice to show that the étale comparison map

γét{n} : RΓsyn(Spec R;Fp(n))→ RΓét(Spec R[1/p];µ
⊗n
p ) (4.2.6)

induces an isomorphism

RΓsyn(Spec R;Fp(n))
∼−→ τ≤nRΓét(Spec R[1/p];µ

⊗n
p ).

If x lies over the generic point Spec K of Spec O, then the result follows from the observations that
• γét{n} is (tautologically) an isomorphism for schemes over Qp, and
• RΓét(Spec R;µ

⊗n
p ) is concentrated in degree 0 (as R is strictly Henselian).

Assume next that x lies over the special point Spec k. By [AMMN22, Theorem G], the cohomology groups
of RΓsyn(Spec R;Fp(n)) are supported in cohomological degrees ≤ n. By [BM23, Theorem 1.8], the map
(4.2.6) induces an isomorphism on cohomology groups in degrees ≤ n − 1, and an injection in degree n. It
therefore suffices to show that it is surjective in degree n. By the Bloch–Kato type isomorphism of [LM23,
Theorem 3.5], the target is generated by products of cohomology classes in degree 1, so we are reduced to
the case n = 1, where we want to show that the map

γét{1} : H1,1
syn(Spec R;Fp)→ H1

ét(Spec R[1/p];µp) (4.2.7)

17meaning that the tensor product of connective objects is connective
18“connective cover” means equivalently the truncation τ≤0
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is an isomorphism. By the Kummer sequence and the definition of γét{1}, (4.2.7) identifies with the map

R× ⊗Z Z/p→ R[1/p]× ⊗Z Z/p. (4.2.8)

induced by R ⊂ R[1/p]. By construction, R is a filtered colimit of smooth O-algebras along étale maps, or
in other words R is essentially smooth over O, so we reduce to the following Lemma (taking ϖ = p). □

Lemma 4.2.4. Let R be an essentially smooth local algebra over a perfectoid valuation ring O, with uni-
formizer ϖ. Then the map

R× ⊗Z Z/p→ R[1/ϖ]× ⊗Z Z/p

is surjective.

Proof. Let p be the maximal ideal of O; we shall use the same notation for its extension to a prime ideal of
R.

Claim: the localization Rp is a valuation ring, with the same value group as O. Granting the claim for now,
let us see how to finish the proof. Since R is essentially smooth, it is normal, so we have R = Rp ∩R[1/ϖ],
hence

R× = R×
p ∩R[1/ϖ]×.

This implies that the obvious map
R[1/ϖ]×

R× → Rp[1/ϖ]×

R×
p

(4.2.9)

is injective, and it is surjective by the claim, so it is an isomorphism. In other words, the cokernel of the
map R× → R[1/ϖ]× is isomorphic to the value group of Rp. But the claim asserts that this value group is
isomorphic to the value group of O, and the latter is p-divisible since O is perfectoid [Sch12, Lemma 3.2], so
it vanishes modulo p. Thanks to (4.2.9) being an isomorphism, this completes the proof up to establishing
the claim, which we do next.

For this, we present Rp = lim−→i
Ri as a filtered colimit of localizations of smooth O-algebras along étale

transition maps (with each Ri being local). By the structure theorem for smooth maps, Ri is a localization
of an étale algebra over a polynomial ring O[T1, . . . , Tn]p. If the claim is granted for O[T1, . . . , Tn]p, then
by [Sta24, Tag 0ASF, specifically Tag 0ASJ], each Ri is a valuation ring and the transition maps induce
isomorphisms on value groups. Hence we have reduced to the case Rp = O[T1, . . . , Tn]p. In that case, from
direct inspection of the definitions we see that Rp is a valuation ring for the valuation induced by the “Gauss
norm” on O[T1, . . . , Tn],

||
∑
I

aJT
I || = max

I
|aI |,

which clearly has the same value group as O. This establishes the claim, which completes the proof. □

4.2.6. The map δ is a connective cover. Next, we consider the comparison map δ from (4.2.4). We shall
similarly show that it is a connective cover.

Proposition 4.2.5. The map

δ : Létj∗(Z
mot
p (•)[2•]K)→ j∗(Z

ét
p (•)[2•]K)

exhibits Létj∗(Z
mot
p (•)[2•]K) as the connective cover of j∗(Zét

p (•)[2•]K) in Pét(SmS ; Sp)
N, with respect to

the t-structure of Example 4.2.2. In other words, for every n ∈ N it induces an isomorphism

Létj∗(Z
mot
p (n)K)

∼−→ τ≤nj∗(Z
ét
p (n)K) ∈Pét(SmS ; Sp). (4.2.10)

Proof. According to the Beilinson–Lichtenbaum Conjecture proved by Voevodsky, for smooth Y/K we have
a natural isomorphism (cf. [HW19, §1.4])

Fmot
p (n)|YZar

∼= τ≤n(Rν∗µ
⊗n
p ) (4.2.11)

where ν : Yét → YZar is the change-of-topology map between the small étale and small Zariski sites of Y .
As in the proof of Proposition 4.2.3, in order to prove that (4.2.10) is an isomorphism we may reduce to

Fp-coefficients and check the claim at stalks along R := Osh
X,x for all X ∈ SmO and x ∈ X.

By (4.2.11) j∗(Fmot
p (n)X) is given by

(j∗F
mot
p (n)K)(U) ∼= RΓZar(U [1/p]; τ≤n(Rν∗µ

⊗n
p )) for all U ∈ XZar. (4.2.12)
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Taking the colimit of the isomorphisms (4.2.12) over étale neighborhoods U of x ∈ X, we obtain a commu-
tative triangle

(j∗F
mot
p (n)K)(X,x)

δx

**

∼ // RΓZar(Spec R[1/p]; τ
≤nRν∗µ

⊗n
p )

ss
RΓét(Spec R[1/p];µ

⊗n
p ).

(4.2.13)

The map from right-to-bottom in (4.2.13) clearly becomes an isomorphism after applying the truncation
functor τ≤n, and we want to show that it induces an isomorphism

RΓZar(Spec R[1/p]; τ
≤nRν∗µ

⊗n
p )

∼−→ τ≤nRΓét(Spec R[1/p];µ
⊗n
p ). (4.2.14)

For this, it suffices to show that the source of the map is already cohomologically bounded by n. By the
hypercohomology spectral sequence

HiZar(Spec R[1/p]; R
jν∗µ

⊗n
p )⇒ Hi+jZar (Spec R[1/p]; Rν∗µ

⊗n
p )

this follows from the next Lemma. □

Lemma 4.2.6. Let X be a smooth O-scheme and let x ∈ X with strict Henselization R := Osh
X,x. Then for

all j ≤ n and all i > 0 we have
HiZar(Spec R[1/p]; R

jν∗µ
⊗n
p ) = 0. (4.2.15)

Proof. The proof will be carried by reduction to the case of smooth schemes over a discrete valuation ring
rather than over a perfectoid base. Recall that we assumed that O could be presented as a filtered colimit
O = (lim−→n

On)∧p , where On is a finite extension of Zp. Let O ′ :=
⋃
n On. By [Tan24a, Corollary 1.4], the

map O ′ → O is ind-smooth. Hence we may write any smooth R/O as a filtered colimit

R = lim−→
m

Rm

where each Rm is an essentially smooth local algebra over Om. This presents Spec R as a cofiltered inverse
limit of qcqs schemes with affine transition maps, hence by [Sta24, Tag 03Q4] the natural map

lim−→
m

HiZar(Spec Rm[1/p]; Rjν∗µ
⊗n
p )→ HiZar(Spec R[1/p]; R

jν∗µ
⊗n
p )

is an isomorphism. Since Rm is an essentially smooth local algebra over the discrete valuation ring Om,
[LM23, Lemma 4.2(i)] applies to say that for i > 0 and j ≤ n each of the terms in the filtered system on the
LHS vanish. Hence their colimit vanishes, completing the proof. □

Corollary 4.2.7. There is a unique19 isomorphism Zsyn
p (•)[2•]O ∼−→ Létj∗(Z

mot
p (•)[2•]K) of commutative

graded algebras in Pét(SmO ; Sp)
N, together with a commutative triangle

Létj∗(Z
mot
p (•)[2•]K)

δ

��
Zsyn
p (•)[2•]O

γ //

∼
66

j∗(Z
ét
p (•)[2•]K)

. (4.2.16)

Proof. We have already constructed δ and γ as maps of commutative graded algebras in ComAlg(Pét(SmO ; Sp)
N).

By Proposition 4.2.3 and Proposition 4.2.5, we have identifications of both Zsyn
p (•)[2•]O and Létj∗(Z

mot
p (•)[2•]K)

with the connective cover of j∗(Zét
p (•)[2•]K) for the Beilinson t-structure of Example 4.2.2, at the level of

underlying N-graded sheaves of spectra (i.e., forgetting the commutative algebra structure). The connective
cover of a commutative algebra inherits a unique commutative algebra structure, making it universal among
maps from connective commutative algebras. Thus, δ and γét automatically identify their respective sources
with this connective cover, as objects of ComAlg(Pét(SmO ; Sp)

N). □

19Up to contractible space of choices, as usual.
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4.3. Matching the Pic-orientations. By pushing down the isomorphism of Corollary 4.2.7 down to the
Nisnevich site, we obtain an isomorphism

Zsyn
p (•)[2•] ∼−→ Létj∗(Z

mot
p (•)[2•]K) ∈ ComAlg(PNis(SmO ; Sp)

N). (4.3.1)

In order to promote this isomorphism to the level of motivic spectra, it remains (by the construction of
Zsyn
p and Zmot

p as motivic spectra in §3.6) to show that this isomorphism is compatible with the respective
P1-orientations. In fact, we even have compatibility with the Pic-orientations.

Proposition 4.3.1. The isomorphism (4.3.1) carries the Pic-orientation ξsyn of Zsyn
p (•)[2•]O to the Pic-

orientation ξmot of Létj∗(Z
mot
p (•)[2•]K); in other words, it gives the desired commutative triangle (4.2.4).

Proof. Let ξ′ be the image of ξsyn under (4.3.1), so that we wish to prove that ξ′ = ξmot. By the construction
of ξét we have δ(ξmot) = ξét while by the defining property of the Bhatt-Lurie comparison map γét we have
δ(ξ′) = γét(ξ

syn) = ξét. Hence the images of the Pic-orientations ξ′ and ξmot under the comparison map
δ : Létj∗(Z

mot
p (•)[2•]K)→ j∗(Z

ét
p (•)[2•]K) agree. To conclude, it remains to show that the map δ is injective

on homotopy classes of pre-orientations, i.e., we have an injection

HomCO (Σ
∞ Pic, Létj∗(Z

mot
p (1)[2]K))→ HomCK (Σ

∞ Pic,Zét
p (1)[2]K).

Using Corollary 4.2.7, we can identify this map with the map

γét{1} : H̃2,1
syn(PicO ;Zp)→ H̃2,1

ét (PicK ;Zp)

where the tilde indicates reduced cohomology. Since the map γét is a map of Pic-oriented theories, we have
a commutative square

H0,0
syn(Spec O;Zp)

γét{0}
��

// H̃2,1
syn(PicO ;Zp)

γét{1}
��

H0,0
ét (Spec K;Zp) // H̃2,1

ét (PicK ;Zp).

Since γét{0} is clearly an isomorphism, it would suffices to show that the horizontal maps are isomorphisms.
To see these, note that by [BL22, Theorem 9.3.1] (applied to BGL1 = Pic) we have

H̃2,1
syn(PicO ;Zp) ∼=

∞⊕
n=1

H2−2n,1−n
syn (Spec O;Zp),

and it is classical (and follows) that a similar result holds for étale cohomology. All the terms with n > 1
vanish for degree reasons, and the projection to the first summands are precisely the horizontal maps in the
square above, proving the result. □

Thanks to Proposition 4.3.1, the isomorphism (4.3.1) promotes to an isomorphism of Pic-pre-oriented
(hence a fortiori also of P1-pre-oriented) commutative algebras,

(Zsyn
p (•)[2•], ξsyn) ∼−→ Lpor

ét j∗(Z
mot
p (•)[2•]K , ξmot) ∈ ComAlgporPic(C

N
O ). (4.3.2)

Corollary 4.3.2. The functor Ψ carries the motivic cohomology object (Zmot
p )K ∈ ComAlg(SHK) to the

syntomic cohomology object (Zsyn
p )O ∈ ComAlg(MSO):

Ψ((Zmot
p )K) ∼= (Zsyn

p )O ∈ ComAlg(MSO).

Remark 4.3.3. Note that this implies that Ψ(Zmot
p (n)K) ∼= Zsyn

p (n)O for all n ∈ Z, by the compatibility of
Ψ with Tate twists (Remark 4.1.4).

Proof. Straight from the definitions of Ψ and of motivic cohomology as a motivic spectrum (cf. Defini-
tion 3.6.6), we have

Ψ((Zmot
p )K) := Létj∗ν(Z

mot
p (•)[2•]K , ξmot) := τOL

lax
ét j∗ν(Z

mot
p (•)[2•]K , ξmot) (4.3.3)
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where τS : MSlaxS → MSS is from (3.2.7) and ν : ComAlgorP1(CNS )→ ComAlg(MSS) is from (3.5.3). Then we
rewrite this as

Ψ((Zmot
p )K) = τOL

lax
ét j∗ν(Z

mot
p (•)[2•]K , ξmot)

(1)∼= τOνL
por
ét j∗(Z

mot
p (•)[2•]K , ξmot)

(2)∼= τOν(Z
syn
p (•)[2•]O , ξsyn)

(3)∼= τO(Zsyn
p )O

(4)
= (Zsyn

p )O .

where:

(1) is the compatibility of ν with pushforward (see (3.5.10)) and étale sheafification (see Remark 3.5.14
and (3.5.11)).

(2) is (4.3.2).
(3) is the definition of Zsyn

p as a motivic spectrum (cf. Definition 3.6.2).
(4) is because Zsyn

p is already in MSO ⊆ MSlaxO .

□

Remark 4.3.4. We can contemplate the “motivic descent” of the functor Ψ, defined similarly but without
étale sheafification:

Ψmot : SHK ↪→ MSK
j∗−→ MSO .

By combining [BK25, Corollary D] with [Bou24] and forthcoming results of Bachman–Elmanto–Morrow on
motivic cohomology in mixed characteristic, it should be possible to prove that Ψmot((Zmot

p )K) ∼= (Zmot
p )O ∈

ComAlg(MSO), and that étale sheafifying this identity recovers Corollary 4.3.2. At present, even the meaning
of the object “(Zmot

p )O” is somewhat ambiguous, as there are multiple approaches to motivic cohomology
which do not obviously agree in this (non-noetherian, mixed characteristic) setting; we understand that this
is one of the issues which is addressed by [Bou24] and [BEM].

4.4. Restriction to the special fiber. Consider the closed embedding i : Spec k ↪→ Spec O. Recall that
we defined the (lax symmetric monoidal) functor

ψ : SHK → MSk (4.4.1)

as the composition of Ψ with i∗ : MSO → MSk.

Corollary 4.4.1. The functor ψ carries the motivic cohomology object (Zmot
p )K ∈ ComAlg(SHK) to the

syntomic cohomology object (Zsyn
p )k ∈ ComAlg(MSk):

ψ((Zmot
p )K) ∼= (Zsyn

p )k ∈ ComAlg(MSk). (4.4.2)

Furthermore, for all n ∈ Z, we have

ψ((Zmot
p (n))K) ∼= (Zsyn

p (n))k ∈ MSk . (4.4.3)

Proof. Corollary 4.3.2 gives an isomorphism

ψ((Zmot
p )K) ∼= i∗Ψ((Zmot

p )K) ∼= i∗(Zsyn
p )O ∈ ComAlg(MSk)

and Proposition 3.6.4 gives an isomorphism

i∗(Zsyn
p )O ∼= (Zsyn

p )k ∈ ComAlg(MSk).

Composing these gives the isomorphism (4.4.2). Then (4.4.3) follows from compatibility with twisting,
Remark 4.1.4. □
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4.5. Technical properties. We record the following technical result, which will be needed later.

Lemma 4.5.1. Suppose {am} and {bm} are two sequences of integers with limm→∞ am = ∞. Then, with
Fmot
p ∈ SHK denoting the motivic cohomology spectrum over K, the natural assembly map⊕

m

Ψ(Fmot
p )[am](bm)→ Ψ

(⊕
m

Fmot
p [am](bm)

)
(4.5.1)

is an isomorphism in MSO , and the natural assembly map⊕
m

ψ(Fmot
p )[am](bm)→ ψ

(⊕
m

Fmot
p [am](bm)

)
(4.5.2)

is an isomorphism in MSk.

Proof. By definition, ψ is the composition SHK
Ψ−→ MSO

i∗−→ MSk. Since i∗ is a left adjoint, it preserves all
colimits. Therefore, (4.5.2) being an isomorphism follows from (4.5.1) being an isomorphism.

In turn, Ψ is defined as a composition SHK ↪→ MSK
j∗−→ MSO

Lét−−→ MSO . The functor SHK ↪→ MSK
preserves all colimits (§3.2.5), as does j∗ (Proposition 3.3.1), so the crux is to control Lét.20 In general, for
a collection of motivic spectra {Em ∈ MSO}, there is an assembly map⊕

m

Lét(Em)→ Lét

(⊕
m

Em

)
∈ MSO , (4.5.3)

exhibiting the RHS as the étale sheafification of the LHS. In the case at hand, we have Em := j∗Fmot
p [am](bm),

so the LHS of (4.5.3) is identified by Corollary 4.3.2 with⊕
m

Lét(Em) ∼=
⊕
m

Fsyn
p [am](bm)O (4.5.4)

To show that (4.5.3) is an isomorphism, we will argue that (4.5.4) already satisfies étale descent. For this,
it suffices to see that the natural map⊕

m

Fsyn
p [am](bm)O →

∏
m

Fsyn
p [am](bm)O (4.5.5)

is an isomorphism, because the RHS satisfies étale descent (as limits preserve the sheaf property). By
Proposition 3.2.10, it suffices to show that the map (4.5.5) is an isomorphism when evaluated on any smooth
scheme X over O (as any additional Tate twist can be absorbed into the formulation by shifting the bm’s).
Since affine schemes form a basis for the Nisnevich topology, it suffices to consider the case where X is affine.
Then the assertion that it is an isomorphism can be checked in each fixed cohomological degree, where (using
the fact that evaluation of Nisnevich sheaves on X preserves infinite direct sums by Lemma 3.2.8) it becomes
the statement that ⊕

m

Hi+am,bmsyn (X)→
∏
m

Hi+am,bmsyn (X)

is an isomorphism for every i ∈ Z. But by Proposition 2.3.3 and the assumption that limm→∞ am =∞, for
each fixed i all but finitely many of the factors Hi+am,bmsyn (X) vanish, so this is clear. □

5. Categories of syntomic spectra

One of the motivations for Drinfeld’s and Bhatt–Lurie’s “stacky” approach to prismatic cohomology was
to define appropriate categories of modules for prismatic (resp. syntomic) cohomology. We are interested in
the generalization of this problem for spectral syntomic cohomology. We will develop a different approach, of
which this section constitutes the first step. We will apply some general categorical constructions to MSS in
order to define certain module categories for spectral syntomic cohomology, or what we call syntomic spectra
in short.

5.1. Module categories for cosimplicial commutative algebras. Let C be a symmetric monoidal ∞-
category. For R ∈ ComAlg(C), we can form the ∞-category of modules ModR(C).

20Here it matters that we defined Lét as (1) étale sheafification followed by (2) forgetting back down to the Nisnevich
topology, cf. Remark 4.1.1. Step (1) preserves all colimits, being a left adjoint, but step (2) does not.
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5.1.1. Cosimplicial modules. When C is presentable21, there is a straightforward generalization of ModR(C)
to diagrams of commutative algebras in C, and in particular for cosimplicial diagrams.

Definition 5.1.1. Let ∆ be the simplex category, with objects [n] := {0, 1, . . . , n} for n ∈ N. Let C be
a presentably symmetric monoidal ∞-category and let R• ∈ ComAlg(C)∆ be a cosimplicial commutative
algebra in C. We denote

ModR•(C) := lim←−
[n]∈∆

ModRn(C).

Concretely, an object of ModR•(C) consists of a system of modules {Mn ∈ ModRn(C)}[n]∈∆ together with
compatible isomorphisms Mn ⊗Rn Rn+1

∼=Mn+1 for each of the face maps [n]→ [n+ 1].

Example 5.1.2. If R• is the constant cosimplicial diagram on R, then we obtain a natural equivalence
ModR(C) = ModR•(C).

5.1.2. Lax cosimplicial modules. We now define a lax variant of cosimplicial module categories.

Definition 5.1.3. With ∆, C, and R• as in Definition 5.1.1, let C∆ := Fun(∆, C), endowed with the pointwise
symmetric monoidal structure. We define ModR•(C∆) to be the lax limit of the diagram [n] 7→ ModRn(C).

Concretely, objects of ModR•(C∆) consist of systems of modules {Mn ∈ ModRn(C)}[n]∈∆ together with
compatible comparison maps Mn ⊗Rn Rn+1 →Mn+1 which are not required to be isomorphisms.

Remark 5.1.4. Since the morphisms in the diagram [n] 7→ ModRn(C) are all colimit-preserving, the limit
is a lax symmetric monoidal colocalization of the lax limit, hence we have a lax symmetric monoidal limit-
preserving functor

UR : ModR•(C∆)→ ModR•(C) (5.1.1)
whose left adjoint is the embedding of the objects for which the comparison maps Mn ⊗Rn Rn+1 → Mn+1

are all isomorphisms.

We are interested in the following type of examples.

Example 5.1.5. For R ∈ ComAlg(C), we obtain a cosimplicial commutative algebra R⊗
• ∈ ComAlg(C)∆ as

the coĆech nerve of the map 1C → R:

R⊗
• :=

(
R R⊗R R⊗R⊗R · · ·

)
Remark 5.1.6. The category of cosimplicial modules ModR⊗•(C∆) is closely related to the construction of
synthetic R-modules (as developed in [Pst23]). Correspondingly, all our applications below could be seen as
a “synthetic” approach to the syntomic Steenrod algebra, but we will make no direct reference to this point
of view.

5.1.3. Functoriality. For a symmetric monoidal colimit-preserving functor ϕ : C → D and R• ∈ ComAlg(C)∆,
the functor ϕ induces a canonical symmetric monoidal colimit-preserving functor C∆ → D∆, and then a
functor

ϕ : ModR•(C∆)→ Modϕ(R•)(C
∆),

which restricts to a functor
ϕ̃ : ModR•(C)→ Modϕ(R•)(C). (5.1.2)

Indeed, since ϕ commutes with relative tensor products, the comparison maps for ϕ(M•) are identified with
the image of the comparison maps for M• under ϕ, hence remain isomorphisms.

Now suppose that ϕ is only lax symmetric monoidal (and not necessarily colimit-preserving). Since module
categories are natural in lax symmetric monoidal functors, we still have an induced functor

ϕModR•(C∆)→ Modϕ(R•)(D
∆)

between the lax limits, and we can now define:

ϕ̃ : ModR•(C) ↪→ ModR•(C∆)
ϕ−→ Modϕ(R•)(D

∆)
Uϕ(R•)−−−−→ Modϕ(R•)(D), (5.1.3)

recalling the last functor from (5.1.1). This ϕ̃ agrees with (5.1.2) in case ϕ is symmetric monoidal.

21or more generally, when C has geometric realizations of simplicial objects that distribute over its tensor product
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Remark 5.1.7. Note, however, that if ϕ is not colimit-preserving and symmetric monoidal, then ϕ̃ may not
be computed levelwise; in other words, for M• ∈ ModR•(C) there is a natural map ϕ(Mn) → ϕ̃(M)n which
is, in general, not an isomorphism. Unwinding the definition, we see that it is an isomorphism precisely
when [n] 7→ ϕ(Mn) satisfies the base change condition:

ϕ(Mn)⊗ϕ(Rn) ϕ(Rn+1)
∼−→ ϕ(Mn ⊗Rn Rn+1). (5.1.4)

5.2. Motivic Adams approximation. Recall that we denote by Smot ∈ SHK ⊂ MSK the unit of SHK .
Let Smot → Fmot

p be the tautological map of ring spectra in SHK . Taking the coCech nerve (Example 5.1.5),
we obtain the cosimplicial commutative algebra in ComAlg(SHK)

S•p :=
(

Fmot
p Fmot

p ⊗ Fmot
p Fmot

p ⊗ Fmot
p ⊗ Fmot

p · · ·
)

Remark 5.2.1. Informally speaking, we think of S•p as the “completion of Smot along Smot → Fmot
p ”. The

necessity of working with S•p instead of Smot comes from the well-known issue that the motivic Adams spectral
sequence does not converge (unlike its classical counterpart). Instead, we manually replace the motivic sphere
spectrum by its Adams spectral sequence, in an appropriate sense.

5.2.1. Applying Ψ, we obtain (since Ψ is lax symmetric monoidal) a cosimplicial commutative algebra in
MSO ,

Ψ(S•p) =
(

Ψ(Fmot
p ) Ψ(Fmot

p ⊗ Fmot
p ) Ψ(Fmot

p ⊗ Fmot
p ⊗ Fmot

p ) · · ·
)

(5.2.1)

and then applying i∗ gives the cosimplicial commutative algebra in MSk,

ψ(S•p) =
(
ψ(Fmot

p ) ψ(Fmot
p ⊗ Fmot

p ) ψ(Fmot
p ⊗ Fmot

p ⊗ Fmot
p ) · · ·

)
(5.2.2)

5.2.2. More generally, any E ∈ ComAlg(SHK) is an algebra over Smot in a canonical way, hence can be
tensored with Fmot

p to produce a cosimplicial commutative algebra in SHK ,

E•
p :=

(
E ⊗ Fmot

p E ⊗ Fmot
p ⊗ Fmot

p E ⊗ Fmot
p ⊗ Fmot

p ⊗ Fmot
p · · ·

)
(5.2.3)

We then obtain cosimplicial commutative algebras Ψ(E•
p) ∈ MSO and ψ(E•

p) ∈ MSk as above.

5.3. Spectral syntomic module categories. Consider the module categories in the sense of Definition
5.1.1,

ModΨ(S•p)(MSO) and Modψ(S•p)(MSk).

5.3.1. Enhanced functors. We can now upgrade the functors Ψ and ψ with variants that track the motivic
Adams approximations. First, recall that the recipe of (5.1.3) produces Ψ̃ : ModS•p(SHK)→ ModΨ(S•p)(MSO).

Definition 5.3.1. We let ψenh and Ψenh be the compositions

Ψenh : SHK
(−)⊗S•p−−−−−→ ModS•p(MSK)

Ψ̃−→ ModΨ(S•p)(MSO)

and
ψenh := i∗ ◦Ψenh : SHK → Modψ(S•p)(MSk).

5.3.2. Evaluation on motivic cohomology. Our next goal is to analyze the object Ψenh(Fmot
p (n)K) of ModΨ(S•p)(MSO).

This will rely on certain facts about the dual motivic Steenrod algebra, which will also be of crucial impor-
tance later. Define the set

I := {(r, ϵr, ir, . . . ϵ1, i1, ϵ0) | r ≥ 0, ij > 0, ϵj ∈ {0, 1}, ij+1 ≥ pij + ϵj}. (5.3.1)

By [HKOsr17, Theorem 1.1], which in this characteristic zero situation goes back to Voevodsky [Voe03b,
Voe10], we have a decomposition in SHK ,

Fmot
p ⊗Smot Fmot

p
∼=
⊕
α∈I

Fmot
p [pα](qα) (5.3.2)

where

pα =

r∑
j=0

ϵj +

r∑
j=1

2ij(p− 1) and qα =

r∑
j=1

ij(p− 1). (5.3.3)
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Consequently, for any n ≥ 1 we learn that (Fmot
p )⊗n+1 is a direct sum of shifts of (Fmot

p )⊗n for any of the
n+ 1 maps (Fmot

p )⊗n → (Fmot
p )⊗n+1 induced by the simplex category.

As explained in Remark 5.1.7, for any E ∈ SHK there is a natural transformation

Ψ((−)⊗ S•p)→ Ψenh(−) : SHK → ModΨ(S•p)(MS∆O ), (5.3.4)

but it is not an isomorphism.

Proposition 5.3.2. The natural transformation (5.3.4) evaluates to an isomorphism on the object Fmot
p (n)K ,

that is, we have a canonical isomorphism

Ψ(Fmot
p ⊗ S•p) ∼−→ Ψenh(Fmot

p ) ∈ ModΨ(S•p)(MS∆O ). (5.3.5)

Proof. By Remark 5.1.7, it would suffice to show that for E = Fmot
p and for each of the coface maps

(Fmot
p )⊗i → (Fmot

p )⊗i+1, the resulting comparison map

Ψ
(
E ⊗ (Fmot

p )⊗i
)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ((Fmot
p )⊗i+1

)
→ Ψ

(
E ⊗ (Fmot

p )⊗i+1
)

is an isomorphism. Using the computation of Fmot
p ⊗Smot Fmot

p in (5.3.2), we can express this map in the form

Ψ
( ⊕
α∈I

(Fmot
p )⊗i[pα](qα)

)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ((Fmot
p )⊗i+1

)
→ Ψ

( ⊕
α∈I

(Fmot
p )⊗i+1[pα](qα)

)
,

and it fits into a commutative square⊕
αΨ
(
(Fmot
p )⊗i

)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ((Fmot
p )⊗i+1

)
[pα](qα) //

��

⊕
αΨ((Fmot

p )⊗i+1)[pα](qα)

��

Ψ
(⊕

α(Fmot
p )⊗i[pα](qα)

)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ((Fmot
p )⊗i+1

)
// Ψ
(⊕

α(Fmot
p )⊗i+1[pα](qα)

)
,

Since the upper horizontal map is clearly an isomorphism, it remains to show that the vertical maps are
both isomorphisms. From (5.3.2) we see that for every i ≥ 1, the arguments of Ψ in the bottom row are
sums of shifted and twisted copies of Fmot

p with shifts that grow to ∞. Hence Ψ commutes with the direct
sum decompositions in the diagram above, by Lemma 4.5.1.

□

The main advantage of Ψenh(Fmot
p ) over Ψ(Fmot

p ) = Fsyn
p is that we can compute its version of the “dual

Steenrod algebra”. More precisely, while it is unclear how to compute Fsyn
p ⊗ Fsyn

p within MSO (or even over
in MSk), for Ψenh(Fmot

p ) we have the following Proposition.

Proposition 5.3.3. In ModΨ(S•p)(MSO), we have

Ψenh(Fmot
p )⊗Ψ(S•p) Ψ

enh(Fmot
p ) ∼−→ Ψenh(Fmot

p ⊗Smot Fmot
p ) ∼=

⊕
α∈I

Ψenh(Fmot
p )[pα](qα).

Proof. ByProposition 5.3.2 we have Ψenh(Fmot
p ) ∼= Ψ(Fmot

p ⊗S•p). The tensor product in a limit of∞-categories
is computed coordinate-wise, so it suffices to show that for every i ≥ 1, the canonical map

Ψ
(
Fmot
p ⊗ (Fmot

p )⊗i
)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ(Fmot
p ⊗ (Fmot

p )⊗i
)
→ Ψ

(
Fmot
p ⊗ (Fmot

p )⊗i ⊗ Fmot
p

)
is an isomorphism. Using the computation of Fmot

p ⊗ Fmot
p in (5.3.2), we can rewrite this map as

Ψ
( ⊕
α∈I

(Fmot
p )⊗i[pα](qα)

)
⊗

Ψ
(
(Fmot
p )⊗i

) Ψ( ⊕
α∈I

(Fmot
p )⊗i[pα](qα)

)
→ Ψ

( ⊕
(α,α′)∈I×I

(Fmot
p )⊗i[pα + pα′ ](qα + qα′)

)
.

From (5.3.2) we see that for every i ≥ 1, the arguments of Ψ involving infinite direct sums can be written
as infinite direct sums of Fmot

p with shifts that tend to ∞. Hence Ψ commutes with the direct sum decom-
positions by Lemma 4.5.1. Then the result follows from the distributivity of the tensor product over direct
sums. □
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By applying the colimit-preserving, symmetric monoidal functor i∗, and using similar considerations, we
obtain similar results for ψ and ψenh.

Proposition 5.3.4. We have

ψ((Fmot
p )K ⊗ S•p) ∼= ψenh((Fmot

p )K) ∈ Modψ(S•p)(MSk)

and
ψenh((Fmot

p )K)⊗ψ(S•p) ψ
enh((Fmot

p )K) ∼= ψenh((Fmot
p ⊗Smot Fmot

p )K) ∈ Modψ(S•p)(MSk).

5.3.3. Module categories over motivic ring spectra. Let E ∈ ComAlg(MSK). We can then form the cosimpli-
cial commutative algebra E•

p := E⊗S•p, and then the module categories ModΨ(E•
p)
(MSO) and Modψ(E•

p)
(MSk).

There is a canonical map E → E•
p , so by functoriality Ψ induces a functor

ModΨ(E)(MSO)→ ModΨ(E•
p)
(MSO) (5.3.6)

and similarly ψ induces a functor

Modψ(E)(MSk)→ Modψ(E•
p)
(MSk). (5.3.7)

Lemma 5.3.5. If E ∈ SHK is an Fmot
p -algebra, then both functors (5.3.6) and (5.3.7) are equivalences.

Proof. We will prove that (5.3.6) is an equivalence, the case of (5.3.7) being completely analogous. Since E
is an Fmot

p -algebra, we may tautologically present E ∼= E ⊗Fmot
p

Fmot
p . This induces an isomorphism

E ⊗Smot (Fmot
p )⊗n ∼= E ⊗Fmot

p
(Fmot
p )⊗n+1.

These isomorphisms fit together into an isomorphism of cosimplicial ring spectra

E ⊗ Fmot
p E ⊗ (Fmot

p )⊗2 E ⊗ (Fmot
p )⊗3 · · ·

E ⊗Fmot
p

(Fmot
p )⊗2 E ⊗Fmot

p
(Fmot
p )⊗3 E ⊗Fmot

p
(Fmot
p )⊗4 · · ·

∼ ∼ ∼ ∼ (5.3.8)

But the bottom cosimplicial diagram has a contraction to E by the extra codegeneracy argument, since it
can be prolonged to a diagram

E E ⊗Fmot
p

(Fmot
p )⊗2 E ⊗Fmot

p
(Fmot
p )⊗3 E ⊗Fmot

p
(Fmot
p )⊗4 · · ·

The image of the diagram E → (5.3.8) under any functor will still have a contraction, so the natural map
induces an equivalence

ModΨ(E)(MSO)
∼−→ lim←−

(5.3.8)

ModΨ(E⊗Fmot
p

(Fmot
p )⊗n)(MSO) ∼= ModΨ(E•

p)
(MSO),

as desired. □

Corollary 5.3.6. Regarding Ψenh(Fmot
p ) as a commutative algebra in ModΨ(S•p)(MSO), there is a natural

equivalence of categories

ModΨenh(Fmot
p )

(
ModΨ(S•p)(MSO)

)
∼= ModFsyn

p
(MSO),

and similarly for ψ and MSk.

Proof. In general, if A is an R-algebra in a symmetric monoidal ∞-category C, then we have a natural
equivalence ModA(ModR(C)) ∼= ModA(C). Using the isomorphism Ψenh(Fmot

p ) ∼= Ψ(Fmot
p ⊗ S•p) established

in Proposition 5.3.2, we can apply this levelwise to C := MSO , R = Ψ(S•p) and A = Ψ(Fmot
p ⊗ S•p) to deduce

that
ModΨenh(Fmot

p )

(
ModΨ(S•p)(MSO)

)
∼= ModΨ((Fmot

p )•p)
(MSO).

Then Lemma 5.3.5 identifies the latter category with ModΨ(Fmot
p )(MSO), which is finally identified with

ModFsyn
p

(MSO) using Corollary 4.4.1. □
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This has the following more concrete consequence. Recall that objects of ModΨenh(S•p)(MSO) are, in
particular, cosimplicial diagrams in MSO , so we can take their limit to obtain an object of MSO . A similar
discussion applies with k in place of O, giving lax symmetric monoidal functors

lim
∆

: ModΨenh(S•p)(MSO)→ MSO and lim
∆

: ModΨenh(S•p)(MSk)→ MSk . (5.3.9)

Corollary 5.3.7. There is a canonical isomorphism

lim
∆

Ψenh(Fmot
p (n)K) ∼= Fsyn

p (n)O ,

and similarly
lim
∆
ψenh(Fmot

p (n)K) ∼= Fsyn
p (n)k.

Proof. We prove the claim over O, the proof for k being analogous. Using the compatibility of all the
constructions involved with Tate twists, it is enough to prove the case n = 0.

Unwinding the definitions, the functor lim∆ fits into a commutative diagram of lax symmetric monoidal
functors

ModΨenh(Fmot
p )(ModΨ(S•p)(MSO))

∼ //

forget

��

ModFsyn
p

(MSO)

forget

��
ModΨ(S•p)(MSO)

lim∆ // MSO

The upper horizontal functor is the symmetric monoidal equivalence of Corollary 5.3.6, hence carries the
unit Ψenh(Fmot

p ) of the upper left category to the unit (Fsyn
p )O of the upper right category. Comparing the

values of the two paths in the diagram on Ψenh(Fmot
p ), we obtain the desired identification. □

Part 2. Steenrod operations

As mentioned in the Introduction, there are two different flavors of Steenrod operations acting on syntomic
cohomology: the syntomic Steenrod operations, and the E∞ Steenrod operations. In this Part, we define and
study these operations and their interaction.

Henceforth, we make the specific choice O := Zcyc
p , K := Qcyc

p , and k := Fp. We consider the “perfectoid
nearby cycles” functor ψ from §4, using this choice. In §6 we construct the syntomic Steenrod algebra as the
Ext algebra of (derived) endomorphisms of Fsyn

p over the “syntomic sphere spectrum” ψ(S•p).
In §7, we define the E∞ operations. Their existence is well-known, but we will utilize aspects of their

specific construction via the Tate Frobenius, so we take the opportunity to document the foundations in
detail.

Then in §8, we formulate and prove the Comparison Theorem which determines the precise relationship
between the two types of operations.

6. Syntomic Steenrod operations

In this section we define the syntomic Steenrod algebra A∗,∗
syn over k and over O. By analyzing the

perfectoid nearby cycles functor ψ, we construct power operations in A∗,∗
syn imported from Voevodsky’s work

on the motivic Steenrod algebra. We show that these power operations freely generate A∗,∗
syn over H∗,∗

syn(k),
and establish Adem relations in §6.1.3 and a Cartan formula in §6.4, which together describe the Hopf algebra
structure of A∗,∗

syn in full.

6.1. Syntomic Steenrod algebra. Let Fmot
p ∈ SHK ⊂ MSK be the (A1-invariant) mod p motivic coho-

mology spectrum over K (Definition 3.6.6). The motivic Steenrod algebra over K is22

A∗,∗
mot,K := Ext∗,∗SHK

(Fmot
p ,Fmot

p ).

Its structure was studied by Voevodsky, and we will recall his results below.

22Here, and in the rest of the section, the bigrading on the Ext groups is given by the cohomological degree and the weight.
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According to Corollary 5.3.7, we have a canonical lift of the syntomic cohomology motivic spectrum
(Fsyn
p )O ∈ MSO to Ψenh((Fmot

p )K) ∈ ModΨ(S•p)(MSO) under the map ModΨ(S•p)(MSO) → MSO given by
formation of limits:

(Fmot
p )K ∈ SHK ModΨ(S•p)(MSO)

(Fsyn
p )O ∈ MSO

Ψenh

Ψ
lim∆

(Fmot
p )K ∈ SHK Modψ(S•p)(MSk)

(Fsyn
p )k ∈ MSk

ψenh

ψ
lim∆

(6.1.1)

where lim∆ is as in (5.3.9). We will abuse notation and denote (Fsyn
p )O ∈ ModΨ(S•p)(MSO) to denote this

lift, relying on context to disambiguate the ambient category. Similarly, we will denote the canonical lift of
(Fsyn
p )k ∈ MSk to Modψ(S•p)(MSk) by (Fsyn

p )k.

Definition 6.1.1 (Syntomic Steenrod algebra). We define the syntomic Steenrod algebra over k to be

A∗,∗
syn = A∗,∗

syn,k := Ext∗,∗Modψ(S•p)
(MSk)

((Fsyn
p )k, (Fsyn

p )k).

Here the bigrading ∗, ∗ is by cohomological degree and weight, respectively. We are using the abuse of
notation discussed just above by denoting (Fsyn

p )k for the object ψenh((Fmot
p )K).

Similarly, we define the syntomic Steenrod algebra over O to be

A∗,∗
syn,O := Ext∗,∗ModΨ(S•p)

(MSO)((F
syn
p )O , (Fsyn

p )O).

Remark 6.1.2 (Cohomology operations). Since Fsyn
p represents syntomic cohomology, there is a tautological

homomorphism from Apα,qαsyn to natural transformations H∗,∗
syn(−)→ H∗+pα,∗+qα

syn (−) of syntomic cohomology
on the category of schemes over k, and similarly for O.

By functoriality, ψenh induces a homomorphism

ψ : A∗,∗
mot,K → A

∗,∗
syn (6.1.2)

and similarly Ψenh induces a homomorphism

Ψ: A∗,∗
mot,K → A

∗,∗
syn,O . (6.1.3)

6.1.1. Voevodsky’s power operations. For each i ∈ N, Voevodsky constructed in [Voe03b] a motivic power
operation in SHK (and more generally in the stable homotopy category over any characteristic zero field)

Pimot ∈ A
2i(p−1),i(p−1)
mot,K .

We denote by β the Bockstein operation

β ∈ A1,0
mot,K

induced by the exact triangle of motivic cohomology complexes,

Fmot
p → (Z/p2)mot → Fmot

p ,

and
Bimot = βPimot ∈ A

2i(p−1)+1,i(p−1)
mot,K .

Recall the set (5.3.1)

I := {(r, ϵr, ir, . . . ϵ1, i1, ϵ0) | r ≥ 0, ij > 0, ϵj ∈ {0, 1}, ij+1 ≥ pij + ϵj}.

To each α ∈ I , Voevodsky defined the motivic power operation

Pαmot := βϵrPirmot . . . β
ϵ1Pi1motβ

ϵ0 ∈ Apα,qαmot,K , (6.1.4)

where pα and qα are defined in (5.3.3). Thus Pαmot is a cohomology operation of bi-degree (pα, qα).
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6.1.2. Syntomic Steenrod operations. For each α ∈ I we denote by Pαsyn ∈ A∗,∗
syn the image of Voevodsky’s

operation Pαmot under the map (6.1.2).

Remark 6.1.3. Thanks to Corollary 5.3.7, we know that under the forgetful functor Modψ(S•p)(MSk)→ MSk
the operation Pαsyn is simply sent to ψ(Pαmot) ∈ Extpα,qαMSk

(Fsyn
p ,Fsyn

p ), and a similar remark applies in MSO .

Notation 6.1.4. If p > 2, then we denote

Bisyn := β ◦ Pisyn ∈ A2i(p−1)+1,i(p−1)
syn .

If p = 2, then we denote

Sq2isyn := Pisyn ∈ A2i,i
syn and Sq2i+1

syn := β ◦ Pisyn ∈ A2i+1,i
syn .

6.1.3. Adem relations. We may now state the Adem relations for our syntomic Steenrod operations. For
p = 2, the integral variants of the Adem relations, which will not be used in this paper, involve the element
τ ∈ H0,1

syn(S)
∼= µ×

p corresponding to −1 ∈ Gm(S) for a scheme S over O. The proofs also reference
ρ ∈ H1,1

syn(O), the Kummer image of −1, which vanishes in our situation because O contains p-power roots
of −1 by assumption.

Proposition 6.1.5 (Adem relations: odd p). Let p be odd. For 0 < a < pb, we have

PasynP
b
syn =

⌊a/p⌋∑
i=0

(−1)a+i
(
(p− 1)(b− i)− 1

a− pi

)
Pa+b−isyn Pisyn ∈ A∗,∗

syn,

and for 0 < a ≤ pb, we have

PasynB
b
syn =

⌊a/p⌋∑
i=0

(−1)a+i
(
(p− 1)(b− i)

a− pi

)
Ba+b−isyn Pisyn

+

⌊(a−1)/p⌋∑
i=0

(−1)a+i−1

(
(p− 1)(b− i)− 1

a− pi

)
Pa+b−isyn Bisyn ∈ A∗,∗

syn.

The same relations hold in A∗,∗
syn,O .

Proof. Since (6.1.2) is an algebra homomorphism, the relations in A∗,∗
syn follow by applying ψenh to the

analogous statement in SHK for Pamot and Bbmot, which is [Voe03b, Theorem 10.3]. For A∗,∗
syn,O , the same

argument applies using Ψenh instead. □

Proposition 6.1.6 (Adem relations over k: p = 2). Let p = 2 and 0 < a < 2b.
(i) If a ≡ b ≡ 0 (mod 2), then we have

SqasynSq
b
syn =

⌊a/2⌋∑
i=0
i even

(
b− i− 1

a− 2i

)
Sqa+b−isyn Sqisyn ∈ A∗,∗

syn.

(ii) If a ≡ 0 (mod 2) and b ≡ 1 (mod 2), then we have

SqasynSq
b
syn =

⌊a/2⌋∑
i=0

(
b− i− 1

a− 2i

)
Sqa+b−isyn Sqisyn ∈ A∗,∗

syn.

(iii) If a ≡ 1 (mod 2) and b ≡ 0 (mod 2), then we have

SqasynSq
b
syn =

⌊a/2⌋∑
i=0
i even

(
b− i− 1

a− 2i

)
Sqa+b−isyn Sqisyn ∈ A∗,∗

syn.

(iv) Finally, if a ≡ b ≡ 1 (mod 2), then we have

SqasynSq
b
syn =

⌊a/2⌋∑
i=0
i odd

(
b− i− 1

a− 2i

)
Sqa+b−isyn Sqisyn ∈ A∗,∗

syn.
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Over O, (i) is replaced by

SqasynSq
b
syn =

⌊a/2⌋∑
i=0

τ i mod 2

(
b− i− 1

a− 2i

)
Sqa+b−isyn Sqisyn ∈ A

∗,∗
syn,O

while relations (ii), (iii), and (iv) are the same as above.

Proof. The same argument as for Proposition 6.1.5 applies here, using instead [Voe03b, Theorem 10.2] (with
typos corrected as in [HKOsr17, Theorem 5.1]) and noting that ρ = 0 ∈ H1,1

syn(Spec k) = 0. □

6.2. Freeness of the syntomic Steenrod algebra. We will show that A∗,∗
syn is free over H∗,∗

syn(k), with
basis given by the power operations.

6.2.1. Dual basis. Recall from Proposition 5.3.4 that the natural map

ψenh(Fmot
p )⊗ψenh(Smot) ψ

enh(Fmot
p )→ ψenh(Fmot

p ⊗Smot Fmot
p ) ∈ Modψ(S•p)(MSk), (6.2.1)

coming from the lax symmetric monoidality of ψenh, is an isomorphism. In (5.3.2), there is a distinguished
generator ξα of the α summand Fmot

p [pα](qα), pinned down by the property that it is dual to the power
operation Pαmot from (6.1.4) in the following sense. Rewrite (5.3.2) as

Fmot
p ⊗Smot Fmot

p
∼=
⊕
α∈I

Fmot
p ξα. (6.2.2)

Working in the category SHK , we have

Exta,bSHK
(Fmot
p ,Fmot

p ) ∼= Exta,bFmot
p

(Fmot
p ⊗Smot Fmot

p ,Fmot
p ). (6.2.3)

From (6.2.2), we have

Exta,bFmot
p

(Fmot
p ⊗Smot Fmot

p ,Fmot
p ) ∼=

∏
α∈I

Exta,bFmot
p

(Fmot
p ξα,Fmot

p ). (6.2.4)

Then the generator ξα for Fmot
p ξα induces an isomorphism

Fmot
p ξα ∼= Fmot

p [pα](qα)

which is pinned down by the characterization that the corresponding map Fmot
p → Fmot

p [pα](qα) in the left
side of (6.2.3) is the power operation Pαmot.

Applying Proposition 5.3.3 to (5.3.2) and using Lemma 4.5.1, we obtain a decomposition

ψenh(Fmot
p ⊗Smot Fmot

p ) ∼=
⊕
α∈I

ψenh(Fmot
p ) ξα ∼=

⊕
α∈I

ψenh(Fmot
p )[pα](qα) (6.2.5)

where ξα is dual to the syntomic Steenrod operation Pαsyn ∈ Apα,qαsyn in the analogous sense.

6.2.2. Basis of the syntomic Steenrod algebra. In particular, by Proposition 5.3.3 and the splitting (6.2.5),
we have that

A∗,∗
syn = Ext∗,∗Modψ(S•p)

(MSk)
(ψenh(Fmot

p ), ψenh(Fmot
p ))

∼= Ext∗,∗
ψenh(Fmot

p )
(ψenh(Fmot

p )⊗ψenh(Smot) ψ
enh(Fmot

p ), ψenh(Fmot
p ))

∼=
∏
α∈I

Ext∗,∗Fsyn
p

(Fsyn
p [pα](qα),Fsyn

p )

is free as a graded module over Ext∗,∗Fsyn
p

(Fsyn
p ,Fsyn

p ) = H∗,∗
syn(Spec k); in the last isomorphism we used Lemma

5.3.5 to simplify the simplicial structure, and Corollary 4.4.1.
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6.3. Dual syntomic Steenrod algebra. We will now investigate the structure of the “dual syntomic
Steenrod algebra” over k. Everything we say below applies verbatim over O instead of k, with the same
arguments; we will omit the statements to keep the narrative from sprawling.

Definition 6.3.1. Consider the object

A syn := ψenh(Fmot
p )⊗ψenh(Smot) ψ

enh(Fmot
p ) ∈ Modψ(S•p)(MSk). (6.3.1)

A priori, A syn naturally has the structure of a commutative Hopf algebroid over ψenh(Fmot
p ) in Modψ(S•p)(MSk)

(this is a general pattern in algebra; for example, see [Fen20b] which was a motivation for our construction
here).

Lemma 6.3.2. The Hopf algebroid structure on A syn is actually a Hopf algebra structure, meaning that the
two tautological maps in

HomModψ(S•p)
(MSk)(ψ

enh(Fmot
p ),A syn)

coincide.

Proof. The Hopf algebroid structure on Fmot
p ⊗Smot Fmot

p ∈ SHK is described in [HKOsr17, §5.1, Theorem
5.6]. From the formulas there we see that the left and right unit maps in

HomSHK (Fmot
p ,Fmot

p ⊗Smot Fmot
p ) (6.3.2)

differ by a multiple of ρ. Thanks to Proposition 5.3.3, the left and right units maps in

Hom(ψenh(Fmot
p ), ψenh(Fmot

p )⊗ψenh(Smot) ψ
enh(Fmot

p )) (6.3.3)

are obtained by applying ψenh to those in (6.3.2), so their difference vanishes since ρ = 0 ∈ H1,1
syn(k) = 0. □

Definition 6.3.3 (Dual syntomic Steenrod algebra). We define the dual syntomic Steenrod algebra to be

Asyn
∗,∗ := Ext∗,∗ModΨ(S•p)

(MSk)
(Fsyn
p ,A syn).

Lemma 6.3.4. The Asyn
∗,∗ is free and reflexive as an H∗,∗

syn(k)-module.

Proof. According to (6.2.5) and Proposition 5.3.4, we have an isomorphism

A syn ∼=
⊕
α∈I

Fsyn
p ξα ∼=

⊕
α∈I

Fsyn
p [pα](qα) (6.3.4)

This exhibits A syn as a sum of shifts and twists of Fsyn
p , such that for any given N , there are only finitely

many α such that pα < N . In particular, Asyn
∗,∗ is finite-dimensional in any degree. In fact, this shows

that A syn is even free and reflexive over Fsyn
p . The freeness and reflexivity of Asyn

∗,∗ over H∗,∗
syn(k) follows

immediately.
□

By base change, we have (as already used in §6.2.2)

HomModFsynp
(MSk)(A

syn,Fsyn
p ) ∼= HomModψ(S•p)

(MSk)(F
syn
p ,Fsyn

p ).

Thanks to the freeness and reflexivity of A syn over Fsyn
p from (6.3.4), we obtain an isomorphism

HomH∗,∗
syn(k)(A

syn
∗,∗ ,H

∗,∗
syn(k))

∼= A−∗,−∗
syn , (6.3.5)

and double-dualizing (and using reflexivity) identifies

Asyn
∗,∗
∼= HomH∗,∗

syn(k)(A
−∗,−∗
syn ,H∗,∗

syn(k)). (6.3.6)

Furthermore, it is clear from tracking definitions that this is compatible with the respective Hopf algebra
structures. In summary, we have established the following.

Corollary 6.3.5. The dual syntomic Steenrod algebra Asyn
∗,∗ is a commutative graded Hopf algebra over

H∗,∗
syn(k), which is free as a graded H∗,∗

syn(k)-module. Its graded dual is identified as a graded Hopf algebra over
H∗,∗

syn(k) with the syntomic Steenrod algebra A∗,∗
syn, which is also free as a graded H∗,∗

syn(k)-module.
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6.4. Cartan formula. We are now able to identify the coproduct on the syntomic Steenrod algebra explic-
itly.

Proposition 6.4.1. Assume p ̸= 2. Then the comultiplication ∆: A∗,∗
syn → A∗,∗

syn ⊗Fp A∗,∗
syn satisfies

∆(Pisyn) =

i∑
j=0

Pjsyn ⊗ Pi−jsyn

and

∆(Bisyn) =

i∑
j=0

(Bjsyn ⊗ Pi−jsyn + Pjsyn ⊗ Bi−jsyn ).

The same formulas hold for ∆: A∗,∗
syn,O → A

∗,∗
syn,O ⊗Fp A

∗,∗
syn,O .

Assume p = 2. Then

∆(Sq2isyn) =

i∑
j=0

Sq2jsyn ⊗ Sq2i−2j
syn ∈ A∗,∗

syn ⊗Fp A∗,∗
syn,

while over O we have instead

∆(Sq2isyn) =

i∑
j=0

Sq2jsyn ⊗ Sq2i−2j
syn + τ

i−1∑
j=0

(Sq2j+1
syn )⊗ (Sq2i−2j−1

syn ) ∈ A∗,∗
syn,O ⊗A

∗,∗
syn,O .

The formula

∆(Sq2i+1
syn ) =

i∑
j=0

(
Sq2j+1

syn ⊗ Sq2i−2j
syn + Sq2jsyn ⊗ Sq2i−2j+1

syn

)
holds for both A∗,∗

syn and A∗,∗
syn,O .

Proof. The comultiplication on A∗,∗
syn is induced by the multiplication on A syn. By Proposition 5.3.3, the

vertical maps are isomorphisms in the natural diagram

A syn ⊗ψenh(Fmot
p ) A syn A syn

ψenh(Fmot
p ⊗ Fmot

p )⊗ψenh(Fmot
p ) ψ

enh(Fmot
p ⊗ Fmot

p ) ψenh(Fmot
p ⊗ Fmot

p )

∼ ∼

where the horizontal arrows are the multiplication maps. By Proposition 5.3.3 again, we have an identification

ψenh(Fmot
p ⊗ Fmot

p )⊗ψenh(Fmot
p ) ψ

enh(Fmot
p ⊗ Fmot

p ) ∼= ψenh(Fmot
p ⊗ Fmot

p ⊗ Fmot
p )

∼= ψenh((Fmot
p ⊗ Fmot

p )⊗Fmot
p

(Fmot
p ⊗ Fmot

p )),

making the natural diagram commute

ψenh(Fmot
p ⊗ Fmot

p )⊗ψenh(Fmot
p ) ψ

enh(Fmot
p ⊗ Fmot

p ) ψenh(Fmot
p ⊗ Fmot

p )

ψenh
(
(Fmot
p ⊗ Fmot

p )⊗Fmot
p

(Fmot
p ⊗ Fmot

p )
)

ψenh(Fmot
p ⊗ Fmot

p )

∼

(6.4.1)
where the top horizontal arrow is the multiplication map for the commutative algebra ψenh(Fmot

p ⊗ Fmot
p ),

and the bottom horizontal arrow is ψenh applied to the multiplication map for Voevodsky’s dual motivic
Steenrod algebra Fmot

p ⊗ Fmot
p ∈ ComAlg(SHK),

(Fmot
p ⊗ Fmot

p )⊗Fmot
p

(Fmot
p ⊗ Fmot

p )→ (Fmot
p ⊗ Fmot

p ) ∈ SHK . (6.4.2)

The latter map (6.4.2) is identified explicitly by [Voe03b, Proposition 9.7], and is given by the asserted
formula if p is odd. If p = 2, then [Voe03b, Proposition 9.7] says that

∆(Sq2imot) =

i∑
j=0

Sq2jmot ⊗ Sq2i−2j
mot + τ

i−1∑
j=0

(Sq2j+1
mot )⊗ (Sq2i−2j−1

mot )
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and

∆(Sq2i+1) =

i∑
j=0

(
Sq2j+1

mot ⊗ Sq2i−2j
mot + Sq2jmot ⊗ Sq2i−2j+1

mot

)
+ ρ

i−1∑
j=0

Sq2j+1
mot ⊗ Sq2i−2j−1

mot .

Applying the functor Ψenh to these relations, and noting that ρ = 0, we obtain the asserted formulas for
A∗,∗

syn,O . Instead applying ψenh to the above relations, and further noting that τ = 0 in H∗,∗
syn(Spec k), we

obtain the asserted formulas for A∗,∗
syn. □

6.5. Structure of the syntomic Steenrod algebra. By Lemma 6.3.2, A∗,∗
syn is a Hopf algebra over H∗,∗

syn(k).
We note that this latter ring is explicit and simple: H∗

syn(Spec k;Fp(i)) = 0 for i ̸= 0, so we have

H∗,∗
syn(k)

∼= H∗
ét(Spec k;Fp)

∼= Fp[ϵ]/ϵ
2 (6.5.1)

where ϵ is a generator of H1
ét(Spec k;Fp)

∼= Fp. Note that Pisyn and Bisyn kill H∗,∗
syn(k) for degree and weight

reasons whenever i > 0, so A∗,∗
syn acts trivially on H∗,∗

syn(k).
We now summarize this section’s results on the structure of the syntomic Steenrod algebra.

Theorem 6.5.1. The syntomic Steenrod algebra A∗,∗
syn is a cocommutative Hopf algebra over H∗,∗

syn(k), with
a H∗,∗

syn(k)-basis consisting of the Pαsyn for α ∈ I . The algebra structure is then determined by the Adem
relations (§6.1.3), and coproduct is determined by the Cartan formula (§6.4).

Notice that the product and coproduct of power operations Pisyn and Bisyn ∈ A∗,∗
syn do not involve the

element ϵ from (6.5.1), and as remarked above act trivially on ϵ. This allows us to “descend” A∗,∗
syn from

H∗,∗
syn(k) to Fp.

Definition 6.5.2. We define the reduced syntomic Steenrod algebra A∗,∗
syn ⊂ A∗,∗

syn to be the Fp-subalgebra
generated by all the power operations Pisyn,B

i
syn ∈ A∗,∗

syn for i ∈ Z≥0. We define the reduced dual syntomic
Steenrod algebra Asyn

∗,∗ ⊂ Asyn
∗,∗ analogously.

Then A∗,∗
syn is a cocommutative Hopf algebra over Fp, equipped with a natural isomorphism

A∗,∗
syn ⊗Fp H

∗,∗
syn(k)

∼= A∗,∗
syn

of Hopf algebras over H∗,∗
syn(k). From Theorem 6.5.1, we see that

• An Fp-basis of A∗,∗
syn is given by Pαsyn for α ∈ I .

• The algebra structure is given by the Adem relations.
• The coproduct is given by the Cartan formula.

Naturally, we also have the dual statements for Asyn
∗,∗ .

7. E∞ Steenrod operations

The cohomology ring of any E∞-Fp-algebra is equipped with power operations, an observation that goes
back at least to May [May70]. Although this is well-known, it is treated from different perspectives and
in different languages in the literature, so we take this section to set up definitive foundations for use in
this paper. Our presentation is guided by later considerations, e.g., we need to set up the E∞ power
operations on syntomic cohomology as morphisms of spectra (which recover the familiar operations upon
taking cohomology). Our formulation is based on the Tate Frobenius; we learned this perspective on E∞
Steenrod operations from Lurie [Lur18, §2] and Nikolaus–Scholze [NS18, §IV.1].

7.1. The Tate-valued Frobenius. Let Cp ∼= Z/p be the cyclic group of order p together with a chosen
generator. Recall that for a semiadditive ∞-category C with all limits and colimits and X ∈ CBCp (in other
words, X is an object of C with an action of Cp), we have a canonical “norm map”

Nm: XhCp → XhCp

from the homotopy orbits to the homotopy fixed points of the action. The cofiber of this map is, by definition,
the Tate construction

XtCp := Cofib(XhCp → XhCp).

In [NS18, Definition IV.1.1], the authors construct a natural “Frobenius” map

Fr: R→ RtCp (7.1.1)
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(where the Tate construction is with respect to the trivial action) for every E∞-algebra R in Sp, equipped
with the trivial action of Cp. This construction can be easily generalized from spectra to sheaves of spectra,
as follows.

Definition 7.1.1 (Tate-valued Frobenius map). Let C be a site. For a sheaf of commutative ring spectra
R ∈ ComAlg(Shv(C; Sp)), equipped with the trivial action of Cp, we define the Tate-valued Frobenius map

Fr: R → RtCp

to be the sheafification of the levelwise Frobenius map

U ∈ C 7→ (Fr : R(U)→ R(U)tCp)

from (7.1.1).

7.2. E∞ power operations. Let R be a sheaf of E∞-Fp-algebras. Then the homotopy orbits of the trivial
action of Cp on R are computed as23

RhCp ∼= R⊗ BCp ∼= R⊗Fp (Fp ⊗ BCp) ∼= R⊗Fp

∞⊕
i=0

Fp[i] ∼=
∞⊕
i=0

R[i],

where the third isomorphism invokes distinguished generators ti ∈ πi(Fp ⊗ BCp) = Hi(BCp;Fp), which are
pinned down as the duals to the canonical monomial basis of H∗(BCp;Fp).24 In particular, for each i ≥ 1
we have Fp-module maps ti : RhCp → R[i] for i ∈ Z≥0.

Definition 7.2.1. Let C be a site and let R ∈ ComAlg(Shv(C; Sp)), equipped with the trivial Cp-action.
For i ∈ Z≥0 we let PiE : R → R[2i(p− 1)] be the composition

PiE : R
Fr−→ RtCp → RhCp [1]

t(2i(p−1))−1−−−−−−−→ R[2i(p− 1)].

Thus on cohomology groups, PiE induces a map

PiE : H
a(U ;R)→ Ha(U ;R[2i(p− 1)]) ∼= Ha+2i(p−1)(U ;R).

Remark 7.2.2. Note that the construction of PiE does not involve sheafification. In other words, the map
PiE is the restriction of the corresponding map on presheaves (i.e., for C with the indiscrete Grothendieck
topology). For presheaves, the construction is “pointwise” in the sense that it is given by applying the
ordinary power operation PiE for E∞-Fp-algebra in spectra at each object:

PiE(U) : R(U)
Fr−→ R(U)tCp → R(U)[1]

t2i(p−1)−1−−−−−−→ R(U)[2i(p− 1)].

Remark 7.2.3. Assume that R ∼=
⊕

n∈ZRn is a Z-graded algebra (with trivial action of Cp). Then the
Frobenius map becomes a graded map after rescaling the grading of R by p. Indeed, we may write Fr as a
composition of the Tate diagonal

R → (R⊗p)tCp

followed by the multiplication map
(R⊗p)tCp → RtCp .

The second map clearly respects the grading, while the first map has a graded refinement provided by
[AMMN22, Example A.10 and preceding discussion] if the grading on the source is scaled by a factor of p.

In particular, the map PiE carries the graded piece Rn to the graded piece Rpn, hence decomposes into
homogeneous pieces of the form

PiE : Rn → Rpn[2i(p− 1)].

In particular, using the notation Ha,b(U ;R) := Ha(U ;Rb), we obtain on cohomology a map of signature

PiE : H
a,b(U ;R)→ Ha+2i(p−1),pb(U ;R) for all U ∈ C.

23In the first isomorphism below, we are invoking that Sp is tensored over the category of spaces, so we can tensor spectra
with the space BCp. Informally, this tensor product computes the “homology of BCp with coefficients in R”.

24To spell this out, there is a canonical generator of x1 ∈ H1(BCp;Fp) ∼= Hom(Cp,Fp) corresponding to the fixed isomor-
phism Cp

∼= Z/p. If p = 2, then H∗(BCp;Fp) is a polynomial ring on x1, so its powers give a basis of H∗(BCp;Fp). If p ̸= 2,
then H∗(BCp;Fp) is the exterior algebra on x1 tensored with the polynomial algebra on its Bockstein β(x1), so their monomials
give a basis.
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Definition 7.2.4. Let S be a qcqs scheme. Applying these considerations to the graded algebra Fsyn
p (•)S =⊕

n∈Z Fsyn
p (n)S in PNis(SmS ; Sp), we obtain the E∞-power operations

PiE : H
a,b
syn(X)→ Ha+2i(p−1),pb

syn (X) (7.2.1)

for any scheme X/S.

7.3. Functoriality along geometric morphisms. Let ϕ : C → D be a morphism of sites, so that we obtain
a symmetric monoidal adjunction between their categories of Sp-valued sheaves,

ϕ∗ : Shv(D; Sp) ⇆ Shv(C; Sp) : ϕ∗.
We will show that, in this situation, the constructions PiE are compatible with the functors ϕ∗ and ϕ∗. To
avoid notational ambiguity, in this subsection we shall temporarily denote the map PiE : R → R[2i(p − 1)]
by PiE(R). (Our results will imply that we never need to worry about this again, as all power operations of
this shape are compatible in the obvious way.)

Proposition 7.3.1. Let ϕ : C → D be a morphism of sites, and let R ∈ ComAlg(Shv(C; Sp)). Then the two
maps

PiE(ϕ∗R) : ϕ∗R → ϕ∗R[2i(p− 1)]

and
ϕ∗P

i
E(R) : ϕ∗R → ϕ∗R[2i(p− 1)]

are naturally homotopic.
Similarly, if R′ ∈ ComAlg(Shv(D; Sp)) then the two maps

ϕ∗PiE(R′) : ϕ∗R′ → ϕ∗R′[2i(p− 1)]

and
PiE(ϕ

∗R′) : ϕ∗R′ → ϕ∗R′[2i(p− 1)]

are naturally homotopic.

Proof. We start by showing the claim for ϕ∗. Using Remark 7.2.2, we reduce to the case of presheaf categories,
where ϕ∗ is given by pre-composition with ϕ. Then the claim follows immediately from the fact that PiE is
computed pointwise, as discussed in Remark 7.2.2.

We turn to the claim regarding ϕ∗. For this, abbreviate m := 2i(p−1) and consider the following diagram

ϕ∗R′ ϕ∗ϕ∗ϕ
∗R′ ϕ∗ϕ∗ϕ

∗R′ ϕ∗R′

ϕ∗R′[m] ϕ∗ϕ∗ϕ
∗R′[m] ϕ∗ϕ∗ϕ

∗R′[m] ϕ∗R′[m]

ϕ∗coev

ϕ∗Pi(R′)

Id

ϕ∗Pi(ϕ∗ϕ
∗R′) ϕ∗ϕ∗Pi(ϕ∗R′)

evϕ∗

Pi(ϕ∗R′)

ϕ∗coev

Id

evϕ∗

where coev and ev are the unit and counit of the adjunction (ϕ∗, ϕ∗). We claim that it commutes:
• The left and right squares commute by the naturality of PiE.
• The upper and lower regions commute by the triangle identities.
• The middle square commutes by the claim for ϕ∗.

The claim for ϕ∗ now follows by comparing the two outer circuits from ϕ∗R′ to ϕ∗R′[m] along the boundary
of the diagram. □

7.4. E∞-operations for syntomic cohomology. Let S be a qcqs scheme. The formalism of power oper-
ations of sheaves of Fp-algebras applies in particular to the syntomic cohomology Fsyn

p (•)S , giving maps

PiE : F
syn
p (n)S → Fsyn

p (pn)S [2i(p− 1)].

Now specialize this discussion to the setup of §4, with a perfectoid valuation ring O with generic fiber K
and special fiber k. From Corollary 4.3.2 and Corollary 4.4.1, we have identifications

Fsyn
p (•)O ∼= Létj∗F

mot
p (•)K and Fsyn

p (•)k ∼= i∗Fsyn
p (•)O . (7.4.1)
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Corollary 7.4.1. Via the identifications in (7.4.1), the maps

PiE : F
syn
p (n)O → Fsyn

p (pn)O [2i(p− 1)]

are the images of the corresponding maps for Fmot
p (n)K under the functor Létj∗. Similarly, the maps

PiE : F
syn
p (n)k → Fsyn

p (pn)k[2i(p− 1)]

are the images of the corresponding map for Fsyn
p (n)O under the functor i∗.

Proof. Both the functors Létj∗ and i∗ are compositions of push-forward and pullback maps along morphisms
of sites. Hence, the results follow from Proposition 7.3.1. □

As another application, we can now compute the power operations on the commutative Fp-algebra
RΓsyn(X;Fp(∗)) in terms of the “local operations” on the level of sheaves.

Proposition 7.4.2. Let S be a qcqs scheme, so that we have a graded E∞-Fp-algebra Fsyn
p (•)(S). The

resulting maps of Fp-spectra
PiE : F

syn
p (n)(S)→ Fsyn

p (pn)(S)[2i(p− 1)]

agree with the maps induced from the morphism of sheaves of spectra

PiE : F
syn
p (n)S → Fsyn

p (pn)S [2i(p− 1)]

by taking global sections over S.

Proof. This follows immediately from Proposition 7.3.1 using the morphism of sites opposite to the inclusion
{S} ↪→ SmS . □

7.5. Comparison with unstable construction. The main advantage of the Tate-cohomology perspective
on power operations is that it is done entirely within the framework of sheaves of spectra and “linear” maps
between them. However, more classical constructions (e.g., [May70]) involve non-linear maps, and linearity
is proven a posteriori. For later computational purposes, it will be useful for us to reformulate the operations
PiE also in this language.

Definition 7.5.1. Let D be a presentably symmetric monoidal ∞-category. For M ∈ D, we denote

Dp(M) := (M⊗p)hCp ,

where Cp acts on M⊗p by cyclically permuting the tensor factors.

Recall that part of the data of an E∞-algebra A is a p-fold multiplication map Dp(A)
mult−−−→ A.

Definition 7.5.2. Let C be a presentably symmetric monoidal ∞-category. Given M ∈ C, A ∈ ComAlg(C),
and a map α : M → A in C, we denote by Pp(α) : Dp(M)→ A the composition

Pp(α) : Dp(M)→ Dp(A)
mult−−−→ A.

We refer to Pp(α) as the total p-th power of α.

When C as in Definition 7.5.2 is linear over Fp, we can now give a definition for power operations. We
will rely on the theory of Picard spectra as explained, for example, in [Car23, §3]. In particular, to C we
can associate a spectrum called its Picard spectrum Pic(C). Recall that an object L ∈ Pic(C) is called
strict if it extends to a map of spectra Z→ Pic(C), or equivalently, to a symmetric monoidal exact functor
Perfgr(S)→ C from the category of graded finite spectra. In this case, the action of Cp on L⊗p is trivial, so
that Dp(L) ∼= L⊗p ⊗ BCp (see for example [Car23, Proposition 3.15]).

Definition 7.5.3. Let C be an Fp-linear presentably symmetric monoidal ∞-category, and let L ∈ Pic(C)
be strict. Let A ∈ ComAlg(C). We define the map

PiE : Map(L⊗b[−a], A)→ Map(L⊗pb[−a− 2i(p− 1)], A) (7.5.1)

to be the composite

Map(L⊗b[−a], A) Dp−−→Map(Dp(L⊗b[−a]), Dp(A))
(−)◦mult−−−−−−→ Map(Dp(L⊗b[−a]), A)

∼=Map(L⊗pb[−pa]⊗ BCp, A)
tj◦(−)−−−−→ Map(L⊗pb[−a− 2i(p− 1)], A)
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where
j = pa− (a+ 2i(p− 1)) = (p− 1)(a− 2i) (7.5.2)

and tj is the generator of Hj(BCp;Fp) pinned down at the beginning of §7.2, which gives a map 1C [j] →
1C ⊗Fp BCp by the Fp-linearity of C.

See [May70] for properties of the PiE thus defined, including Cartan relation and Adem relations. In this
paper, we will only need the simple properties in the following Example.

Example 7.5.4. When a = 2i, we see from (7.5.2) and the definition that the induced map on cohomology

PiE : π0 Map(L⊗b[−a], A)→ π0 Map(L⊗pb[−pa], A)

is the pth power operation. Furthermore, if 2i > a so that (7.5.2) is negative, then PiE vanishes.

Currently, we have a collision of notation between PiE from Definition 7.5.3 and the operations defined in
§7.2. However, we will see that they agree when both are defined. To relate the two constructions, let C
be a site and let D = Shv(C;ModgrFp(Sp)) be the ∞-category of graded sheaves of Fp-module spectra over
C. Then a graded commutative Fp-algebra A ∈ ComAlggr(Shv(C; Sp)) can be regarded as a commutative
algebra A ∈ ComAlg(D). Moreover, there is a strict Picard object L ∈ D such that Map(L⊗b, A) is the b-th
graded piece of the sections of A. Applying the construction PiE above to π0 MapU (L

⊗b[−a], A) := Ha,b(U ;A)
for U ∈ C, we obtain maps

PiE : H
a,b(U ;A)→ Ha+2i(p−1),pb(U ;A). (7.5.3)

Proposition 7.5.5. In the situation above, the maps (7.5.3) above agree with the power operations defined
in §7.2.

Proof. The proof when A = Fp and C is the site of sheaves over a point, with trivial grading, is given in
[NS18, Proposition IV.1.16]. The argument in the more general case we are considering is essentially the
same. □

8. Comparing syntomic and E∞ Steenrod operations

Over the past two sections, we have defined two different “flavors” of Steenrod operations on H∗,∗
syn(X) for

a scheme X/O: the E∞-operations, and the syntomic Steenrod operations. These do not agree (in general),
as they have a different effect on the weights. Our goal in this section is to study their precise relationship.
In particular, we will see that they do agree in cases where their weights coincide.

8.1. Formulation of the comparison. Recall that we have fixed O = Zcyc
p , with fraction field K = Qcyc

p

and residue field k. Let X be a scheme over O. Then we have defined two types of Steenrod operations on
H∗,∗

syn(X):
• The E∞ Steenrod operations

PiE : H
a,b
syn(X)→ Ha+2i(p−1),bp

syn (X).

• The syntomic Steenrod operations

Pisyn : H
a,b
syn(X)→ Ha+2i(p−1),b+i(p−1)

syn (X).

Choose a primitive pth root of unity ζ ∈ µp(O). Then we obtain a corresponding element τ ∈ H0,1
syn(O).

Although τ depends on the choice of ζ, the element τp−1 ∈ H0,p−1
syn (O) (often called v1) is independent of

the choice. All the formulas below refer to τ only through its (p− 1)st power, hence are independent of the
choice of ζ.

Theorem 8.1.1. Let X be any scheme over O. Let i ∈ N and a, b ∈ Z.
• For i > b, we have

Pisyn = τ (p−1)(i−b)PiE : H
a,b
syn(X)→ Ha+2i(p−1),b+i(p−1)

syn (X).

• For b ≥ i we have

PiE = τ (p−1)(b−i)Pisyn : H
a,b
syn(X)→ Ha+2i(p−1),bp

syn (X).
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The main content behind Theorem 8.1.1 is work of Bachmann–Hopkins [BH25], which proves the analogous
result for motivic cohomology of characteristic zero schemes. Our argument merely bootstraps their result.

For future calculations, the following special case of Theorem 8.1.1 will be crucial.

Corollary 8.1.2. For i = b and any scheme X/k, the maps

PiE : H
a,b
syn(X)→ Ha+2i(p−1),pb

syn (X) (8.1.1)

and
Pisyn : H

a,b
syn(X)→ Ha+2i(p−1),b+(p−1)i

syn (X) (8.1.2)

agree. If i < b, then (8.1.1) vanishes. If i > b, then (8.1.2) vanishes.

Proof. Since X is over k, multiplication by τp−1 ∈ H0,p−1
syn (O) factors over multiplication by its image in

H0,p−1
syn (k) = 0. □

Remark 8.1.3. Analogous questions for mod ℓ motivic cohomology when ℓ ̸= p, and k contains a primitive
ℓth root of unity, were considered by Brosnan-Joshua in [BJ15] and partially answered. Their “simplicial
operations” are what we call the E∞ Steenrod operations. Their methods are limited to ℓ ̸= p, but in any
case the analogues of their results would not be enough for our purposes. Indeed, an important example for
us is that the operations

P1
E : H

3,1
syn(X)→ H5,2

syn(X)

and
P1
syn : H

3,1
syn(X)→ H5,2

syn(X)

agree for p = 2. If X is over Fp with p ̸= 2, the result of [BJ15] for coefficients over Z/2 says that these
agree after further composing with the map H5

ét(X;F2(2)) → H5
ét(X;F2(3)) given by multiplication by the

Bott element. In our situation of interest, where X is a smooth proper surface over k, we actually have that
H5,3

syn(X) = 0, so the analogous statement would be vacuous.

A priori, the operations Pisyn are hard to compute, even in the range of degrees where the classical Steenrod
operations are trivial (e.g., on Hjsyn where j < i). A consequence of Theorem 8.1.1 is the computation of
Pisyn in several important cases.

Corollary 8.1.4. Let X be a scheme over O.
(1) The operation

Pisyn : H
2i,i
syn(X)→ H2pi,pi

syn (X) (8.1.3)

is given by raising to the p-th power.
(2) Suppose X is over k. Then the operation Pisyn vanishes on Ha,bsyn(X) if 2i > a and i ≥ b.

Proof. (1) It was pointed out in Example 7.5.4 that

PiE : H
2i,i
syn(X)→ H2pi,pi

syn (X)

is given by raising to the pth power. That map agrees with (8.1.3) by Corollary 8.1.2.
(2) If i > b, then the vanishing follows from Corollary 8.1.2 and the observation that the restriction of

τp−1 to H0,p−1
syn (k) vanishes. If i = b, then Corollary 8.1.2 says that the operation agrees with

PiE : H
a,b
syn(X)→ Ha+2i(p−1),pb

syn (X),

which then vanishes since i > a (as pointed out in Example 7.5.4).
□

Remark 8.1.5. For X/k, Annala–Elmanto have an alternate approach to Corollary 8.1.4 in [AE25, Theorem
3.7(3) and Corollary 3.8], which does not require the comparison to E∞ operations. However, Theorem 8.1.1
is still needed crucially for the application to Brauer groups.

Question 8.1.6. It would be interesting to further investigate the computability of the syntomic Steenrod
operations. For example, our results do not (immediately) answer the question: Does Pisyn vanish on Ha,bsyn(X)
if 2i > a and i < b?
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8.2. Proof of Theorem 8.1.1. We will prove Theorem 8.1.1 essentially by reduction to the case of a
characteristic zero base, in which the analogous result for operations in motivic cohomology is proved in
[BH25]. To perform such a reduction, it is necessary to upgrade from statements about maps defined on
cohomology (as in Theorem 8.1.1) to highly structured statements regarding maps of sheaves of spectra, so
that we can apply the natural functoriality of such sheaf categories associated with k,O, and K. Fortunately,
all the maps under consideration have been constructed as maps of sheaves:

• The map PiE : H
a,b
syn(X)→ H

a+2(p−1)i,pb
syn (X) is obtained from the map of sheaves of spectra

PiE : F
syn
p (b)→ Fsyn

p (pb)[2(p− 1)i]

by evaluation at X and then taking ath cohomology groups.
• The map Pisyn : H

a,b
syn(X)→ H

a+2(p−1)i,b+(p−1)i
syn (X) is obtained from the map of motivic spectra

Pisyn : Fsyn
p → Fsyn

p ((p− 1)i)[2(p− 1)i]

by twisting by b, evaluating at X and then taking ath cohomology groups. As an intermediate step,
the map Pisyn of motivic spectra restricts to maps of Nisnevich sheaves of spectra that we abusively
denote again by

Pisyn : F
syn
p (b)→ Fsyn

p (b+ i(p− 1))[2i(p− 1)].

We will compare PiE and Pisyn in this incarnation: as maps of Nisnevich sheaves valued in Sp.

Proposition 8.2.1. Let i ∈ N and a, b ∈ Z. Then we have the following relations of morphisms in
PNis(Spec O; Sp):

• For i > b, we have

Pisyn
∼= τ (p−1)(i−b)PiE : F

syn
p (b)→ Fsyn

p (b+ i(p− 1))[2i(p− 1)].

• For b ≥ i, we have

PiE
∼= τ (p−1)(b−i)Pisyn : F

syn
p (b)→ Fsyn

p (pb)[2(p− 1)i].

In particular, if i = b then PiE
∼= Pisyn.

Proof. By definition (cf. Remark 6.1.3), the operation

Pisyn : (Fsyn
p )O → Fsyn

p ((p− 1)i)O [2(p− 1)i]

is obtained from Voevodsky’s power operation Pimot : (Fmot
p )K → Fmot

p ((p− 1)i)K [2(p− 1)i] by applying the
functor Ψ. Restricting to sheaves of spectra, we deduce that

Pisyn : F
syn
p (b)O → Fsyn

p (b+ (p− 1)i)O [2(p− 1)i]

is obtained from the morphism

Pimot : F
mot
p (b)K → Fmot

p (b+ (p− 1)i)K [2(p− 1)i]

by applying the functor Létj∗ : PNis(SmK ; Sp) → PNis(SmO ; Sp). Similarly, the operation PiE for the
syntomic complexes over O is obtained from the operation PiE for the motivic cohomology complexes over K
by applying the functor Létj∗, thanks to Corollary 7.4.1. It remains to show that the same-notated relations
as in the theorem hold between the E∞-operations of the motivic complexes over K and Voevodsky’s motivic
power operations, which is the result [BH25, Corollary 1.10] of Bachmann–Hopkins. □

Proof of Theorem 8.1.1. In view of Proposition 8.2.1, it remains to see that the operations Pisyn and PiE
on syntomic cohomology groups are obtained from the operations on the underlying Sp-valued Nisnevich
sheaves from Proposition 8.2.1, via evaluation at X and passage to cohomology groups. For Pisyn this is
tautological, and for PiE it is Proposition 7.4.2. □
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Part 3. Spectral prismatization

Prismatization over k, developed by Drinfeld [Dri24] and Bhatt–Lurie [BL22], lifts syntomic cohomology to
quasicoherent sheaf theory on a stack (Spec k)Syn. In this Part, we carry out a generalization of this procedure
for spectral syntomic cohomology, which we correspondingly call spectral prismatization. In particular, in §9
we define a category FGauge∆(k)

pre
S of “(pre)spectral prismatic F -gauges” for Spec k, which is a major step

towards constructing Lurie’s envisioned prismatic stable homotopy category over k.
Then in §10, we prismatize the syntomic Steenrod algebra and its dual, lifting them to objects of

FGauge∆(k)
pre
S . This gets used to prove the compatibility statement between Poincaré duality and syn-

tomic Steenrod operations, formulated as Theorem 1.4.1 in the Introduction, which is necessary for the
eventual application to Brauer groups.

In [Bha22, §4], Bhatt–Lurie reinterpreted Poincaré duality for syntomic cohomology in terms of Serre
duality on the stack (Spec k)Syn. The first step for proving Theorem 1.4.1 is to correspondingly lift the
compatibility statement to the stack (Spec k)Syn, where it becomes an assertion about the compatibility
of the prismatized syntomic Steenrod algebra and Serre duality. This compatibility is then explained by a
theory of “spectral Serre duality” for FGauge∆(k)

pre
S , which we develop in §11.

9. Spectral prismatic F -gauges

In §5, we defined the category of “syntomic spectra” Modψ(S•p)(MSk). In this section, we will define certain
subcategories

FGauge∆(k)Zp ⊂ ModZsyn
p

(MSk) and FGauge∆(k)
pre
S ⊂ Modψ(S•p)(MSk),

consisting of “geometric objects”. We will eventually see that FGauge∆(k)Fp can be identified with the
category of “prismatic F -gauges” in the sense of Bhatt–Lurie, which justifies calling FGauge∆(k)

pre
S the

category of “spectral prismatic F -gauges”.
The philosophical significance of FGauge∆(k)

pre
S is that it approximately matches Lurie’s envisioned “pris-

matic stable homotopy category” over k. The practical significance, for our later applications, is that the
categories ModFsyn

p
(MSk) and Modψ(S•p)(MSk) are “too big” to support a reasonable version of Serre duality;

cutting down to the subcategories of (spectral) prismatic F -gauges will remedy this issue.

9.1. Generation of classical prismatic F -gauges. Let k be a finite field of characteristic p. Drinfeld and
Bhatt–Lurie have defined a formal stack (Spec k)Syn := kSyn over Spf Zp (following the notation of [Bha22,
Chapter 4]). The derived category of quasicoherent sheaves D((Spec k)Syn) is called the “(derived) category
of prismatic F -gauges over k”.

The key preparation for defining the desired spectral enhancement FGauge∆(k)
pre
S is to develop an al-

ternative characterization of D((Spec k)Syn). This subsection proves a conjecture of Bhatt [Bha22, Remark
4.4.6], which is the main content behind this alternative characterization.

9.1.1. Geometry of (Spec k)Syn. We will need to invoke some explicit aspects of the construction in [Bha22,
Definition 4.1.1], which we review in terms that apply for any perfect field k of characteristic p.

(1) First, the Nygaard filtered prismatization of Spec k is the formal stack

(Spec k)N = [ SpfW (k)[u, t]/(tu− p)/Gm].

Here our convention is that t is the Rees parameter, so it has degree −1, and u has degree +1.
(2) There are two open embeddings jHT, jdR : (Spec k)∆ ∼= SpfW (k) ⇒ (Spec k)N of the prismatization

(Spec k)∆ into (Spec k)N . The Hodge-Tate embedding jHT is given by the locus u ̸= 0, and the de
Rham embedding jdR is given by Frobenius onto the locus t ̸= 0.

Then (Spec k)Syn is obtained by gluing jHT and jdR along the obvious isomorphism.
Let (Spec k)SynFp

be the base change of (Spec k)Syn to Fp. While (Spec k)Syn is a formal stack over Spf Zp,
the description above makes clear that (Spec k)SynFp

is an algebraic stack over Fp.
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9.1.2. Syntomification of schemes. More generally, if X is a scheme (or stack) over k, we can form its syn-
tomificationXSyn

Zp
as in [Bha22, §4.1]. In fact, the constructionX 7→ XSyn is obtained via the “transmutation”

procedure as in [Bha22], using the k-algebra stack GSyn
a,k , so that

XSyn(R) = X(GSyn
a (R)).

In particular, the construction X 7→ XSyn is limit-preserving.

9.1.3. Prismatic F -gauges of schemes. For each smooth k-scheme f : X → Spec k, we have an object

HX := RfSyn∗ (OXSyn) ∈ D((Spec k)Syn)
discussed in [Bha22, §4.2]. When f is smooth and proper, this is a perfect complex. We abbreviate

HX := HX ⊗ Fp ∈ D((Spec k)SynFp
)

which is a perfect complex (equivalently, a dualizable object) if f is smooth and proper. These constructions
organize into functors

H(−) : Smk → D((Spec k)Syn) and H(−)
: Smk → D((Spec k)Syn). (9.1.1)

Theorem 9.1.1. The collection {HX}, as X ranges over smooth projective varieties over Fp, compactly
generates D((Spec k)Syn).

Remark 9.1.2. The proof of Theorem 9.1.1 will also show more generally that for any perfect field k/Fp, the
category D((Spec k)Syn) is compactly generated by {HX} for smooth projectiveX/k, affirmatively answering
the question raised in [Bha22, Remark 4.4.6].

9.1.4. Preliminary observations. Now we begin some technical preparations for the proof of Theorem 9.1.1.
Let ι : [Spec k/Gm] ↪→ (Spec k)Syn be the closed embedding of the special fiber of the “Hodge point”. Let
δ := ι∗O[Spec k/Gm] be the corresponding skyscraper sheaf.

Lemma 9.1.3. Let O be the structure sheaf of (Spec k)Syn and δ as above. Then the category D((Spec k)Syn)
is generated under colimits by the objects {O[m]{n}, δ[m]{n}}m,n∈Z. Here {n} denotes the Breuil-Kisin twist
by n.

Proof. We note that since (Spec k)Syn is a p-adic formal stack, D((Spec k)Syn) is generated byD((Spec k)SynFp
).

Therefore, it suffices to show that if F ∈ D((Spec k)SynFp
) is right-orthogonal to all shifts and Breuil-Kisin

twists of O and δ, then F = 0.
Suppose that

Hom(Spec k)Syn(δ[m]{n},F) = 0

for every m,n ∈ Z. By adjunction, this implies that ι!F = 0. Consider the commutative diagram

Spec k SpfW (k)[u, t]/(ut− p)

(Spec k)/Gm (Spec k)Syn

pr′

ι′

pr

ι

(9.1.2)

The commutativity of the diagram implies that

i′! pr!(F) ∼= pr′! ι!(F) = 0. (9.1.3)

Since ι′ is a regular embedding cut out by u = 0 and t = 0, the functor ι′! identifies up to shift with
the derived mod (u, t) reduction. More precisely, we have a natural isomorphism ι′! ∼= ι′∗[−2] (all sheaf
operations are derived). Then from (9.1.3) we see that ι′∗ pr!(F) = 0. since pr is smooth, it differs from pr∗

by a shift and invertible twist, so we deduce that

0 = i′∗ pr∗(F) = pr′∗ ι∗(F).
Since pr′ is faithfully flat, we conclude that ι∗F = 0.

As we assumed that F is supported on the special fiber (Spec k)SynFp
, this shows that F = j∗F0 is pushed

forward from the open complement of ι on the special fiber. But this open complement is isomorphic to
Spec k, so if F0 is right-orthogonal to all shifts of the pullback of O, then it must be zero. □
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Let ⟨HX⟩X ⊂ D((Spec k)Syn) be the full subcategory generated under colimits by objects HX for smooth
projective X/k. To prove Theorem 9.1.1, it therefore suffices to argue that δ ∈ ⟨HX⟩X . Let k → k′ be a finite
extension. In turn, it suffices to build δ′, the pushforward of the skyscraper sheaf along ι′ : [Spec k′/Gm] ↪→
(Spec k′)SynZp

→ (Spec k)Syn, since δ is a summand of the pushforward of δ′. We will do this with a very
explicit construction.

9.1.5. Supersingular elliptic curves. Let E be a supersingular elliptic curve over Fq, for q = p2, such that
Frobq acts as multiplication by p. This implies that all endomorphisms of E are defined over Fq, so that
EndFq (E) is a maximal order in a division algebra ramified exactly at p and ∞. Let D := End(E) ⊗Z Zp
and ϖ ∈ D be the uniformizer corresponding to Frobq.

For the rest of the section, we take k := Fq. The claim in question for any other k′ easily reduces to this
case, by the observations in §9.1.4.

For the perfect complex HE ∈ D((Spec k)Syn), let H := H1(HE). We claim that H is a vector bundle on
(Spec k)Syn. As explained in the proof of [Bha22, Theorem 3.5.1], this follows from the fact that

• E has p-torsionfree crystalline cohomology, and
• the Hodge–de Rham spectral sequence degenerates for E.

Note that H0(HE) ∼= O and H2(HE) ∼= O{−1}, so that H = H1(HE) indeed lies in ⟨HX⟩X .

Lemma 9.1.4. The Nygaard filtration of H is given by Fil0N (H) = H and FilnN (H) = ϖpn−1H for n ≥ 1.

Proof. The statement Fil0N (H) = H is tautological from the construction of the Nygaard filtration. Since E
has dimension 1, it is also immediate that Filn+1

N (H) = pFilnN (H) for n ≥ 1.
It only remains to see that Fil1N (H) = ϖH. We always have H ⊃ Fil1N (H) ⊃ pH, and both inclusions

are strict because Fil1N (H)/pFil0N H is the Hodge filtration on the de Rham cohomology of E, which is
non-trivial. Since H1(E) is free of rank 1 over D, the only D-module lying strictly between H and pH is
ϖH, so this must be identified with Fil1N (H). □

9.1.6. The prismatic F -gauge M . Recall the Nygaard filtered prismatization of k,

(Spec k)N = [ Spf(W (k)[u, t]/(tu− p)/Gm].

Here our convention is that t is the Rees parameter, so that it has weight −1, and u has weight +1. There is
an étale covering (Spec k)N → (Spec k)Syn obtained by gluing the two open sections jHT, jdR : SpfW (k) ∼=
(Spec k)∆ ⇒ (Spec k)N along the Frobenius of W (k).

From the definition of (Spec k)N , we see that quasicoherent sheaves on (Spec k)N are identified with
graded modules over the ring W (k)[u, t]/(tu − p), which are p-adically complete in a suitable sense; see
[Bha22, §3.3] for the precise formulation.

Notation 9.1.5. We will depict a graded module M• ∼=
⊕

nMn over W (k)[u, t]/(tu− p) as a diagram

deg . . . −1 0 1 . . .

M• · · · M−1 M0 M1 · · ·
u

t

u

t

u u

t t

Example 9.1.6. The W (k)[u, t]/(tu−p)-module H• associated to H|(Spec k)N has Hi being the ith Nygaard
filtrant, with t being the inclusion and u being multiplication by p. Hence in terms of Notation 9.1.5, H•
has the form

. . . −1 0 1 2 . . .

· · · H H ϖH pϖH · · ·
u=p

t

∼

u=p

t

∼

u=p

t

u=p

∼
u=p

∼

t t

(9.1.4)

Let M := H/ϖH, considered as a coherent sheaf on (Spec k)Syn. By Lemma 9.1.4, the Nygaard filtration
on ϖH is

FilnN (ϖH) =

{
ϖH n = 0,

ϖ2pn−1H n ≥ 1.
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Hence the underlying graded module of M |(Spec k)N is
⊕

n∈Z(H/ϖH) ∼=
⊕

n∈Z Fq. We see from (9.1.4)
that as a graded W (k)[u, t]/(tu− p)-module, M |(Spec k)N is the direct sum of a class v0 in degree 0 which is
annihilated by u and a class w1 in degree 1 which is annihilated by t. In other words, in terms of Notation
9.1.5, M |(Spec k)N looks like

. . . −1 0 1 2 . . .

· · · H/ϖ H/ϖ ϖH/ϖ2H pϖH/pϖ2H · · ·

. . . tv0 v0 w1 uw0 . . .

t

∼
t

∼

u
∼ u

∼

(9.1.5)
where the maps u and t vanish when not depicted in the diagram. The following Lemma articulates the
uniqueness of a prismatic F -gauge with this form.

Lemma 9.1.7. There is a unique isomorphism class of prismatic F -gauges whose pullback to (Spec k)N is
isomorphic to M |(Spec k)N .

Proof. Examining the explicit construction of (Spec k)Syn, we see that the additional datum required to
descend M|(Spec k)N from (Spec k)N to (Spec k)Syn is that of a Frobenius-semilinear isomorphism between
the localizations with respect to u and t, which intertwines the u-action with the t-action. By the form
of (9.1.5), such an isomorphism must restrict to an isomorphism between M0 and M1, which are both 1-
dimensional Fq-vector spaces, and be determined by this restriction. By rescaling one of the generators if
necessary, we can assume that this isomorphism carries the image of v0 (in the localization with respect to
t) to the image of w1 (in the localization with respect to u), which now uniquely specifies the isomorphism
class of the descent. □

9.1.7. Square of supersingular elliptic curve. Note that we have

HE×kE ∼= HE ⊗(Spec k)Syn HE ∈ Perf((Spec k)Syn).

Therefore, H ⊗(Spec k)Syn H =: H⊗2 ∈ Perf((Spec k)Syn) also lies in ⟨HX⟩X .
We analyze some related prismatic F -gauges. Note that by geometric Poincaré duality [Tan24b], we have

End(Spec k)Syn(H) ∼= H ⊗H{1}.

We have a natural map D ⊗Zp Zq → End(Spec k)Syn(H). This induces a map of rank 4 vector bundles over
(Spec k)SynFp

,

D ⊗Zp O{−1} → End(Spec k)Syn(H){−1} ∼= H ⊗(Spec k)Syn H =: H⊗2

By Lemma 9.1.4, as a graded module over W (k)[u, t]/(tu− p), H⊗2|(Spec k)N looks like

. . . −1 0 1 2 . . .

. . . H⊗2 H⊗2 (ϖH)⊗H p(ϖH)⊗H . . .

+H ⊗ (ϖH) +p(H ⊗ϖH)

+(ϖH ⊗ϖH)

with the action of t being the obvious inclusions, and the action of u being multiplication by p. In particular,
we have a nesting of coherent sheaves on (Spec k)Syn,

p(H ⊗(Spec k)Syn H) ↪→ D ⊗Zp O{−1} ↪→ (H ⊗(Spec k)Syn H) (9.1.6)

We can choose a W (k)-module basis of H|(Spec k)N such that

• ϖ acts as
(
0 1
p 0

)
, and

• D⊗ZpZq
∼=M0(Zq) is the Eichler order of matrices with coefficients in Zq which are upper-triangular

modulo p.
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With this choice of basis, the maps in (9.1.6) look like (in terms of Notation 9.1.5)

deg . . . 0 1 2 . . .

End(H){−1} · · ·
(
∗ ∗
∗ ∗

) (
∗ ∗
p ∗

) (
p ∗
p2 p

)
· · ·

D ⊗Zp O{−1} · · ·
(
∗ ∗
p ∗

) (
∗ ∗
p ∗

) (
p p
p2 p

)
· · ·

pEnd(H){−1} · · ·
(
p p
p p

) (
p p
p2 p

) (
p2 p
p3 p2

)
· · ·

u

t

u

t

u

t

u

t

u

t

u

t

u

t

u

t

u

t

u

t

u

t

u

t

(9.1.7)

9.1.8. The prismatic F -gauge M ′. There is a trace map

H⊗2 → O{−1} (9.1.8)

corresponding under geometric Poincaré duality to the trace map End(Spec k)Syn(H) → O(Spec k)Syn . Let us
write (H⊗2)0 for the kernel of this map, which is a rank 3 vector bundle on (Spec k)Syn.

The restriction of (9.1.8) to D ⊗Zp O{−1} is the trace map D ⊗Zp Zq → Zq tensored (over Zq) with
O{−1}. Hence the kernel of this restriction is D0⊗Zq O{−1} where D0 ⊂ D⊗Zp Zq is the subspace of trace
0 matrices.

Then consider the prismatic F -gauge

M̃ := coker
(
p(H⊗2)0 → D0 ⊗Zq O{−1}

)
∈ Coh((Spec k)Syn).

From examining (9.1.7), we see that the restriction M̃ |(Spec k)N has the following description as a graded
module over Zq[u, t]/(tu− p):

. . . 0 1 2 . . .

F2
q F2

q F3
q F2

q F2
q

More precisely, M̃ |(Spec k)N has 3 generators over Zq[u, t]/(tu− p), in degree 1:
(1) one annihilated by u (corresponding to the lower-left entry in (9.1.7)) which we call v′1,
(2) one annihilated by t (corresponding to the upper-right entry in (9.1.7)) which we call w′

1, and
(3) one not killed by any power of u or t (corresponding to anti-diagonal entry in (9.1.7)) which we call

y′1. This generator spans the line bundle O{−1} on the special fiber M̃ |(Spec k)NFp .

Then the (t, u)-power torsion subsheaf of M̃ admits the following description: it is the unique coherent
sheaf on (Spec k)SynFp

(up to isomorphism) which when pulled back to (Spec k)NFp , is isomorphic to the
graded Fq[u, t]/(tu − p)-module with two generators v′1 and w′

1 in degree 1, one annihilated by u and the
other annihilated by t. The uniqueness aspect here has the same meaning (and proof) as in Lemma 9.1.7.

Let us denote by M ′ ⊂ M̃ this (t, u)-power torsion subsheaf. Then the quotient M̃/M ′ is some line
bundle L on the special fiber (Spec k)SynFp

↪→ (Spec k)Syn, since it pulls back to a line bundle on the étale
cover (Spec k)NFp . Thus we have an extension

0→M ′ → M̃ → L → 0. (9.1.9)
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Moreover, the line bundle L becomes isomorphic to O{−1} after restriction to (Spec k)NFp . Then L is
determined by the gluing isomorphism, which in terms of the given trivialization is multiplication by an
element λ ∈ k×. Since multiplying the trivialization by α multiplies the gluing isomorphism by ϕ(α)α−1,
multiplying λ by ϕ(α)α−1 has no effect on the isomorphism class of L. Hence, after making a finite base
change k → k′ if necessary so that λ can be written in the form ϕ(α)α−1, we can trivialize L. Therefore,
after making such an extension, we find that L, and then by (9.1.9) also M ′, lies in ⟨HX⟩X .

9.1.9. Finding δ. Recall the prismatic F -gauge M from §9.1.6. Observe that there is a monomorphism of
prismatic F -gauges M → M ′, which in the explicit presentations above is given by v0 7→ tv′1 and w1 7→ w′

1.
(This description of the map on (Spec k)N descends to (Spec k)Syn since it can be arranged to be compatible
with the gluing.) We claim that the cokernelM ′/M is isomorphic to δ′{−1}. This can be checked after pulling
back to (Spec k)N . On this pullback, we see explicitly that (M ′/M)|(Spec k)N is the graded Zq[u, t]/(tu− p)-
module which is a 1-dimensional Fq-vector space in degree 1 (generated by the image of v′1), annihilated by
both t and u. This verifies the claim, and completes the proof of Theorem 9.1.1. □

9.1.10. Shortcut for p = 2. If p = 2, then we remark that there is a more direct way to build δ from (9.1.9),
without having to pass to a finite extension.

We equip End(H) with the following filtration. Observe that we have the tautological map O(Spec k)Syn →
End(H) given by the identity element, and the trace map End(H)→ O(Spec k)Syn . These maps compose to
multiplication by rankH = 2, which vanishes on the special fiber. Thus we obtain a filtration on End(H)/p,
which translation to a filtration F•(H

⊗2/p), with

F0 F1 F2 F3

0 O{−1}/p ker(H⊗2/p→ O{−1}/p) (H⊗2/p)

The pullback of this filtration to D ⊗Zp O{−1}/p has F1(D ⊗Zp O{−1}/p) ∼= O{−1}/p and F2(D ⊗Zp

O{−1}/p) = D0⊗O{−1}/p. Composing its inclusion into D0⊗Zq O{−1}/p with the projection modulo the
image of p(H⊗2)0, we obtain a map

O{−1}/p→ coker
(
p(H⊗2)0 → D0 ⊗Zq O{−1}

)
= M̃

which splits the filtration (9.1.9). Hence it shows that L = O{−1}/p in the notation there, and we may
proceed as in §9.1.9 to conclude that δ ∈ ⟨HX⟩X .

9.2. The category of spectral prismatic F -gauges. Recall that if X ∈ Smk, then there is an associated
object Σ∞

+X ∈ MSk which we think of as the “motive of X” (cf. Definition 3.2.6).

Definition 9.2.1. We define the ∞-category

FGauge∆(k)Zp ⊆ Modψ(Zmot
p )(MSk) ∼= ModZsyn

p
(MSk)

to be the full subcategory generated under colimits, twists, and shifts from objects of the form Σ∞
+X ⊗Zsyn

p

where X is smooth and projective over k.
We define the ∞-category of mod p prismatic F -gauges over k

FGauge∆(k)Fp ⊆ Modψ(Fmot
p )(MSk) ∼= ModFsyn

p
(MSk)

similarly, with Fsyn
p in place of Zsyn

p .

Remark 9.2.2. We will see later (in Proposition 9.3.7) that there are natural equivalences FGauge∆(k)Zp
∼=

D((Spec k)Syn) and FGauge∆(k)Fp
∼= D((Spec k)SynFp ), justifying the names of our categories.

In particular, FGauge∆(k)Fp is a compactly generated (compactness of Σ∞
+X ⊗ Fsyn

p holding by Proposi-
tion 3.2.11), symmetric monoidal presentable subcategory of ModFsyn

p
(MSk).
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9.2.1. The spectral enhancement. We will now define an enlargement of FGauge∆(k)Fp , whose relationship
to FGauge∆(k)Fp is analogous to the relationship between the p-complete stable homotopy category Sp and
the derived category of Fp-modules D(Fp).

Definition 9.2.3. We define FGauge∆(k)
pre
S to be the fibered product of ∞-categories

FGauge∆(k)
pre
S := Modψ(S•p)(MSk)×ModFsynp

(MSk) FGauge∆(k)Fp .

In other words, FGauge∆(k)
pre
S is the full subcategory of Modψ(S•p)(MSk) spanned by all objects whose image

under the (colimit-preserving, symmetric monoidal) functor

Modψ(S•p)(MSk)→ Modψ(Fmot
p )(MSk) = ModFsyn

p
(MSk)

belongs to FGauge∆(k)Fp .

Remark 9.2.4 (Relation to prismatic stable homotopy theory). Lurie has conjectured the existence of a
“prismatic stable homotopy category” over a base scheme, whose relationship to prismatic F -gauges should be
analogous to the relationship between the stable homotopy category and the derived category of Z-modules.
One motivation for this hypothetical category is to capture algebraic invariants studied in [BMS19] such as
THH, TC, etc., which are not Z-linear.

For the base scheme Spec k, this category can be constructed unconditionally (although it is not yet in
the literature); let us denote it FGauge∆(k)S. It is closely related to FGauge∆(k)

pre
S but not quite the same:

we expect that FGauge∆(k)S is the right-completion of FGauge∆(k)
pre
S with respect to a certain “prismatic

t-structure”. In particular, there is a functor FGauge∆(k)
pre
S → FGauge∆(k)S which induces an equivalence

on the subcategories of eventually connective objects for the prismatic t-structure. It turns out that in
this paper, we will only deal with eventually connective objects, so it suffices for our purposes to work
in FGauge∆(k)

pre
S . Furthermore, the definition of the prismatic t-structure, and the proof of the desired

properties of FGauge∆(k)S, involve considerable technicalities; since this paper already seems technical
enough, we feel it appropriate to defer the study of FGauge∆(k)S to a future work.

9.2.2. Modules over syntomic cohomology. Next we will show that the syntomic cohomology object Fsyn
p

admits a natural structure of a commutative algebra in FGauge∆(k)
pre
S , such that ModFsyn

p
(FGauge∆(k)

pre
S ) ∼=

FGauge∆(k)Fp . In geometric terms, this implies that the canonical forgetful functor FGauge∆(k)Fp →
FGauge∆(k)

pre
S behaves like a pushforward along an affine morphism of stacks.

Proposition 9.2.5. The symmetric monoidal adjunction

(−)⊗ψ(S•p) ψ
enh(Fmot

p ) : Modψ(S•p)(MSk) ⇆ Modψenh(Fmot
p )(MSk) : forget

restricts to an adjunction
ι∗ : FGauge∆(k)

pre
S ⇆ FGauge∆(k)Fp : ι∗.

The functor ι∗ is colimit-preserving, conservative, and linear over FGauge∆(k)
pre
S ; in particular, we have a

canonical projection formula

ι∗(M ⊗ ι∗N) ∼= ι∗(M)⊗N for all M ∈ FGauge∆(k)Fp , N ∈ FGauge∆(k)
pre
S .

Proof. The functor (−)⊗ψ(S•p) ψ
enh(Fmot

p ) carries FGauge∆(k)
pre
S into FGauge∆(k)Fp by definition. To show

that its right adjoint carries FGauge∆(k)Fp to FGauge∆(k)
pre
S , by the definition of FGauge∆(k)

pre
S it would

suffice to show that the composition

ModFsyn
p

(MSk)
forget−−−→ Modψ(S•p)(MSk)→ ModFsyn

p
(MSk)

carries any M ∈ FGauge∆(k)Fp into FGauge∆(k)Fp . By Proposition 5.3.4, we have

M ⊗ψ(S•p) ψ
enh(Fmot

p ) ∼=M ⊗ψenh(Fmot
p )

(
ψenh(Fmot

p )⊗ψ(S•p) ψ
enh(Fmot

p )
)
∼=
⊕
α∈I

M [pα](qα)

(where I , pα, qα are as defined in §5.3.2) which is a direct sum of shifts and twists of M . Since FGauge∆(k)Fp
is closed under shifts, twists, and infinite direct sums in Modψenh(Fmot

p )(MSk), we see thatM⊗ψ(S•p)ψ
enh(Fmot

p ) ∈
FGauge∆(k)Fp , as desired.

The assertions that ι∗ is conservative, colimit-preserving, and linear over FGauge∆(k)
pre
S now follow from

the similar properties of the forgetful functor ModFsyn
p

(MSk) → Modψ(S•p)(MSk). These properties hold for
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any forgetful functor from modules over an algebra in an arbitrary presentably symmetric monoidal category,
which applies here because of Corollary 5.3.6. □

Since ι∗ is lax symmetric monoidal, it automatically factors as

FGauge∆(k)Fp Modι∗Fsyn
p

(FGauge∆(k)
pre
S )

FGauge∆(k)
pre
S

ιenh∗

ι∗
forget (9.2.1)

Corollary 9.2.6. The functor ιenh∗ in (9.2.1) is an equivalence.

Proof. This follows from the colimit-preservation, conservativity, and linearity of ι∗ established in Proposi-
tion 9.2.5; see for example [BCSY24, Proposition 2.5]. □

9.2.3. Compatibility with the syntomic Steenrod algebra. Since the fully faithful embedding

FGauge∆(k)
pre
S ↪→ Modψ(S•p)(MSk) (9.2.2)

carries ι∗Fsyn
p to ψenh(Fmot

p ), the endomorphism algebra Ext∗,∗
FGauge∆(k)preS

(Fsyn
p ) identifies with the syntomic

Steenrod algebra introduced previous in §6.

Corollary 9.2.7. The fully faithful embedding (9.2.2) induces an isomorphism

Ext∗,∗
FGauge∆(k)preS

(ι∗Fsyn
p , ι∗Fsyn

p )
∼−→ A∗,∗

syn.

9.3. Comparing FGauge∆(k)Fp with prismatic F -gauges. We will now compare the categories FGauge∆(k)Zp
and FGauge∆(k)Fp with the derived categories of prismatic F -gauges arising in the work of Bhatt–Lurie
[Bha22].

9.3.1. The classical syntomification. Recall the syntomification (Spec k)Syn from §9.1, whose base change to
Fp is (Spec k)SynFp

.

Definition 9.3.1. To keep notation from becoming too unwieldy, we shall henceforth abbreviate

S := (Spec k)SynFp
and D(S) := D((Spec k)SynFp

).

9.3.2. Motivic spectra valued in prismatic F -gauges. The first step in relating FGauge∆(k)Fp ⊆ ModFsyn
p

(MSk)

and D(S) is to construct a comparison functor between them. The idea is that the functor should be an
enhanced version of X 7→ RΓsyn(X;Fp), valued in the category D(S) rather than D(Fp).

Recall that we have constructed the commutative algebra Fsyn
p ∈ ComAlg(MSk) using the formalism of

oriented graded algebra from §3.5. We need a generalization of this formalism with coefficients in a general
target category.

Variant 9.3.2. Let D be a p-complete presentably symmetric monoidal stable ∞-category, let S be a qcqs
scheme, and let

CS(D) := PNis,ebu(SmS ;D) ∼= CS ⊗D
be the category of D-valued Nisnevich sheaves on SmS satisfying elementary blowup excision.

Furthermore, let MSS(D) := MSS ⊗D be the category of D-valued motivic spectra over S.
We can define the category ComAlgpor(CS(D)) as the category of N-graded commutative algebras E in

CS(D) together with a map Σ∞P1 ⊗ 1D → E1. As in the case where D = Sp, such data determines maps
Ei → Hom(Σ∞P1 ⊗ 1D, Ei+1) and we let ComAlgor(CS(D)) ⊂ ComAlgpor(CS(D)) be the full subcategory
spanned by the E for which these maps are isomorphisms. Then, using similar arguments to the ones in
§3.5, there is a canonical functor

ν∗ : ComAlgor(CS(D))→ ComAlg(MSS(D)) (9.3.1)

turning a D-valued oriented graded algebra into a commutative algebra in MSS(D).
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9.3.3. Lifting syntomic cohomology to an oriented graded algebra. We will lift syntomic cohomology to an
object of ComAlgor(Ck(D(S))).

Recall that for each smooth proper f : X → Spec k, there is a perfect complex

HX := RfSyn∗ (OXSyn) ∈ Perf((Spec k)Syn)

and its mod p reduction
HX := HX ⊗Zp Fp ∈ Perf(S).

The assignment X 7→ XSyn gives a functor

(−)Syn : Smop
k → Stacksop

(Spec k)Syn
,

which is symmetric monoidal for the op-Cartesian structure on source and target (this amounts to the fact
that the construction X 7→ Xsyn preserves limits, as discussed in §9.1.2). The assignment X 7→ H(X)
therefore induces a lax symmetric monoidal functor

H : Smop
k → D(S)

which then promotes uniquely to a functor Smop
k → ComAlg(D(S)), which we also denote H. This functor

satisfies Nisnevich descent and elementary blowup excision, hence gives an object of ComAlg(Ck(D(S))).
Let OS{1} be the Breuil-Kisin line bundle on S (cf. [Bha22]). As in §3.6, it induces a graded commutative

algebra
OS{•}[2•] := (OS{n}[2n])n∈N ∈ ComAlg(Ck(D(S))N),

and by tensoring this with H we obtain the graded algebra

H{•}[2•] := H⊗OS{•}[2•] ∈ ComAlg(Ck(D(S))N).

Finally, in order to obtain a P1-pre-orientation of H{•}[2•], note that the first Chern class csyn1 provides
a map

HP1
k → H⊕H{−1}[−2]

which is an isomorphism [Bha22, Remark 4.3.6]. Hence, we obtain a canonical lift of the pre-orientation of
syntomic cohomology, yielding a promotion of H{•}[2•] to an object of ComAlgor(Ck(D(S))N).

9.3.4. Lifting syntomic cohomology to a D(S)-valued motivic spectrum. We can now apply the D(S)-valued
version (9.3.1) of the functor ν∗ to H{•}[2•] ∈ ComAlgor(Ck(D(S))N), to obtain a commutative algebra

Hk := ν∗H{•}[2•] ∈ ComAlg(MSk(D(S))),

which lifts (Fsyn
p )k to an object of ComAlg(MSk(D(S))). It represents the functor H, in the sense that the

mapping spectrum Hom(−,Hk) naturally promotes to a D(S)-valued functor satisfying

Hom(Σ∞
+X,Hk) ∼= H

X ∈ D(S) for all X ∈ Smk .

9.3.5. The comparison functor. As a general feature of p-complete symmetric monoidal stable∞-categories,
we have a symmetric monoidal adjunction Sp ⇆ MSk, where the left adjoint is the “constant spectrum”. The
right adjoint is colimit-preserving by Proposition 3.2.10 and Proposition 3.2.11. Hence we may view this
adjunction as an adjunction in the 2-category of presentable ∞-categories. Tensoring with D(S), we deduce
that there is a symmetric monoidal adjunction

constant : D(S) ⇆ MSk(D(S)) : Γ (9.3.2)

in which the right adjoint Γ: MSk(D(S))→ D(S) is colimit-preserving and lax symmetric monoidal.
The canonical functor Sp→ D(S) induces a functor

MSk = MSk(Sp)→ MSk(D(S)). (9.3.3)

The image of Fsyn
p under this functor admits a canonical commutative algebra map to Hk, adjoint to the

tautological isomorphism to Fsyn
p from the image of Hk under the right adjoint of (9.3.3). This induces a

functor
(−)⊗Fsyn

p
Hk : ModFsyn

p
(MSk)→ ModHk(MSk(D(S))). (9.3.4)
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Definition 9.3.3. We define the functor

Υ: ModFsyn
p

(MSk)→ D(S)
to be the composition

ModFsyn
p

(MSk)
(−)⊗Fsynp

Hk
−−−−−−−−→ ModHk(MSk(D(S)))

Γ−→ D(S),

where the second functor is the restriction to Hk-modules of the right adjoint Γ from (9.3.2).

Remark 9.3.4. A similar discussion with Zp in place of Fp leads to a functor

Υ: ModZsyn
p

(MSk)→ D((Spec k)Syn). (9.3.5)

By construction, Υ is a composition of colimit-preserving lax symmetric monoidal functors, hence is itself
colimit-preserving and lax symmetric monoidal. We will show that Υ restricts to a symmetric monoidal
equivalence FGauge∆(k)Fp

∼= D(S).

9.3.6. Consequences of Atiyah duality. Below, for a dualizable object c in a symmetric monoidal category C
we denote by c∨ its dual.

Theorem 9.3.5 (Atiyah duality for motivic spectra, [AHI24]). Let S be a qcqs scheme, and let X be a
smooth and projective S-scheme of relative dimension n over S. Then Σ∞

+X is dualizable in MSS, with dual
Σ∞

+X⟨−TX⟩, the motivic Thom spectrum of the negative tangent bundle on X. Furthermore, we have

Hom(Σ∞
+X, (Fsyn

p )S) ∼= (Σ∞
+X ⊗ (Fsyn

p )S)
∨ ∼= Σ∞

+X ⊗ (Fsyn
p )S [−2n](−n).

Proof. The first part is the Atiyah duality isomorphism of [AHI24, Theorem 1.1]. The last assertion follows
from the Thom isomorphism associated with the Pic-orientation of Fsyn

p (•)[2•], cf. [AHI25, §6]. □

Remark 9.3.6. For M dualizable in ModFsyn
p

(MSk), the value of Υ on the dual M∨ is given by

Υ(M∨) = Γ(M∨ ⊗Fsyn
p

Hk) ∼= Γ(HomFsyn
p

(M,Hk)) ∈ D(S).

In particular, if X ∈ Smk with Σ∞
+X dualizable in MSk (which is satisfied when X is smooth and projective,

by Theorem 9.3.5) then (Σ∞
+X)⊗ Fsyn

p is dualizable in ModFsyn
p

(MSk), and we have

Υ((Σ∞
+X ⊗ Fsyn

p )∨) ∼= H
X ∈ D(S). (9.3.6)

We now deduce that the restriction of Υ to FGauge∆(k)Fp is fully faithful.

Proposition 9.3.7. The functor Υ (from Definition 9.3.3) induces a symmetric monoidal equivalence

FGauge∆(k)Fp
∼= D(S) = QCoh((Spec k)SynFp

)

and its Zp-variant (from Remark 9.3.4) induces a symmetric monoidal equivalence

FGauge∆(k)Zp
∼= QCoh((Spec k)Syn)

Proof. The arguments for the two cases are completely analogous, so we will just write the first one.
The category FGauge∆(k)Fp is, by definition, generated under colimits by Tate twists of objects of the form

Σ∞
+X ⊗ Fsyn

p for X smooth and projective. Then by Theorem 9.1.1 the image of FGauge∆(k)Fp generates
D(S) under colimits, hence Υ is essentially surjective. It remains to establish that the restriction of the
functor Υ: ModFsyn

p
(MSk) → D(S) to the full subcategory FGauge∆(k)Fp is symmetric monoidal and fully

faithful.
First we show that Υ is symmetric monoidal. Since Υ preserves colimits and sends Tate twists to Breuil-

Kisin twists, in order to check that its lax symmetric monoidal structure is actually symmetric monoidal,
it suffices to check that the relevant map is an isomorphism on generators. Noting that by Theorem 9.3.5,
FGauge∆(k)Fp is generated by Tate twists of objects of the form (Σ∞

+X ⊗ Fsyn
p )∨, what we want is to check

that the map

Υ((Σ∞
+X ⊗ Fsyn

p )∨)⊗Υ((Σ∞
+ Y ⊗ Fsyn

p )∨)→ Υ((Σ∞
+X ⊗ Fsyn

p )∨ ⊗ (Σ∞
+ Y ⊗ Fsyn

p )∨) (9.3.7)

is an isomorphism for all smooth projective schemes X,Y over k. The source identifies with HX ⊗ HY by
(9.3.6). Using (9.3.6) again – in addition to the symmetric monoidality of each operation Σ∞

+ , tensoring with
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Fsyn
p , and formation of the dual (of a dualizable object) – the target identifies with H(X × Y ). Under these

identifications, (9.3.7) identifies with the Künneth isomorphism for D(S)-valued syntomic cohomology

HX×Y ∼= H
X ⊗HY

for smooth projective X,Y .
Next we show that Υ is fully faithful. Since Υ is colimit-preserving and symmetric monoidal, and since our

generators for FGauge∆(k)Fp are compact, dualizable, and closed under the symmetric monoidal operation,
it suffices to check that Υ induces an isomorphism on the Hom spaces from a generator to the unit. By the
further compatibility of Υ with Tate twists, we reduce to checking that the map

RHom((Σ∞
+X ⊗ Fsyn

p ),Fsyn
p )→ RHom(Υ(Σ∞

+X ⊗ Fsyn
p ),Υ(Fsyn

p )) (9.3.8)

is an isomorphism for all smooth projective X/k. The source identifies with the syntomic cohomology
RΓsyn(X;Fp) since Fsyn

p is a motivic spectrum representing syntomic cohomology, and the target identifies

with the global sections RΓ(S;HX), which again identifies with RΓsyn(X;Fp) since the functor H is a lift
of mod p syntomic cohomology to D(S). Moreover, these identifications carry (9.3.8) to the identity map,
by construction. □

9.4. Spectral prismatic F -gauges of schemes. An important desideratum for the category FGauge∆(k)
pre
S

is the existence of a functor X 7→H X : Smk → FGauge∆(k)
pre
S that “lifts” the functor X 7→ HX from §9.4,

in the sense of a commutative diagram

Smop
k FGauge∆(k)

pre
S

FGauge∆(k)Zp

H (−)

H(−) ι∗ (9.4.1)

We will construct this commutative diagram (and in fact, a more general one encompassing qcqs schemes
over k).

9.4.1. Construction of the functor H (−). Recall that FGauge∆(k)
pre
S was defined as a full subcategory of

Modψenh(Smot)(MSk). Let
RS : Modψenh(Smot)(MSk)→ FGauge∆(k)

pre
S (9.4.2)

be the right adjoint to the tautological inclusion. Similarly, let

RFp : ModZsyn
p

(MSk)→ FGauge∆(k)Fp and RZp : ModZsyn
p

(MSk)→ FGauge∆(k)Zp (9.4.3)

be the right adjoints to the tautological inclusions.
Recall that the construction of the equivalence FGauge∆(k)Zp

∼= QCoh((Spec k)Syn) in §9.3 was arranged
to intertwine the functor X 7→ HX with the composite functor

Smop
k

HomMSk
(Σ∞

+ (−),Zsyn
p )

−−−−−−−−−−−−−−−→ ModZsyn
p

(MSk)
RZp−−−→ FGauge∆(k)Zp . (9.4.4)

This motivates the following definition.

Definition 9.4.1. We define the functor H (−) : Smop
k → D(S ) to be the composite functor

H (−) : Smop
k

HomMSk
(Σ∞

+ (−),ψenh(Smot))
−−−−−−−−−−−−−−−−−−−→ Modψenh(Smot)(MSk)

RS−−→ FGauge∆(k)
pre
S = D(S ). (9.4.5)

Note that H (−) is lax symmetric monoidal, being a composition of two lax symmetric monoidal functors.
Later in Corollary 9.4.8, we will see that it is even symmetric monoidal.

Example 9.4.2. If X is smooth and projective over k, then Σ∞
+X is dualizable by Theorem 9.3.5, and both

Σ∞
+X ⊗ψenh(Smot) and its dual in Modψenh(Smot)(MSk) belong to FGauge∆(k)

pre
S . Therefore, in this case we

have
H X ∼= (Σ∞

+X)∨ ⊗ ψenh(Smot).
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9.4.2. In order to show that the functor H (−) fits into a commutative diagram (9.4.1), we will show that
each of the constituents in the definition of H (−) is compatible with base change to Zsyn

p , in a suitable sense.
The first part is handled by the following Proposition.

Proposition 9.4.3. Let X be a smooth scheme over k. Then the canonical map

HomMSk(Σ
∞
+X,ψ

enh(Smot))⊗ψenh(Smot) Zsyn
p → HomMSk(Σ

∞
+X,Zsyn

p ) ∈ ModZsyn
p

(MSk)

is an isomorphism.

Proof. Since our categories are p-complete, we can check that the map is an isomorphism after reducing mod
p, where it becomes the natural map

HomMSk(Σ
∞
+X,ψ

enh(Smot))⊗ψenh(Smot) Fsyn
p → HomMSk(Σ

∞
+X,Fsyn

p ) ∈ ModFsyn
p

(MSk). (9.4.6)

For [n] ∈ ∆, abbreviate An := ψ((Fmot
p )⊗(n+1)), and recall that by Definition (cf. Definition 5.1.1)

Modψenh(Smot)(MSk) := lim
[n]∈∆

ModAn(MSk). (9.4.7)

Accordingly, the functor Σ∞
+X ⊗ (−) : Modψenh(Smot)(MSk) → Modψenh(Smot), whose right adjoint is (9.4.6),

can be presented as the limit of the vertical functors in the following diagram:

ModA0(MSk) ModA1(MSk) ModA2(MSk) · · ·

ModA0
(MSk) ModA1

(MSk) ModA2
(MSk) · · ·

Σ∞
+ X⊗(−) Σ∞

+ X⊗(−) Σ∞
+ X⊗(−) (9.4.8)

In these terms, our goal is to compare the right adjoint of the limit of the vertical functors and the right
adjoint of the leftmost vertical functor. More generally, we will show that the right adjoint of the limit
is obtained from the right adjoints of the vertical functors in the diagram by passage to the limit (and,
in particular, that they assemble to a natural transformation of diagrams). To show this, by [ACS19,
Proposition 2.1.7], it would suffice to show that for each n, the Beck-Chevalley map

HomMSk(Σ
∞
+X,An)⊗ψ(Smot) Fsyn

p → HomMSk(Σ
∞
+X,An+1)

induced from the horizontal morphisms in the diagram is an isomorphism. This map can be rewritten as

HomMSk(Σ
∞
+X,An)⊗An An+1 → HomMSk(Σ

∞
+X,An+1). (9.4.9)

Using Proposition 5.3.3, we can identify (9.4.9) with the assembly map⊕
α∈I

HomMSk(Σ
∞
+X,An)[pα](qα)→ HomMSk

(
Σ∞

+X,
⊕
α∈I

An[pα](qα)
)
.

It remains to show that the functor HomMSk(Σ
∞
+X,−) preserves colimits. Indeed, note that this functor

factors as
MSk

f∗

−→ MSX
f∗−→ MSk

for f : X → Spec k the structure morphism. Now, f∗ preserves colimits because it is a left adjoint, and f∗
preserve colimits by Proposition 3.3.1, so we are done. □

9.4.3. Next we will establish compatibility of the right adjoints (9.4.2) and (9.4.3) with base change. We
have a commutative diagram

FGauge∆(k)
pre
S Modψenh(Smot)(MSk)

FGauge∆(k)Zp ModZsyn
p

(MSk)

(−)⊗
ψenh(Smot)

Zsyn
p (−)⊗

ψenh(Smot)
Zsyn
p

which induces a Beck–Chevalley natural transformation

RS(M)⊗ψenh(Smot) Zsyn
p → RZp(M ⊗ψenh(Smot) Zsyn

p ) (9.4.10)

of functors Modψenh(Smot)(MSk)→ FGauge∆(k)Zp .

Proposition 9.4.4. The natural transformation (9.4.10) is an isomorphism.
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Proof. Since our categories are p-complete, we can check that the map is an isomorphism after reducing mod
p, where it becomes the analogous Beck–Chevalley map

RS(M)⊗ψenh(Smot) Fsyn
p → RFp(M ⊗ψenh(Smot) Fsyn

p ). (9.4.11)

As in the proof of Proposition 9.4.3, abbreviate An := ψ((Fmot
p )⊗(n+1)) for each [n] ∈ ∆. Define

FGauge∆(k)An := ModAn(FGauge∆(k)
pre
S ).

Then it follows immediately from the definition of FGauge∆(k)
pre
S that

FGauge∆(k)
pre
S
∼= lim

[n]∈∆
FGauge∆(k)An

and the functor FGauge∆(k)
pre
S → Modψenh(Smot)(MSk) is the limit of the map of simplicial diagrams (where

the vertical functors are colimit-preserving)

FGauge∆(k)Fp FGauge∆(k)A1
FGauge∆(k)A2

· · ·

ModFsyn
p

(MSk) ModA1
(MSk) ModA2

(MSk) · · ·

(9.4.12)

In this situation, as in the proof of Proposition 9.4.3, in order to show that (9.4.11) is an isomorphism,
it suffices by [ACS19, Proposition 2.1.7] to show that the levelwise Beck–Chevalley transformation is an
isomorphism for each [n] ∈ ∆. Using that (−) ⊗ψenh(Smot) Fsyn

p
∼= (−) ⊗An An+1 on An-modules (as in the

proof of Proposition 9.4.3), we can write the map in question as

RAn(Mn)⊗An An+1 → RAn+1
(Mn ⊗An An+1), (9.4.13)

where Mn :=M ⊗An ∈ ModAn(MSk). Note that since An is an Fsyn
p -algebra, we also have the presentation

FGauge∆(k)An
∼= ModAn(FGauge∆(k)Fp).

By definition of FGauge∆(k)Fp , this implies that FGauge∆(k)An+1
is generated under colimits and shifts by

the objects of the form Σ∞
+X ⊗ An+1 for projective X ∈ Smk, so it suffices to show that (9.4.13) is carried

to an isomorphism by HomAn+1(Σ
∞
+X ⊗An+1,−) for all such X. Here we abbreviate

HomAn+1
(M,N) := HomModAn+1

(MSk)(M,N).

(If M,N lie in FGauge∆(k)An+1
then we use the same notation HomAn+1

(M,N); since the embedding
FGauge∆(k)An+1

↪→ ModAn+1
(MSk) is fully faithful, there is never risk of confusion.)

In other words, we want to check that for all projective X ∈ Smk, the map

HomAn+1
(Σ∞

+X ⊗An+1,RAn(Mn)⊗An An+1)→ HomAn+1
(Σ∞

+X ⊗An+1,RAn+1
(Mn ⊗An An+1)) (9.4.14)

is an isomorphism. Using Proposition 5.3.3 to identify (−)⊗An An+1
∼=
⊕

α∈I (−)[pα](qα), we may rewrite
the LHS as

HomAn+1(Σ
∞
+X ⊗An+1,RAn(Mn)⊗An An+1) ∼= HomAn(Σ

∞
+X ⊗An,RAn(Mn)⊗An An+1)

∼= HomAn

(
Σ∞

+X ⊗An,
⊕
α∈I

RAn(Mn)[pα](qα)
)

(⋆)∼=
⊕
α∈I

HomAn(Σ
∞
+X ⊗An,RAn(Mn)[pα](qα))

∼=
⊕
α∈I

HomAn(Σ
∞
+X ⊗An,Mn[pα](qα))

(⋆⋆)∼= HomAn

(
Σ∞

+X ⊗An,
⊕
α∈I

Mn[pα](qα)
)
.

The only non-formal steps are (⋆) and (⋆⋆), where we commuted the formation of Hom with an infinite
direct sum. The explanation is the same for both, so we will focus on (⋆). To justify this, note that there
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is a natural map, and to check that it is an isomorphism we may reduce mod p, because our category is
p-complete. This reduction identifies with the assembly map⊕
α∈I

HomAn(Σ
∞
+X ⊗An,RAn(Mn)[pα](qα))⊗Z Fp → HomAn

(
Σ∞

+X ⊗Z An,
⊕
α∈I

RAn(Mn)[pα](qα)
)
⊗Z Fp.

Up to a shift, tensoring the Hom with Fp is equivalent to replacing Σ∞
+X ⊗An with Σ∞

+X/p⊗An. But this
object is compact (indeed, Σ∞

+X/p is already compact in MSk), so the map⊕
α∈I

HomAn(Σ
∞
+X/p⊗An,RAn(Mn)[pα](qα))→ HomAn

(
Σ∞

+X/p⊗Z An,
⊕
α∈I

RAn(Mn)[pα](qα)
)

is an isomorphism. Similarly, for the RHS of (9.4.14) we have

HomAn+1(Σ
∞
+X ⊗An+1,RAn+1(Mn ⊗An An+1)) ∼= HomAn+1(Σ

∞
+X ⊗An+1,Mn ⊗An An+1)

∼= HomAn(Σ
∞
+X ⊗An,Mn ⊗An An+1)

∼= HomAn

(
Σ∞

+X ⊗An,
⊕
α

Mn[pα](qα)
)
.

Moreover, these identifications carry (9.4.14) to the identity map, as desired. □

Corollary 9.4.5. For all X ∈ Smk the natural map ι∗H X → HX ∈ D((Spec k)Syn) is an isomorphism.

Proof. We have

ι∗H X := Zsyn
p ⊗ψenh(Smot) H X = Zsyn

p ⊗ψenh(Smot) RS(Hom(Σ∞
+X,ψ

enh(Smot))

(1)∼= RZp(Zsyn
p ⊗ψenh(Smot) Hom(Σ∞

+X,ψ
enh(Smot))

(2)∼= RZp(Hom(Σ∞
+X,Zsyn

p )) ∼= HX

where step (1) is Proposition 9.4.4 and step (2) is Proposition 9.4.3. □

Remark 9.4.6. The formulas (9.4.4) forH(−) and (9.4.5) for H (−) make sense for any qcqs schemeX/k, and
carry cosifted limits to cosifted limits. Therefore, the same formulas define functors from the category Schopk
of qcqs schemes over k, which are Kan-extended from Smop

k . Thus we obtain more generally a commutative
triangle

Schopk FGauge∆(k)
pre
S

FGauge∆(k)Zp

H (−)

H(−) ι∗ (9.4.15)

Corollary 9.4.7. Let X be smooth and proper over k. Then H X is dualizable in FGauge∆(k)
pre
S .

Proof. Since FGauge∆(k)
pre
S
∼= lim[n]∈∆ FGauge∆(k)An we can check the dualizability of H X by base-

changing to each of the An’s. Thus it would suffice to show that H X ⊗ An is dualizable in FGauge∆(k)An
for all [n] ∈ ∆.

Since H X ⊗An ∼= H X ⊗A0⊗A0
An, it would suffice to show that H X ⊗A0 = H X ⊗Fsyn

p is dualizable
in FGauge∆(k)Fp . Thanks to Corollary 9.4.5, the equivalence FGauge∆(k)Fp

∼= D(S) intertwines H X ⊗Fsyn
p

with HX ∈ D(S). The latter object is dualizable by the syntomic Poincare duality of [Bha22, Theorem
4.5.3]. □

One motivation for Bhatt–Lurie to construct (Spec k)Syn was to “salvage” the Künneth formula, in the
sense that H(−) is symmetric monoidal. This statement is refined by the symmetric monoidality of H (−),
which we now prove.

Corollary 9.4.8. The functor H (−) : Smop
k → FGauge∆(k)

pre
S is symmetric monoidal. In particular, for

every X,Y ∈ Smk we have
H X ⊗H Y ∼−→H X×Y . (9.4.16)
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Proof. We have already equipped H (−) with a lax symmetric monoidal structure, so it suffices to show
that the comparison map (9.4.16) is an isomorphism. Since ι∗ : D(S )→ D((Spec k)Syn) is conservative and
symmetric monoidal, it suffices to show that ι∗H (−) is symmetric monoidal. Now Corollary 9.4.5 identifies
this functor with H(−) : Smop

k → D((Spec k)Syn), which is symmetric monoidal. □

10. Prismatization of syntomic Steenrod operations

Prismatization lifts the syntomic cohomology of X to a prismatic F -gauge HX ∈ FGauge∆(k)Fp . In this
section, we will prismatize the syntomic Steenrod operations. Concretely, this means lifting the syntomic
Steenrod algebra A∗,∗

syn to an algebra Asyn ∈ FGauge∆(k)
pre
S , and also lifting the action of A∗,∗

syn on syntomic

cohomology to an action of Asyn on HX .

10.1. The spectral prismatization. We continue to abbreviate S := (Spec k)SynFp
. We constructed in

Proposition 9.3.7 a symmetric monoidal equivalence D(S) ∼= FGauge∆(k)Fp of stable ∞-categories.
We introduce the abbreviation D(S ) := FGauge∆(k)

pre
S . The notation suggests that D(S ) should be

viewed as the category of quasicoherent sheaves on a spectral stack S .25 We will not (in this paper)
invoke the geometricity of the stack S , so this is mainly a notational device which lends geometric intuition
and notation to various functors that we will work with, e.g., the natural symmetric monoidal functor
ι∗ : D(S )→ D(S) from Proposition 9.2.5 should be imagined as pullback along a map ι : S → S .

Thus we have identifications

D(S ) ∼= FGauge∆(k)
pre
S and D(S) ∼= FGauge∆(k)Fp (10.1.1)

by tautology in the first instance, and Proposition 9.3.7 in the second. We transport the functors from
Proposition 9.2.5 to adjoint functors ι∗ : D(S ) ⇆ : D(S) : ι∗.

Recall from Corollary 9.2.6 that ι∗ : D(S) → D(S ) is the forgetful functor from a module category over
the commutative algebra Ψenh(Fmot

p ). In particular, it preserves all limits and colimits, and it is linear over
D(S ). Part of Proposition 9.2.5 gives the projection formula

ι∗(F ⊗ ι∗G ) ∼= (ι∗F)⊗ G for all F ∈ D(S) and G ∈ D(S ). (10.1.2)

We will interpret the (dual) syntomic Steenrod algebra in terms of quasicoherent sheaves on the stacks S,S .

10.2. Internal Hom. The ∞-category Modψ(S•p)(MSk) is presentably symmetric monoidal, being a limit
of such categories along symmetric monoidal colimit-preserving functors. The full subcategory D(S ) ⊆
Modψ(S•p)(MSk) is a symmetric monoidal subcategory closed under colimits, hence itself presentably sym-
metric monoidal. It follows from the Adjoint Functor Theorem [Lur09, Corollary 5.5.2.9] that it is closed
symmetric monoidal, i.e., admits internal Hom objects such that Hom(X,−) is right adjoint to X ⊗ (−).

Definition 10.2.1. We denote the internal Hom functor of FGauge∆(k)
pre
S =: D(S ) by HomS (−,−) and

the one of FGauge∆(k)Fp
∼= D(S) by HomS(−,−).

10.3. Prismatization of the syntomic Steenrod algebra. We write OS ∈ D(S) and OS ∈ D(S )
for the units of these symmetric monoidal categories. In terms of (10.1.1), we have OS ↔ ψenh(Fmot

p ) ∈
FGauge∆(k)Fp and OS ↔ ψenh(Smot) ∈ FGauge∆(k)

pre
S .

Definition 10.3.1 (Prismatized syntomic Steenrod algebra). Let

Asyn := HomS (ι∗OS , ι∗OS),

a priori considered as an associative algebra over ι∗OS in Alg(D(S )).

Notation 10.3.2. Note that

RΓ(S;−) := RHomD(S)(OS ,−) ∼= RHomFGauge∆(k)Fp
(ψenh(Fmot

p ),−)

as a functor D(S)→ D(Fp). Motivated by this, we formally define

RΓ(S ;−) := RHomD(S )(OS ,−) = RHomFGauge∆(k)preS
(ψenh(Smot),−)

25At this time, we are only willing to assert this for the “true” category FGauge∆(k)S, cf. Remark 9.2.4. Again, it makes
little difference for our purposes in this paper, because we are interested in eventually connective objects.
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as a functor D(S ) → Sp. When this functor is evaluated on sheaves pushed forward from D(S) via ι∗, we
may regard it as factoring through D(Fp)→ Sp.

We define H∗(S;−) := H∗(RΓ(S;−)) and H∗(S ;−) analogously. For F ∈ D(S) and b ∈ Z, we write
Ha,b(S;F) := Ha(S;F{b}) and

Ha,∗(S;F) :=
⊕
b∈Z

Ha(S;F{b}) and H∗,∗(S;F) :=
⊕
a∈Z

Ha,∗(S;F).

Note that if F ∈ Perf(S), then it follows from [Bha22, Proposition 4.4.3] that H∗(S;F{b}) = 0 for all but
finitely many b ∈ Z.

We analogously define H∗,∗(S ;F ) for F ∈ D(S ).

From (10.1.1) and Corollary 9.2.7, we obtain an identification

A∗,∗
syn = H∗,∗(S ;Asyn)

of bigraded associative algebras over H∗,∗
syn(k) = H∗,∗(S;OS) (later to be upgraded to an identification of

bigraded cocommutative Hopf algebras). Thus we view Asyn as the prismatization of the syntomic Steenrod
algebra.

10.4. Prismatization of the dual syntomic Steenrod algebra. We translate some of the discussion
from §6.3 into the prismatized language.

Proposition 10.4.1. The symmetric monoidal equivalence (10.1.1) carries ψenh(Fmot
p ⊗Fmot

p ) ∈ FGauge∆(k)
pre
S

to ι∗OS ⊗OS ι∗OS ∈ D(S ).

Proof. By construction, (10.1.1) sends sends

ψenh(Fmot
p ) 7→ ι∗OS

ψenh(Smot) 7→ OS

Hence Proposition 5.3.3 translates into the desired statement. □

From Proposition 10.4.1 and (6.2.5), we obtain a splitting

ι∗OS ⊗OS ι∗OS ∼=
⊕
α∈I

ι∗OS ξα ∈ D(S ). (10.4.1)

where ξα has cohomological degree −pα and twist qα, so that OS ξα ∼= OS [pα]{qα}.

Definition 10.4.2 (Prismatized dual syntomic Steenrod algebra). Under our identifications, the object
A syn from Definition 6.3.1 may be viewed as

A syn = ι∗ι∗OS .

This is a commutative Hopf algebra26 over OS in D(S), with a natural isomorphism

ι∗A
syn ∼= ι∗OS ⊗OS ι∗OS ∼=

⊕
α∈I

ι∗OS ξα.

Note that by adjunction,

ι∗HomS(A
syn,OS) ∼= HomS (ι∗OS , ι∗OS) ∼= Asyn, (10.4.2)

a priori as ι∗OS -modules, and then as associative ι∗OS -algebras. More colloquially, the OS -dual of A syn

is Asyn. Using this, we transfer the commutative Hopf algebra structure on A syn to the dual structure on
Asyn.

Although the global sections functors (cf. Notation 10.3.2) are not symmetric monoidal, they are com-
patible with tensor products specifically on Asyn and A syn, as articulated below.

26Using Lemma 6.3.2 to see that the a priori Hopf algebroid structure refines to a Hopf algebra structure.
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Lemma 10.4.3. (1) The cup product

H∗,∗(S,A syn)⊗H∗,∗
syn(k) H

∗,∗(S,A syn)→ H∗,∗(S,A syn ⊗OS A syn) (10.4.3)

is an isomorphism.
(2) The cup product

H∗,∗(S ,Asyn)⊗H∗,∗
syn(k) H

∗,∗(S ,Asyn)→ H∗,∗(S ,Asyn ⊗ι∗OS Asyn) (10.4.4)

is an isomorphism.

Proof. (1) Using (10.4.1), we have

ι∗(A
syn ⊗OS A syn) ∼= ι∗A

syn ⊗ι∗OS ι∗A
syn

∼=

(⊕
α∈I

ι∗OS ξα

)
⊗ι∗OS

(⊕
α′∈I

ι∗OS ξα′

)
∼=

⊕
α,α′∈I

ι∗OS ξαξα′ .

Hence we have

H∗,∗(S;A syn ⊗OS A syn) ∼= H∗,∗(S ; ι∗A
syn ⊗ι∗OS ι∗A

syn)

∼= H∗,∗(S ;
⊕

α,α′∈I

ι∗OS ξαξα′).

Therefore, with respect to the identifications

H∗,∗(S ; ι∗OS ξα) ∼= H∗,∗
syn(k) ξα and H∗,∗(S ; ι∗OS ξα′) ∼= H∗,∗

syn(k) ξα′

the map (10.4.3) reads27

H∗,∗(S,A syn)⊗H∗,∗
syn(k) H

∗,∗(S,A syn) ∼=
⊕
α∈I

H∗,∗
syn(k) ξα ⊗H∗,∗

syn(k)

⊕
α′∈I

H∗,∗
syn(k) ξα′

→
⊕

α,α′∈I

H∗,∗
syn(k) ξαξα′ ∼= H∗,∗(S,A syn ⊗OS A syn),

which is visibly an isomorphism.
(2) Follows from a similar argument.

□

From (10.1.1) and Lemma 10.4.3, we obtain an identification

Asyn
∗,∗ = H∗,∗(S;A syn).

of bigraded commutative Hopf algebras over H∗,∗
syn(k) = H∗,∗(S). Thus we view A syn as the prismatization

of the dual syntomic Steenrod algebra.

10.5. Prismatization of Steenrod actions. We already know that A∗,∗
syn acts on the syntomic cohomology

groups of a variety with coefficients in Fsyn
p (•). We now explore more refined structure that can be articulated

on the prismatization.

27using that only finitely many twists contribute, or alternatively that cohomology commutes with direct sums in general
on S.
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10.5.1. Action on sheaves pulled back via ι∗. We will construct a tautological action of A∗,∗
syn on the syntomic

cohomology of any sheaf F ∈ D(S) of the form ι∗F for F ∈ D(S ). In fact, this arises from the more refined
structure of an action of Asyn on F in D(S). Informally speaking, the slogan is that “Asyn naturally acts on
a shift that admits a spectral lift”. This is a special case of the structural pattern discussed in [Fen20b, §4.2].

Let F ∈ D(S ) and F := ι∗F ∈ D(S). Then we may write

ι∗F ∼= ι∗ι
∗F ∼= F ⊗OS ι∗OS ∈ D(S ),

from which we obtain an action (in the sense of groupoids) of Asyn on ι∗F . Taking cohomology, we get a
(bigraded) action of A∗,∗

syn on
H∗,∗(S ; ι∗F) ∼= H∗,∗(S;F).

By construction, this recovers the action defined earlier in §6.

10.5.2. Action on (symmetric monoidal) duals of pullbacks. Recall the notion of dualizable object in a sym-
metric monoidal category C. For a dualizable object c ∈ C, the dual will be denoted c∨.

Let F ∈ D(S ) and F := ι∗F ∈ D(S). Then

HomS(F ,OS) ∼= HomS(ι
∗F ,OS) ∼= HomS (F , ι∗OS) (10.5.1)

also has a tautological action of Asyn (through its action on the target).
If F is dualizable in D(S ), then F is dualizable in QCoh(S) (since it is the image of a dualizable object

under a symmetric monoidal functor) and we have

F∨ ∼= HomS(F ,OS) ∼= HomS (F , ι∗OS) ∼= F∨ ⊗OS ι∗OS .

This isomorphism is equivariant for the Asyn-actions, which for the left term was defined via (10.5.1), and
for the right term is induced by the action on ι∗OS . Taking global sections, we obtain an action of A∗,∗

syn on
RΓ(S;F∨) for any such F .

10.6. Coproduct. The product on the commutative Hopf algebra A syn is dual to a coproduct

Asyn → Asyn ⊗ι∗OS Asyn. (10.6.1)

After applying H∗,∗(−) to (10.6.1), and using Lemma 10.4.3, we obtain the coproduct on A∗,∗
syn, which is

identified explicitly by the Cartan formula of Proposition 6.4.1.
In particular, the coproduct A∗,∗

syn → A∗,∗
syn ⊗H∗,∗

syn(k) A
∗,∗
syn equips the category of A∗,∗

syn-modules with a
monoidal structure (−)⊗H∗,∗

syn(k) (−). Similarly, the coproduct A∗,∗
syn → A∗,∗

syn ⊗Fp A
∗,∗
syn equips the category of

A∗,∗
syn-modules with a monoidal structure (−)⊗Fp (−).
For F ,G ∈ D(S), we have a cup product map

H∗,∗(S;F)⊗H∗,∗
syn(k) H

∗,∗(S;G)→ H∗,∗(S;F ⊗OS G). (10.6.2)

Suppose F = ι∗F and G = ι∗G for F ,G ∈ D(S ). Then the source has a canonical A∗,∗
syn-action induced by

the action on each factor (§10.5.1) and the coproduct, while the target has a canonical A∗,∗
syn-action via the

presentation F ⊗OS G ∼= ι∗(F ⊗OS G ).

Lemma 10.6.1. Let F ,G ∈ D(S ) and F := ι∗F ,G := ι∗G ∈ D(S). Then the cup product (10.6.2) is
A∗,∗

syn-equivariant with the natural actions described above.

Proof. We have two actions (in the sense of groupoids) of Asyn on ι∗(F⊗OS G): one is the tautological action
coming from the isomorphisms

ι∗(F ⊗OS G) ∼= ι∗ι
∗(F ⊗OS G ) ∼= (F ⊗OS G )⊗OS ι∗OS

and the other coming from the coproduct (10.6.1) composed with the natural action of Asyn ⊗ι∗OS Asyn on
ι∗(F ⊗ G) ∼= ι∗F ⊗ι∗OS ι∗G obtained by tensoring the tautological actions. We claim that these two actions
are canonically identified; then the Lemma will follow immediately.

Writing

ι∗F ⊗ι∗OS ι∗G ∼= (F ⊗OS ι∗OS)⊗ι∗OS (G ⊗OS ι∗OS)

∼= F ⊗OS (ι∗OS ⊗ι∗OS ι∗OS)⊗OS G

we see that the claim follows from the statement that the two actions of Asyn = HomS (ι∗OS , ι∗OS) on
(ι∗OS ⊗ι∗OS ι∗OS) coincide: one via the identification (ι∗OS ⊗ι∗OS ι∗OS) ∼= ι∗OS , and the other by the
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coproduct composed with the tensor product of the natural actions. This last statements amount to the
tautological compatibility of the coproduct with the unit. □

Remark 10.6.2. There is also an analogous compatibility for the cup product

H∗,∗(S;F∨)⊗H∗,∗
syn(k) H

∗,∗(S;G∨)→ H∗,∗(S;F∨ ⊗OS G∨)
where F = ι∗F and G = ι∗G , so that there are Steenrod actions by §10.5.2. We will only invoke the
compatibility for F and G which are dualizable, in which case it follows from Lemma 10.6.1, so we omit the
proof of the more general statement.

11. Spectral Serre duality and Steenrod equivariance

11.1. Steenrod equivariance for arithmetic duality. The goal of this section is to prove the compati-
bility statement from §1.4. We will reformulate it slightly, keeping the notation there. Let X be a smooth,
proper, geometrically connected variety over a characteristic p finite field k. We dualize the cup product

H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)→ H∗,∗

syn(X ×k X)

over Fp, and apply Poincaré duality to obtain a commutative diagram

H∗,∗
syn(X)∨ ⊗Fp H

∗,∗
syn(X)∨ H∗,∗

syn(X ×k X)∨

H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X) H∗,∗

syn(X ×k X)

≀Poincaré ≀Poincaré

φ∗

(11.1.1)

The top horizontal arrow preserves the bi-grading; the other maps do not, but we record that φ increases
the bidegree by +(1, 0).

In the bottom row of (11.1.1), both the source and target have natural actions of A∗,∗
syn, the target by the

coproduct (recall §10.6).

Theorem 11.1.1. The map φ∗ from (11.1.1) is equivariant with respect to the action of A∗,∗
syn.

The proof of Theorem 11.1.1 will occupy the rest of the section. It will be long, so let us give a high-level
overview. Throughout this section, we continue to use the notation S := (Spec k)SynFp

, and

ι∗ : D(S ) ⇄ D(S) : ι∗
as in §10.

(1) Firstly, in §11.2 we localize Theorem 11.1.1 onto S: we formulate a “prismatization of φ∗” as a map φ∆

of sheaves on S, whose compatibility with the prismatized Steenrod action recovers Theorem 11.1.1
upon taking global sections.

(2) The main input to defining φ∆ is Serre duality on S. Since Asyn is defined in terms of endomorphisms
of S over S , the desired compatibility will ultimately come from the fact that Serre duality itself
lifts to S .

(3) In §11.3, we formulate and prove a form of coherent duality for D(S ) that we call spectral Serre
duality. The key idea is that this should implement Brown–Comenetz duality on spectral syntomic
cohomology.

(4) Finally, in §11.4 and §11.5 we study the interaction between spectral Serre duality and Asyn, and
prove the prismatized version of Theorem 11.1.1.

11.2. Prismatization of φ. The map

φ∗ : H
∗,∗
syn(X ×k X)→ H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X) (11.2.1)

was constructed above in (11.1.1) using Poincaré duality for syntomic cohomology. However, it admits
another description in terms of prismatization, which uses a more elemental ingredient to Poincaré duality.
Indeed, in the work of Bhatt–Lurie [BL22], Poincaré duality for syntomic cohomology is reproven as a
combination of “geometric Poincaré duality” for prismatic F -gauges (due to Longke Tang [Tan24b]), and
Serre duality on (Spec k)Syn. We shall see that we can construct φ only from the latter Serre duality.

Let F ,G ∈ Perf(S), the ∞-category of perfect complexes on S. We will construct a map

φ∆ : RΓ(S;F ⊗OS G)→ RΓ(S;F)⊗Fp RΓ(S;G)[1]. (11.2.2)
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and then show that H∗(φ∆) recovers φ∗ in a suitable special case.

11.2.1. Serre duality on S. We remind that (−)∨ denotes the formation of symmetric monoidal duals, which
can be calculated by inner hom to the unit. The duality results of [Bha22, §4.5] can be interpreted as follows.
The stack S enjoys a form of Serre duality:

RΓ(S;K)∨ ∼= RΓ(S;DSK) ∈ D(Fp), (11.2.3)

where DSK := Hom(K, ωS) is the internal Hom into the dualizing sheaf ωS , and furthermore there is an
isomorphism

ωS ∼= OS [1]. (11.2.4)

The isomorphisms (11.2.3) and (11.2.4) come from [Bha22, Theorem 4.5.2], which says that we have natural
isomorphisms of functors Perf(S)→ D(Fp),

Serre : RΓ(S; (−))∨ (11.2.3)−−−−−→ RΓ(S;DS(−))
(11.2.4)−−−−−→ RΓ(S; (−)∨[1]) (11.2.5)

whose composite we call Serre.

11.2.2. Construction of φ∆. Let F ,G ∈ Perf(S). We have a natural isomorphism in Perf(S),

F∨ ⊗OS G∨ = HomS(F ,OS)⊗OS HomS(G,OS)
∼−→ HomS(F ⊗OS G,OS) = (F ⊗OS G)∨. (11.2.6)

Applying the lax symmetric monoidal functor RΓ: Perf(S) → D(Fp) to (11.2.6) and composing with the
cup product gives a map

RΓ(S;F∨)⊗Fp RΓ(S;G∨)→ RΓ(S;F∨ ⊗OS G∨) ∼= RΓ(S; (F ⊗OS G)∨). (11.2.7)

Taking Fp-linear duals and using that RΓ(S;−) takes dualizable objects to dualizable objects [Bha22, Propo-
sition 4.5.1], we obtain a sequence of maps

RΓ(S; (F ⊗OS G)∨)∨ (RΓ(S;F∨)⊗Fp RΓ(S;G∨))∨

RΓ(S;F∨)∨ ⊗Fp RΓ(S;G∨)∨

RΓ(S;F ⊗OS G)[1] RΓ(S;F)[1]⊗Fp RΓ(S;G)[1]

(11.2.7)∨

≀

≀Serre

≀Serre (11.2.8)

Note the resemblance between this construction and (11.1.1). Shifting the dashed map by −1 gives the
desired map

φ∆ : RΓ(S;F ⊗OS G)→ RΓ(S;F)⊗Fp RΓ(S;G)[1]. (11.2.9)

In particular, upon taking cohomology we obtain a map

φ∆
∗ : H∗,∗(S;F ⊗OS G)→ H∗,∗(S;F)⊗Fp H

∗(S;G)[1]. (11.2.10)

11.2.3. Comparison with φ∗. Recall that for smooth and proper f : X → Spec k, we have a perfect complex
HX := RfSyn∗ (OXSyn), whose mod p reduction is HX ∈ Perf(S).28 In §9.4, we lifted this construction to
H X ∈ D(S ), and equipped it with a natural isomorphism ι∗H X = HX .

Taking F = G := HX in (11.2.10), and using the Künneth isomorphism HX ⊗HX ∼= H
X×kX , we obtain

a map

φ∆
X : H∗,∗

syn(X ×k X)→ H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)[1]. (11.2.11)

Lemma 11.2.1. Let X be a smooth, proper, geometrically connected variety over k of dimension d. Then
the map φ∆

X from (11.2.11) agrees with the map φ∗ from (11.1.1).

28More generally, this formula defines HX for any quasicompact smooth scheme f : X → Spec k, and if X is proper then
HX is perfect, as explained in [Bha22, Remark 4.2.3].
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Proof. As explained in [Bha22, §4.5], the Poincaré duality isomorphism H∗,∗
syn(X)∨ ∼=

H2d+1−∗,d−∗
syn (X) is a combination of the Serre duality isomorphism

Serre : H∗,∗(S; (HX)∨[1]) ∼−→ H∗,∗(S;HX)∨ ∈ Perf(Fp)

and the “geometric Poincare duality” isomorphism [Tan24b]

PDX : HX [2d]{d} ∼−→ (HX)∨ ∈ Perf(S).
Moreover, the geometric Poincare duality isomorphism is compatible with products, in the sense that the

diagram

HX×kX′

[2d+ 2d′]{d+ d′} ∼ //

≀ PDX×X′
��

HX [2d]{d} ⊗HX
′

[2d′]{d′}

≀ PDX⊗PDX′
��

(HX×kX′

)∨
∼ // (HX)∨ ⊗ (HX

′

)∨

commutes.29

Consider the following diagram of cohomology groups of sheaves on S, which we omit from the notation
for ease of reading:

H∗,∗(HX)∨ ⊗Fp H
∗,∗(HX)∨ H∗,∗(HX ⊗Fp H

X
)∨ H∗,∗(HX×kX

)∨

H∗,∗((HX)∨[1])⊗Fp H
∗,∗((HX)∨[1]) H∗,∗((HX)∨ ⊗Fp (H

X
)∨[1]) H∗,∗((HX×kX

)∨[1])

H∗,∗(HX)⊗Fp H
∗,∗(HX)[4d+ 2] H∗,∗(HX ⊗Fp H

X
[4d+ 1]) H∗,∗(HX×kX

[4d+ 1])

≀ Serre−1 ≀ Serre−1

lax∨
∼

Künneth

≀ PDX⊗PDX

φ∆
∗

∼
Künneth

≀ Serre

φ∆
∗

≀ PDX⊗PDX

∼
Künneth

≀PDX×X

We claim that each square in the diagram commutes. Indeed:
• The upper left square commutes by definition of φ∆

∗ .
• The upper right square commutes by naturality of Serre duality.
• The lower left square commutes by naturality of φ∆

∗ .
• The lower right square commutes by the aforementioned compatibility of Poincaré duality with

products.
Hence the entire diagram commutes.

Now, the map φ∗ from (11.1.1) is the composite map in the bottom row of the diagram, while the map
φ∆
X (11.2.11) is the composition of the other three faces of the outer square, so they agree. □

11.3. Spectral Serre duality. We will establish an incarnation of Serre duality on S that “lifts” Serre
duality on S in an appropriate sense.

Following classical coherent duality, we might try to start by defining a dualizing sheaf on S as a right
adjoint to the global sections functor. Unfortunately, in FGauge∆(k)

pre
S the unit ψenh(Smot) = ψ(S•p) is not

p-completely compact.30 As a result, the global sections functor D(S )→ Sp is not colimit-preserving, hence
cannot have a right adjoint.

11.3.1. Compatibility of Ind-completion and adjunctions. There is a general categorical fix for this situation:
passing to Ind-completion.31 Indeed, if F : C → D is an exact functor between stable∞-categories, the functor
Ind(F ) : Ind(C)→ Ind(D) (that we will usually denote simply by F ) admits a right adjoint FR : Ind(D)→
Ind(C).

We will need to see that passing to Ind-completion does not ruin the good properties enjoyed by the
functors between FGauge∆(k)Fsyn

p
, FGauge∆(k)

pre
S , and Sp that we have been considering. We now collect

the facts about the construction Ind(−) that will ensure this.

29Inspecting the construction of Poincaré duality in [Tan24b], this is a consequence of the additivity property for Thom
classes in [Tan24b, Theorem 4.2].

30The unit of FGauge∆(k)S is p-completely compact.
31Applying Ind to big categories causes set-theoretic issues. These can be easily fixed using a choice of big cardinal κ and

applying C 7→ Ind(Cκ) instead of Ind(C); we leave it for the reader to carry this modification.
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Proposition 11.3.1. Let F : C → D be an exact functor of ∞-categories with finite colimits, which admits
an exact right adjoint G : D → C.32 Then Ind(G) is canonically right adjoint to Ind(F ).

Proof. The functor Ind is a functor of (∞, 2)-categories from the category of categories with finite colimits
and exact functors between them to the category of presentable categories. Therefore, it carries adjunctions
to adjunctions. □

Proposition 11.3.2. Let C be a symmetric monoidal ∞-category with biexact tensor product. Then:
• The fully faithful embedding i : C → Ind(C) is symmetric monoidal; in particular,

i(c⊗ c′) ∼= i(c)⊗ i(c′) ∈ Ind(C) for all c, c′ ∈ C.
• If C is closed symmetric monoidal, so that we have an internal Hom-functor HomC, then i is closed;

in particular,

i(HomC(c, c
′)) ∼= HomInd(C)(i(c), i(c

′)) ∈ Ind(C) for all c, c′ ∈ C.

Proof. The first point follows immediately from the construction of the symmetric monoidal structure on
the functor Ind. The second point follows from the first using the compatibility of Ind with the formation of
right adjoints (Proposition 11.3.1). To spell this out: for every c ∈ C the functor HomC(c,−) is right adjoint
to c ⊗ (−). Hence the ind-completion of HomC(c,−) is right adjoint to the ind-completion of the functor
c ⊗ (−), i.e., to i(c) ⊗ (−). We deduce that HomInd(C)(i(c),−) ∼= i(HomC(c,−)). Restricting this to the
essential image of i, we obtain the result. □

11.3.2. Compatibility of Ind-completion and projection formula. Given an exact, symmetric monoidal functor
f∗ : D → C with lax symmetric monoidal right adjoint f∗ : C → D, we have a natural projection map

(f∗c)⊗ d→ f∗(c⊗ f∗d), c ∈ C, d ∈ D
If this map is an isomorphism, so that f∗ is D-linear, let us say that the adjunction f∗ ⊣ f∗ satisfies the
projection formula.

Proposition 11.3.3. Let f∗ ⊣ f∗ be a symmetric monoidal adjunction as above. If it satisfies the projection
formula, then so does Ind(f∗) ⊣ Ind(f∗).

Proof. The functors

(c, d) 7→ Ind(f∗)(c⊗ Ind(f∗)d) and (c, d) 7→ (Ind(f∗)c)⊗ d (11.3.1)

both preserve filtered colimits in the c and the d variables separately. Hence, to check that a natural
transformation between them is an isomorphism, it suffices to check that it is an isomorphism at c, d in
the essential images of the embeddings C → Ind(C) and D → Ind(D), respectively. For such objects, both
functors in (11.3.1) land in D ⊆ Ind(D) and the projection map between them coincides with the projection
map of the non-Ind-completed adjunction f∗ ⊣ f∗, which we assumed to be an isomorphism. □

Finally, assume that C and D are closed symmetric monoidal and that the functor f∗ itself has a right
adjoint f !. Then, if f∗ ⊣ f∗ satisfies the projection formula, we can pass to the right adjoints to obtain an
isomorphism

HomD(f∗c, d) ∼= f∗HomC(c, f
!d)

Corollary 11.3.4. Let f∗ : C → D be an exact, symmetric monoidal functor between stable closed symmetric
monoidal ∞-categories which admits a right adjoint f∗. Assume that f∗ admits a further right adjoint f !
and that the adjunction f∗ ⊣ f∗ satisfies the projection formula. Then all these properties remains true after
Ind-completion. Namely, the functor Ind(f∗) admits Ind(f∗) as a right adjoint, which admits Ind(f !) as a
further right adjoint. The adjunction Ind(f∗) ⊣ Ind(f∗) satisfies the projection formula and hence we have

HomInd(D)(Ind(f∗)X,Y ) ∼= Ind(f∗)HomInd(C)(X, Ind(f
!)Y )

Convention 11.3.5. To avoid cumbersome notation, from now on we shall denote the ind-completion of a
functor F : C → D simply by F : Ind(C) → Ind(D). The compatibilities established above imply that this
abuse of notation does not affect the validity of assertions involving F . In particular, we shall denote by
HomC(−,−) the internal hom of Ind(C) when C is closed symmetric monoidal.

32If C and D are stable, which will be the case when we apply this result, then the adjoint is automatically exact if it exists.
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11.3.3. Brown-Comenetz duality. Brown–Comenetz [BC76] introduced the Brown–Comenetz spectrum, which
represents the generalized cohomology theory associating to a spectrum E the Pontrjagin dual of its homo-
topy groups,

I∗(E) = HomZ(π−∗(E),Q/Z).

Let I ∈ Sp be the p-completion of the Brown-Comenetz spectrum. Thus, if E is a spectrum of bounded
p-power torsion (meaning that pN : E → E factors over the zero map for sufficiently large N), then the
mapping spectrum HomSp(E, I) has homotopy group

πiHomSp(E, I) ∼= Hom(π−iE,Q/Z).

Thus (at least for spectra of bounded p-torsion) the functor E 7→ HomSp(E, I) =: IE is a generalization of
Pontrjagin duality to spectra. For example, there is a natural isomorphism

IFp ∼= Fp, (11.3.2)

11.3.4. Spectral dualizing sheaf. Let C be a p-complete presentably symmetric monoidal stable ∞-category
(in particular, a module over Sp in presentable categories). Let (πC)

∗ : Sp → C be the unit functor and
(πC)∗ its right adjoint. Corollary 11.3.4 implies that after Ind-completion, we have a further right adjoint
π!
C : Ind(Sp)→ Ind(C).

Definition 11.3.6. We define the dualizing object of C to be the ind-object ωC := π!
CI ∈ Ind(C), and the

corresponding Serre duality functor to be

DC := HomInd(C)(−, ωC) : Ind(C)→ Ind(C)op.

Remark 11.3.7. This definition gives a reasonable notion of dualizing object only in a “sufficiently p-torsion”
setup (which is the only situation in which we will apply it).

More generally, if f∗ : C → D is a colimit-preserving symmetric monoidal functor, then by the same
procedure we produce a functor f ! : Ind(C)→ Ind(D).

Example 11.3.8. Let D(Fp) be the derived∞-category of Fp-vector spaces, and let ϕ : D(Fp)→ Sp be the
forgetful functor, whose left adjoint is given by tensoring with Fp over S. Then ϕ! = HomSp(Fp,−). Since
HomSp(Fp, I) ∼= Fp by (11.3.2), we deduce that ωFp := ϕ!I ∼= Fp.

More generally, if C is a stable presentably symmetric monoidal category which is linear over Fp, then the

global sections (i.e., RHom from the unit object) functor C → Sp factors as C π′

−→ D(Fp)
ϕ−→ Sp, so that

ωC = π!
CI = (π′)!ωFp

∼= (π′)!Fp.

In particular, if C = QCoh(X) for a scheme X/Fp, then ωC = ωX is the usual dualizing (ind-)sheaf in the
theory of coherent duality.

11.3.5. Spectral Serre duality. Applying the discussion of §11.3.4 to C := D(S ), we can now define an
ind-object

ωS ∈ Ind(D(S )),

and a corresponding duality functor

DS : Ind(D(S ))→ Ind(D(S ))op.

Similarly, we have the dualizing object ωS = ι!ωS ∈ Ind(D(S)) and a corresponding Serre duality functor
DS . In fact, since the unit of D(S) ∼= FGauge∆(k)Fp is p-completely compact, the global sections functor
already has a right adjoint. Therefore, the object ωS belongs to D(S) ⊂ Ind(D(S)), hence the functor DS
sends ind-constant objects to ind-constant objects by Proposition 11.3.2. We abuse notation and denote the
resulting functor D(S)→ D(S)op again by DS .

Proposition 11.3.9. There is a canonical isomorphism

ι∗DS ∼= DS ι∗ : Ind(D(S))→ Ind(D(S ))op. (11.3.3)

In particular, the functor DS carries the essential image of ι∗ : D(S)→ D(S ) into D(S ) ⊆ Ind(D(S )).
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Proof. The adjunction ι∗ ⊣ ι∗ between the presentably symmetric monoidal stable ∞-categories D(S) and
D(S ) satisfies the projection formula by Proposition 9.2.5. By Proposition 11.3.3, the induced adjunction
between the ind-completions also satisfies the projection formula. Again by Proposition 9.2.5, ι∗ preserves
colimits hence admits a right adjoint ι! [Lur09, Corollary 5.5.2.9], so we have a canonical isomorphism of the
form

ι∗HomS(F , ι!G ) ∼= HomS (ι∗F ,G )

for all F ∈ Ind(D(S)) and G ∈ Ind(D(S )). The natural isomorphism (11.3.3) follows by taking G = ωS ∈
Ind(D(S )). The “in particular” part follows because ι∗ and DS carry ind-constant objects to ind-constant
objects: for ι∗ this is clear, and for DS it follows from Proposition 11.3.2. □

11.3.6. Duality involution on the prismatized Steenrod algebra. Combining the identification ωS ∼= OS [1]
from (11.2.4) with (11.3.3) yields isomorphisms

ι∗OS [1] ∼= ι∗DS(ωS) ∼= DS (ι∗OS). (11.3.4)

From this we get a sequence of isomorphisms

Asyn = HomS (ι∗OS , ι∗OS)
∼−→ HomS (DS ι∗OS ,DS ι∗OS)op

∼= HomS (ι∗OS [1], ι∗OS [1])
op ∼= HomS (ι∗OS , ι∗OS)

op = A op
syn. (11.3.5)

Definition 11.3.10 (The involution σ). We let σ : Asyn → A op
syn be the composition of the maps in (11.3.5).

Noting that σ is an involution, we also write σ : A op
syn → Asyn for the opposite map.

We also define σ : A∗,∗
syn → (A∗,∗

syn)
op and σ : (A∗,∗

syn)
op → A∗,∗

syn for the corresponding maps on cohomology
groups. These in turn induce σ : A∗,∗

syn → (A∗,∗
syn)

op and σ : (A∗,∗
syn)

op → A∗,∗
syn.

The algebra Asyn has a tautological action on ι∗OS , while A op
syn has a tautological action on the func-

tor HomS (ι∗OS ,−). By construction, σ is characterized by the following property: the composition of
isomorphisms

ι∗(OS [1]) ∼= ι∗ωS ∼= ι∗ι
!ωS

∼= HomS (ι∗OS , ωS ) (11.3.6)

is σ-semilinear when equipped with the tautological Asyn-actions on the left and right just discussed, i.e.,
(11.3.6) promotes to an isomorphism

σ∗ι∗(OS [1]) ∼= HomS (ι∗OS , ωS ) (11.3.7)

of A op
syn-modules in D(S ).

11.3.7. Serre duality and Steenrod action. We will see that, informally speaking, “the involution σ intertwines
the syntomic Steenrod action with Serre duality”. Using Example 11.3.8, we have an identification

ωS ∼= ι!π!
D(S )I

∼= ι!ωS ∈ D(S). (11.3.8)

Definition 11.3.11 (Steenrod action on Serre dual). Let F ∈ D(S ) and F = ι∗F ∈ D(S). Then by
adjunction, the projection formula, and the identification (11.3.8), we have a chain of isomorphisms

ι∗DS(F) ∼= ι∗HomS(F , ι!ωS ) ∼= HomS (ι∗F , ωS ) ∼= HomS (F ⊗OS ι∗OS , ωS ), (11.3.9)

in which all objects a priori belong to Ind(D(S )), but are in fact contained in the full subcategory D(S )
(by Proposition 11.3.9 and the discussion preceding it). The tautological Asyn-action on ι∗OS induces
a tautological A op

syn-action on HomS (F ⊗OS ι∗OS , ωS ). We then equip ι∗DS(F) with the A op
syn-action

induced by transport along (11.3.9).

Now suppose that F ∈ Perf(S ) and F := ι∗F ∈ Perf(S). Since F is dualizable and ι∗ is symmetric
monoidal, F is dualizable and there is a natural isomorphism ι∗(F∨) ∼= F∨, equipping ι∗F∨[1] with a natural
Asyn-action (cf. §10.5.1). On the other hand, the identification of the dualizing sheaf on S in (11.2.4) supplies
an isomorphism

DS(F) ∼= F∨[1] (11.3.10)

which equips ι∗DS(F) ∼= ι∗F∨[1] with a natural A op
syn-action by Definition 11.3.11. We will relate these two

actions.
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Proposition 11.3.12. Let F ∈ Perf(S ) and F := ι∗F ∈ Perf(S). Equipping each side of (11.3.10) with
the tautological A

(op)
syn -action described above, it promotes to an Asyn-equivariant isomorphism

σ∗ι∗DS(F) ∼= ι∗F∨[1] ∈ D(S ). (11.3.11)

Proof. By tensor-Hom adjunction, we have identifications

ι∗DS(F) HomS (F ⊗ ι∗OS , ωS ) HomS (F ,HomS (ι∗OS , ωS ))∼
(11.3.10)

∼

We also rewrite
ι∗F∨[1] ∼= HomS (F , ι∗OS [1]).

In both cases, the algebra Asyn acts via its action on the target of the mapping objects, so the Asyn-
equivariance of (11.3.11) reduces to the Asyn-equivariance of the isomorphism

σ∗ι∗OS [1] ∼= HomS (ι∗OS , ωS ),

which holds by the definition of σ, as discussed around (11.3.7). □

Corollary 11.3.13. Let F ∈ Perf(S ) and F = ι∗F ∈ D(S). Then the identification

H∗,∗(S;DS(F)) ∼= H∗,∗(S;F∨[1]),

coming from (11.2.4), promotes to a (A∗,∗
syn)

op-equivariant isomorphism

σ∗H∗,∗(S;DS(F)) ∼= H∗,∗(S;F∨[1]).

Proof. Apply Proposition 11.3.12 to F{i} for i ∈ Z, then take global sections and then direct sum over all
i. □

11.4. σ-equivariance of the coproduct. We will need the following compatibility of the duality involution
σ with the coproduct ∆: A∗,∗

syn → A∗,∗
syn ⊗Fp A

∗,∗
syn.

Proposition 11.4.1. The anti-involution σ : A∗,∗
syn → (A∗,∗

syn)
op preserves the subalgebra A∗,∗

syn, and defines a
map of Hopf algebras A∗,∗

syn → (A∗,∗
syn)

op. In particular, the diagram

A∗,∗
syn A∗,∗

syn ⊗Fp A
∗,∗
syn

(A∗,∗
syn)

op (A∗,∗
syn)

op ⊗Fp (A
∗,∗
syn)

op

σ

∆

σ⊗σ

∆op

commutes.

11.4.1. Initial reformulations. The dual syntomic Steenrod algebra Asyn
∗,∗ is a commutative Hopf algebra over

H∗,∗
syn(k). Hence it has an antipode s : Asyn

∗,∗ → (Asyn
∗,∗ )

op, which corresponds geometrically to inversion on the
corresponding group scheme. Write s∗ : A∗,∗

syn → (A∗,∗
syn)

op for the (opposite) map induced by duality over
H∗,∗

syn(k) of s. The antipode s is a Hopf H∗,∗
syn(k)-algebra homomorphism, so its dual s∗ is a Hopf H∗,∗

syn(k)-
algebra homomorphism; in particular, it is compatible with ∆, while we want to prove that σ is compatible
with ∆. So in order to prove Proposition 11.4.1, it suffices to identify

s∗ = σ : A∗,∗
syn → (A∗,∗

syn)
op. (11.4.1)

11.4.2. Relating σ to the swap map. Recall that σ comes from the composition

Asyn = HomS (ι∗OS , ι∗OS)
∼−→ HomS (DS ι∗OS ,DS ι∗OS)op

∼= HomS (ι∗OS [1], ι∗OS [1])
op ∼= HomS (ι∗OS , ι∗OS)

op = A op
syn.

On the other hand, from (11.2.4) let η be the composite of the isomorphisms of ι∗OS -modules below,

η : HomS (ι∗OS , ι∗OS) = HomS (ι∗OS , ι∗OS [1])[−1]
(11.3.4)∼= HomS (ι∗OS ,DS ι∗OS)[−1]

= HomS (ι∗OS ,HomS (ι∗OS , ωS ))[−1] ∼= HomS (ι∗OS ⊗OS ι∗OS , ωS )[−1].
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Lemma 11.4.2. Let sw ∈ Endι∗OS (ι∗OS ⊗OS ι∗OS) be the map swapping the two tensor factors. Then the
square

HomS (ι∗OS , ι∗OS)

≀η

��

σ // HomS (ι∗OS , ι∗OS)
op

≀η

��
HomS (ι∗OS ⊗OS ι∗OS , ωS )[−1] sw∗

// HomS (ι∗OS ⊗OS ι∗OS , ωS )[−1]

(11.4.2)

commutes.

Proof. We begin with generalities. For F ,G ∈ D(S ), we have by Hom-tensor adjunction natural isomor-
phisms

HomS (F ⊗OS G , ωS ) ∼= HomS (F ,HomS (G , ωS )) = HomS (F ,DS G ).

Moreover, the composite identification fits into a commutative diagram

HomS (F ⊗ G , ωS )

sw∗

��

∼ // HomS (F ,DS G )

DS≀
��

HomS (D2
S G ,DS F )

DS≀
��

HomS (G ⊗F , ωS )
∼ // HomS (G ,DS F )

(11.4.3)

Apply this to F := ι∗OS and G := ι∗ωS , and embed it as the middle rectangle in the following large diagram.
(We abbreviate D := DS and ⊗ for ⊗OS for ease of notation.)

HomS (ι∗OS ⊗ ι∗OS , ωS )[−1] HomS (ι∗OS ⊗ ι∗ωS , ωS ) HomS (ι∗OS ,Dι∗ωS) HomS (ι∗OS , ι∗OS)

HomS (D2ι∗ωS ,Dι∗OS) HomS (Dι∗OS ,Dι∗OS)

HomS (ι∗OS ⊗ ι∗OS , ωS )[−1] HomS (ι∗ωS ⊗ ι∗OS , ωS ) HomS (ι∗ωS ,Dι∗OS) HomS (ι∗ωS , ι∗ωS)

HomS (ι∗OS , ι∗OS)

sw∗

∼
(11.3.4)

η−1

sw∗

∼

D

∼

D

σ≀

∼

≀

∼
(11.3.4)

η−1

∼ ∼

≀

We claim that the entire diagram commutes.

• The middle diagram commutes, as a special case of (11.4.3).
• The left square commutes by naturality of sw∗.
• The right upper rectangle commutes by the naturality of DS .
• The right lower rectangle by the “exchange law” (alias “interchange law”).
• All the boundary curved triangles commute by the definitions of η and σ.

This establishes the claim. In particular, the outer diagram commutes. But this outer diagram is, up to
inverse, the diagram (11.4.2) which we wanted to show was commutative, so we are done.

□
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11.4.3. Relating s to the swap map. By Serre duality, we have

(Asyn
∗,∗ )

∨ ∼= H∗,∗(S ;A syn)∨ ∼= Ext∗,∗S (ι∗OS ⊗OS ι∗OS , ωS ). (11.4.4)

(We remind that (−)∨ means dual over Fp here.) By definition, the swap map induces the antipode of the
Hopf ι∗OS-algebroid ι∗A syn = ι∗OS ⊗OS ι∗OS ∈ D(S ). Applying H∗,∗(S ;−) then shows that it induces
also the antipode of the Hopf H∗,∗

syn(k)-algebra Asyn
∗,∗ . Hence (11.4.4) carries the swap map sw∗ on the RHS

to the dual of the antipode of Asyn
∗,∗ on the left side.

Note that H∗,∗
syn(k)

∨ ∼= H∗,∗
syn(k)[1]. Hence we have (using (6.3.5) in the first step)

A∗,∗
syn
∼= HomH∗,∗

syn(k)(A
syn
∗,∗ ,H

∗,∗
syn(k))

∼= HomFp(A
syn
∗,∗ ,H

∗,∗
syn(k))

∼= (Asyn
∗,∗ )

∨ ⊗Fp H
∗,∗
syn(k)

∼= (Asyn
∗,∗ )

∨ ⊗Fp H
∗,∗
syn(k)

∨[−1] ∼= (Asyn
∗,∗ )

∨[−1]. (11.4.5)

This is related to the earlier identifications in the following way.

Lemma 11.4.3. The composition of (11.4.4) with η−1 is the composite identification (Asyn
∗,∗ )

∨[−1] ∼= A∗,∗
syn

from (11.4.5).

Proof. This is immediate upon comparing the definitions. □

11.4.4. Completion of the proof. The proof of (11.4.1), hence also of Proposition 11.4.1, will be completed
by the following Proposition. □

Proposition 11.4.4. The isomorphism

HomH∗,∗
syn(k)(A

syn
∗,∗ ,H

∗,∗
syn(k))

∼= A∗,∗
syn (11.4.6)

intertwines the anti-involution s∗ on the left side with the anti-involution σ on the right side.

Proof. Applying Lemma 11.4.3 identifies the isomorphism (11.4.6) with the composite isomorphism

(Asyn
∗,∗ )

∨[−1] Ext∗,∗S (ι∗OS ⊗OS ι∗OS , ωS ) A∗,∗
syn.∼

(11.4.4) η

∼

As discussed above, the first isomorphism carries s∗, the dual of the antipode on Asyn
∗,∗ , to sw∗ on the middle

term. Then by Lemma 11.4.2, the second isomorphism carries sw∗ to σ.
□

11.5. Proof of Theorem 11.1.1. In this subsection, we will (finally!) combine the preceding ingredients
to prove Theorem 11.1.1.

Let F ∈ Perf(S ) and F := ι∗F . From now on, we adopt the following conventions.
• We regard ι∗F ∼= ι∗ι

∗F as an Asyn-module via the construction from §10.5.1. This induces an
A∗,∗

syn-module structure on H∗,∗(S;F).
• We regard ι∗DS(F) as an A op

syn-module via Definition 11.3.11, which induces an (A∗,∗
syn)

op-module
structure on H∗,∗(S; ι∗DS(F)).
• If M is an A∗,∗

syn-module, then we regard M∨ := HomFp(M,Fp) as an (A∗,∗
syn)

op-module via the action
on the source.
• If M,N are A∗,∗

syn-modules, then we regard M ⊗Fp N as an A∗,∗
syn-module by restriction along the

coproduct ∆: A∗,∗
syn → A∗,∗

syn ⊗Fp A
∗,∗
syn, as in §10.6.

Proposition 11.5.1. The Serre duality isomorphism H∗,∗(S;F)∨ ∼= H∗,∗(S;DS(F)) is (A∗,∗
syn)

op-equivariant,
with respect to the actions defined above.

Proof. We have commutative triangles33

D(S) D(S )

Sp

ι∗

πS∗
πS∗ and

D(S) D(S )

Sp

ι∗

π∗
S

π∗
S

33The functor πS∗ : D(S) → Sp factors over D(Fp), but we are forgetting that structure here.
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Recall that I is the Brown–Comenetz spectrum. In these terms, the Serre duality isomorphism assumes the
form

RΓ(S;F)∨ ∼= RΓ(S ; ι∗F)∨ ∼= RHomSp(πS ∗ι∗ι
∗F , I) ∼= RHomS (ι∗ι

∗F , π!
S I)

= RHomS (ι∗ι
∗F , ωS ) ∼= RHomS(ι

∗F , ωS) ∼= RΓ(S;DS(F)).

Chasing through these identifications, we see that the (A∗,∗
syn)

op-action on H∗,∗(S;F)∨ is obtained by passing
to cohomology groups from action of A op

syn on HomS (ι∗ι
∗F , ωS ) ∼= ι∗HomS(ι

∗F , ωS) via the tautological
Asyn-action of ι∗ι∗F . According to Proposition 11.3.12, this is identified with the tautological A op

syn-action
on DS(F), as desired.

□

The following Lemma is elementary, but we record it for convenience.

Lemma 11.5.2. The isomorphism(
H∗,∗(S;F)⊗Fp H

∗,∗(S;G)
)∨ ∼= H∗,∗(S;F)∨ ⊗Fp H

∗,∗(S;G)∨

is equivariant for the actions of Aop
syn.

Proof. More generally, if R is any Fp-algebra and and M,N are R-modules whose underlying Fp-module is
dualizable, then we have an identification

M∨ ⊗Fp N
∨ ∼= (M ⊗Fp N)∨

of Rop ⊗Fp R
op-modules. Applying this to R := A∗,∗

syn and restricting along ∆ yields the result. □

By the discussion at the beginning of §11.2.3, and the comparison of Lemma 11.2.1, Theorem 11.1.1 is a
special case of the following more general result. □

Theorem 11.5.3. Let F ,G ∈ Perf(S ), and let F = ι∗F ,G = ι∗G ∈ Perf(S). Then the map

φ∆
∗ : H∗,∗(S;F ⊗OS G)→ H∗,∗(S;F)⊗Fp H

∗,∗(S;G)[1]

from (11.2.10) is (A∗,∗
syn)

op-equivariant.

Proof. It follows from Lemma 10.6.1 and Remark 10.6.2 that the cup product

H∗,∗(S;F∨)⊗Fp H
∗,∗(S;G∨)→ H∗,∗(S;F∨ ⊗OS G∨) (11.5.1)

is A∗,∗
syn-equivariant. Dualizing (11.5.1) and using Lemma 11.5.2, we learn that the dual map

H∗,∗(S;F∨)∨ ⊗Fp H
∗,∗(S;G∨)∨ ← H∗,∗(S;F∨ ⊗OS G∨)∨ (11.5.2)

is (A∗,∗
syn)

op-equivariant.
By Lemma 11.5.1, (11.5.2) is identified (A∗,∗

syn)
op-equivariantly with the map

H∗,∗(S;DS(F∨))⊗Fp H
∗,∗(S;DS(G∨))← H∗,∗(S;DS(F∨ ⊗OS G∨)). (11.5.3)

By Corollary 11.3.13, (11.5.3) is identified (A∗,∗
syn)

op-equivariantly with the map

σ∗H∗,∗(S;F [1])⊗Fp σ
∗H∗,∗(S;G[1])← σ∗H∗,∗(S;F ⊗OS G[1]). (11.5.4)

where the underlying map of graded Fp-vector spaces is the dashed map in (11.2.8), which is φ∆ up to shifting
by 1. We still have to track that it is equipped with the prescribed Steenrod action. By the identification
(σ ⊗ σ) ◦∆ = ∆ ◦ σ of Proposition 11.4.1 we have an (A∗,∗

syn)
op-equivariant isomorphism

σ∗H∗,∗(S;F [1])⊗Fp σ
∗H∗,∗(S;G[1]) ∼= σ∗(H∗,∗(S;F [1])⊗Fp H

∗,∗(S;G[1])). (11.5.5)

Combining (11.5.4) and (11.5.5), we obtain an (A∗,∗
syn)

op-equivariant isomorphism

σ∗H∗,∗(S;F ⊗OS G[1])→ σ∗(H∗,∗(S;F [1])⊗Fp H
∗,∗(S;G[1])).

Finally, we conclude by applying (σ∗)−1 replacing F and G by their shifts by 1. □
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Part 4. Characteristic classes

In this Part, we develop a theory of mod 2 characteristic classes in syntomic cohomology for p = 2. The
eventual purpose of this theory is to facilitate explicit calculation of syntomic Steenrod operations. Our
path is inspired by classical results in the algebraic topology of manifolds (as can be found in [MS74], for
example):

• Steenrod operations to the top degree are controlled by “Wu classes”.
• (Wu formula) Wu classes can be expressed in terms of Stiefel–Whitney classes.
• For complex vector bundles, Stiefel–Whitney classes are reductions of Chern classes.

We will establish parallel results which will ultimately be used to prove the vanishing of certain syntomic
Steenrod operations.

12. Syntomic Stiefel–Whitney classes

Let X be a scheme over a field k of characteristic p = 2 and E → X be a vector bundle. In this section we
construct “syntomic Stiefel–Whitney classes” wisyn ∈ H

i,⌊i/2⌋
syn (X), following the approach of [Fen20a], which

in turn is based on ideas of Thom. A posteriori, these syntomic Stiefel–Whitney classes will turn out to be
merely the reductions modulo 2 of Chern classes, but this is a non-trivial calculation which is essential to
the eventual applications.

12.1. Cohomology with supports. Let i : Z ↪→ X be a closed subscheme and j : U ↪→ X the complemen-
tary open embedding. For an étale sheaf F on X, we have the unit map F → j∗j

∗F , which induces

RΓ(X,F)→ RΓ(X, j∗j
∗F) ∼= RΓ(U, j∗F). (12.1.1)

The cohomology of X with supports in Z is defined as the derived kernel of the restriction map (12.1.1), so
that we have an exact triangle

RΓZ(X;F)→ RΓ(X;F)→ RΓ(X; j∗j
∗F).

For any F = Fsyn
p (b), b ∈ Z, we have from §2 an action of the syntomic Steenrod algebra on RΓ(X;F) →

RΓ(U ; j∗F), hence also on RΓZ(X;F).

12.2. Syntomic Steenrod operations. We summarize some of the general theory of the syntomic Steenrod
algebra from §6 and §8, specialized to the case p = 2. We have explicit cohomology operations:

(1) “β”, which acts as the Bockstein differential

β : Ha,bsyn(−)→ Ha+1,b
syn (−)

induced by the exact triangle Z/2(b)syn → Z/4(b)syn → Z/2(b)syn, and
(2) “Sq2isyn = Pisyn” for each i ≥ 0, acting as

Ha,bsyn(−)
Sq2i

syn−−−→ Ha+2i,b+i
syn (−).

Example 12.2.1. The operation Sq0syn acts as the identity.
By Corollary 8.1.4, the operation

Sq2isyn : H
2i,i
syn(−)→ H4i,2i

syn (−)

is given by squaring.

Set Sq2i+1
syn := β ◦ Sq2isyn. The comultiplication on A∗,∗

syn takes the form

Sq2isyn(u · v) =
i∑

j=0

Sq2jsyn(u) · Sq
2i−2j
syn (v)

and

Sq2i+1
syn (u · v) =

i∑
j=0

(
Sq2j+1

syn (u) · Sq2i−2j
syn (v) + Sq2jsyn(u) · Sq

2i−2j+1
syn (v)

)
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12.3. Construction of syntomic Stiefel–Whitney classes. Let i : Z ↪→ Y be a regular embedding of
pure codimension d over k. Then we have a cycle class sZ/Y ∈ H2d

Z (Y ;Zsyn
p (d)). In the greater generality of

syntomic cohomology (in mixed characteristic settings), this has been constructed by Longke Tang [Tan24b].
In the case of smooth varieties over k, it follows from results of Milne [Mil86] and Gros [Gro85].

We are going to apply this with Y being the total space of a vector bundle π : E → X of rank d, Z = X,
and i : X ↪→ E being the zero section. This gives a cycle class sX/E ∈ H2d

X (E;Zsyn
p (d)).

We will define a pushforward map

π∗ : H
a
X(E;Zsyn

p (b))→ Ha−2d
syn (X;Zp(b− d)). (12.3.1)

Let π : E := P(E ⊕OX)→ X, a compactification of π : E → X. Note that Mayer–Vietoris gluing implies a
derived Cartesian square

RΓsyn(E;−) RΓsyn(E \X;−)

RΓsyn(E;−) RΓsyn(E \X;−)

which induces a canonical isomorphism HaX(E;Zsyn
p (b)) ∼= HaX(E;Zsyn

p (b)). Since the map π : E → X is
smooth and proper, we have by the construction in [Gro85, Chapitre II, §1] a map

π∗Z
syn
p (b)E → Zsyn

p (b− d)X [−2d]. (12.3.2)

Taking cohomology of (12.3.2), and passing through the identification HaX(E;Zsyn
p (d)) ∼= HaX(E;Zsyn

p (d)),
gives (12.3.1).

Similarly we get a pushforward on mod p syntomic cohomology,

π∗ : H
a,b
X (E)→ Hb−2d,b−d

syn (X). (12.3.3)

Definition 12.3.1. Suppose k has characteristic p = 2. Let π : E → X be a vector bundle of rank d. Let
sX/E ∈ H2d,d

X (E) be the reduction modulo 2 of the cycle class of the zero section. For j ≥ 0, we define the
jth syntomic Stiefel–Whitney class of E to be

wsyn
j (E) = π∗(Sq

j
syn(sX/E)) ∈ Hj,⌊j/2⌋syn (X). (12.3.4)

Define the total Stiefel–Whitney class to be wsyn(E) :=
∑
j w

syn
j (E). If no vector bundle is mentioned, then

by default we set wj := wsyn
j (TX) for the tangent bundle TX, and wsyn :=

∑
j w

syn
j .

Remark 12.3.2. It is crucial that in Definition 12.3.1 we use the syntomic Steenrod operations Sqisyn instead
of the E∞ Steenrod operations SqiE; the classes that would come out of using the latter operations would
not be well-behaved (as can be seen just by considering weights – see Remark 12.5.3).

12.4. Properties of the syntomic Stiefel–Whitney classes. We now record that the syntomic Stiefel–
Whitney classes, as constructed in §12.3, enjoy the usual properties of characteristic classes. We continue to
assume that p = 2 through the rest of the section.

(1) If E is a vector bundle on X, then we have wsyn
0 (E) = 1 and wsyn

j (E) = 0 for j > 2 rankE.
(2) (naturality) If f : X ′ → X and E is a vector bundle on X, then we have

f∗wsyn
j (E) = wsyn

j (f∗E).

(3) (Whitney sum formula) If E,E′ are vector bundles on X, then we have

wsyn
j (E ⊕ E′) =

j∑
i=0

wsyn
i (E) · wsyn

j−i(E
′).

Setting wsyn :=
∑
j w

syn
j to be the total Stiefel–Whitney class, then this can be written more suc-

cinctly as
wsyn(E ⊕ E′) = wsyn(E) · wsyn(E′).

These follow formally from the properties of Steenrod operations in §12.2, as in [Fen20a, §5.4].
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Lemma 12.4.1. If
0→ E′ → E → E′′ → 0

is a short exact sequence of vector bundles on X, then

wsyn(E) = wsyn(E′) · wsyn(E′′).

Proof. Applying [BL22, Proposition 9.2.9] in the same way as in the proof of [BL22, Theorem 9.2.7], we may
reduce to the case where E ∼= E′ ⊕ E′′, which was handled above. □

12.5. Relation to Chern classes. Chern classes in syntomic cohomology are defined in [BL22, §9]. For
a vector bundle E → X, there are defined in [BL22, Construction 9.2.1] syntomic Chern classes csynj (E) ∈
H2j

syn(X;Zp(j)).
Here we prove that our syntomic Stiefel–Whitney classes are simply reductions of Chern classes. This fact

will be of significance later in §16, where we will want to know that our syntomic Stiefel–Whitney classes lift
to integral cohomology. The reason that we have defined them by this complicated construction involving
syntomic Steenrod operations, rather than simply defining them to be the reduction of Chern classes, is that
our definition will interface well with later constructions.

Proposition 12.5.1. Let X be a smooth projective variety over F2 and E a vector bundle on X of rank
r. For each j ∈ N, let csynj (E) ∈ H2j

syn(X;Z2(j)) be the jth Chern class of (the tangent bundle of) E and
csynj ∈ H2j,j

syn (X) be its reduction modulo 2. Then we have:

wsyn
i (E) :=

{
csyni/2 (E) i even,
0 i odd.

(12.5.1)

Remark 12.5.2. The form of Proposition 12.5.1 is actually simpler than the analogous statement when
ℓ ̸= p [Fen20a, Theorem 5.10]. This can be ultimately traced to the difference between Sq1syn and the
Bockstein operation used in that case, which differ by ρ.

Proof. By standard reductions for characteristic classes, it suffices to check that the formula above is correct
for all line bundles.

Let π : L→ X be a line bundle on X. We view X as embedded in L via the zero section. We then have
the associated cycle class sX/L ∈ H2

X(L;Zsyn
2 (1)).

Calculation of wsyn
1 . To show that wsyn

1 (L) = 0, it suffices to show that Sq1syn(sX/L) = 0. We have
[sX/L] ∈ H2,1

X (L) so the operation Sq1syn is the Bockstein map for the exact triangle

Z/2syn(1)→ Z/4syn(1)→ Z/2syn(1)

But the cycle class sX/L even lifts to H2
X(L;Zsyn

2 (1)), so this Bockstein map vanishes.

Calculation of wsyn
2 . We claim that Sq2syn(sX/L) = π∗(csyn1 (L)) · sX/L. Granting this claim, we deduce that

wsyn
2 (L) = π∗(Sq

2
syn(sX/L)) = π∗(π

∗(c1(L)) · sX/L) = c1(L)

using the projection formula in the last equality.
It remains to prove the claim. By Example 12.2.1, we have that Sq2syn(sX/L) = sX/L · sX/L. Hence it

suffices to show that the map H2,1
X (L)→ H2,1

syn(L) sends sX/L to π∗csyn1 (L).
Consider the commutative diagram

Pic(X) = H1
ét(X;Gm) H2,1

syn(X)

Pic(L) = H1
ét(L;Gm) H2,1

syn(L)

π∗
π∗

where the horizontal arrow is the association of the first Chern class. The line bundle L→ X pulls back to
OL(X) on L, i.e., the line bundle associated to the divisor of the zero-section in L. Hence the cycle class of
the zero section in L coincides with csyn1 (π∗L) = π∗csyn1 (L). This completes the proof. □
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Remark 12.5.3. We could have constructed “E∞ Stiefel–Whitney classes” wE
i in an analogous way, using

the SqiE instead of Sqisyn. Elementary weight considerations reveal that if E → X has rank r then wE
i (E) ∈

Hi,rsyn(X). In particular, for i ̸= 2r they cannot lie on the “motivic line” H2∗,∗
syn . Moreover, if r is large compared

to dimX, then they all vanish (even for i = 0!), which indicates that their behavior differs from what would
be expected of characteristic classes.

13. Arithmetic Wu formula

In this section we prove an arithmetic Wu formula, which calculates certain syntomic Steenrod operations
in terms of the Stiefel–Whitney classes just defined.

The adjective “arithmetic” refers to that our cohomology theory is absolute, with a non-trivial contribution
from the base field. We note that geometric Wu formulas have been proved in [Ura96, SS24, Ben25] (for ℓ-adic
étale cohomology, ℓ ̸= p) and [Pri20, AE25] (for mod p motivic cohomology in characteristic p). Although
the final formulations look the same, our arithmetic Wu formula is much subtler to prove. The fact that
even a point has non-trivial cohomology, while being geometrically trivial, is the root of all our problems,
and in fact the entire purpose of Part 3 was to provide a technical ingredient to surmount this difficulty.34

13.1. The syntomic Wu classes. Throughout this section, we letX be a smooth, proper, and geometrically
connected variety over a finite field k of characteristic p, of dimension d. For p = 2, consider the syntomic
Steenrod operation

Sqisyn : H
2d+1−i,d−⌊i/2⌋
syn (X)→ H2d+1,d

syn (X).

Recall that the cup product

H2d+1−i,d−⌊i/2⌋
syn (X)⊗Hi,⌊i/2⌋syn (X)→ H2d+1,d

syn (X)

induces a perfect pairing. Therefore, there exists a unique vsyni ∈ H
i,⌊i/2⌋
syn (X) such that

Sqisyn(α) = vsyni · α for all α ∈ H2d+1−i,d−⌊i/2⌋
syn (X).

We call vsyni the ith syntomic Wu class and we call

vsyn :=
∑
i

vsyni ∈ H∗,∗
syn(X)

the total syntomic Wu class.

Example 13.1.1. If i = 0, then Sqisyn is the identity map, so vsyni = 1.
If i > d+ 1, then Corollary 8.1.4 implies that Sqisyn(α) = 0 on all α ∈ H

2d+1−i,d−⌊i/2⌋
syn (X), so vsyni = 0.

The purpose of this section is to prove the following theorem.

Theorem 13.1.2 (Arithmetic Wu formula). Let X be a smooth, proper, geometrically connected variety
over a finite field of characteristic 2. Then we have

wsyn(TX) = Sqsyn(v
syn) ∈ H∗,∗

syn(X).

Remark 13.1.3. Since Sq0syn = Id, the equation wsyn(TX) = Sqsyn(v
syn) can be inverted to solve for {vsynj }

in terms of the {wsyn
j }.

The analogous definition for the E∞ Steenrod operations would lead to an “E∞ Wu class” vE which
is different from vsyn, as can be seen from weight considerations. Moreover, if X has dimension d > 0
then wE

0 (TX) ∈ H0,d
syn(X) would vanish, so that the equation SqE(v

E) = wE(TX) could not be “inverted”
to calculate the {vEj } in terms of the {wE

j (TX)}. This is another reason we use the syntomic Steenrod
operations instead of the E Steenrod operations for the purpose of defining characteristic classes.

13.2. Deformation to the diagonal. In this subsection, p = char(k) can be an arbitrary prime.

34The analogous problem for arithmetic ℓ-adic étale cohomology was solved in [Fen20a], using some tricks with étale homo-
topy theory, but those do not apply here.
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13.2.1. More on pushforward maps. Let f : X → Y be a proper map of connected smooth varieties over a
finite field k. Set d := dimX − dimY . Then there is a pushforward map [Gro85, Chapitre II, §1]

f∗Z
syn
p (b)X → Zsyn

p (b− d)Y [−2d]. (13.2.1)

It is dual to the pullback map Zsyn
p (b)Y → f∗Z

syn
p (b)X . We also write

f∗ : H
a
syn(X;Zp(b))→ Ha−2d

syn (Y ;Zp(b− d)) (13.2.2)

for the induced map on cohomology, which is dual to the pullback map on cohomology.
It is elementary to show (see for example [Gro85, Chapitre II, §2]) that the map (13.2.1) enjoys the

following properties:
• It is functorial: if f : X → Y is a proper map of smooth varieties over k, and g : Y → Z is another

proper map of smooth varieties over k, then

(gf)∗ = g∗ ◦ f∗.

• We have the projection formula for all α ∈ H∗,∗
syn(X;Zp) and β ∈ H∗,∗

syn(Y ;Zp),

f∗(α · f∗β) = (f∗α) · β. (13.2.3)

• If f : X ↪→ Y is a regular embedding of codimension a, let clY (X) be the image of sX/Y ∈
H2a
X (Y ;Zsyn

p (a)) under the “forget supports” map to H2a(Y ;Zsyn
p (a)). Then f∗f∗ is multiplication by

clY (X). In particular, f∗(1) = clY (X) where the input element 1 is regarded in H0
syn(X;Zp) ∼= Zp.

By descent, if f : X → Y is a (representable) smooth and proper map of stacks, then there exists a
pushforward map

f∗ : H
a
syn(X ;Zp(b))→ Ha−2d

syn (Y;Zp(b− d)) (13.2.4)
satisfying the same properties.

13.2.2. Weighted deformation to the normal cone. In A1-invariant cohomology theory, Lemma 13.3.1 may be
proved by deformation to the normal cone (using Morel–Voevodsky purity). However, syntomic cohomology
theory is not A1-invariant, which causes substantial technical complications for us. However, it enjoys a
weaker property called weighted homotopy invariance that turns out to be sufficient for our purposes.35

More generally, let ι : X ↪→ Y be a regular embedding. The weighted deformation to the normal cone
[Tan24b, Definition 5.11] of ι is a flat family Y → [A1/Gm] (the stack quotient for the standard scaling action)
whose restriction to pt = [Gm/Gm] ↪→ [A1/Gm] is Y → pt and whose restriction to [0/Gm] ↪→ [A1/Gm] is
the stack quotient of the normal bundle Nι of ι by the inverse scaling action of Gm. Moreover, Y is equipped
with a closed embedding from X := X × [A1/Gm], which restricts over pt = [Gm/Gm] ↪→ [A1/Gm] to the
given ι : X ↪→ Y and over [0/Gm] ↪→ [A1/Gm] to the zero section of X in Nι. We write X0,Y0 for the
special fibers of X ,Y, respectively, over [0/Gm] ↪→ [A1/Gm]. This is summarized in the diagram below.

X0 = X/Gm X = X ×A1/Gm X

Y0 = Nι/Gm Y Y

0/Gm A1/Gm Gm/Gm

ι

(13.2.5)

Then it follows from [Tan24b, Theorem 5.20] that we have the following “weighted homotopy invariance”:
the obvious pullback maps induce a commutative diagram with indicated isomorphisms,

H∗,∗
X0

(Y0) H∗,∗
X (Y) H∗,∗

X (Y )

H∗,∗
syn(Y0) H∗,∗

syn(Y) H∗,∗
syn(Y )

∼

∼

(13.2.6)

35We learned of this from [Tan24b, §3], which credits the idea to course notes of Dustin Clausen, who credits it to Burt
Totaro.
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Furthermore, the construction of cycle classes is arranged so that (13.2.6) has the following effect on cycle
classes [Tan24b, §5]:

H2∗,∗
X0

(Y0) H2∗,∗
X (Y) H2∗,∗

X (Y )

sX0/Y0
sX/Y sX/Y

∼ (13.2.7)

13.2.3. The case of the diagonal embedding. Now assume that X is smooth and proper of (equi)dimension
d over k. Let Y := X ×k X and ι : X ↪→ Y be the diagonal embedding. Note that we have a commutative
diagram

Y0 = Nι/Gm Y Y

X0 = X/Gm X X

π p̃r pr1 (13.2.8)

which provides a retraction to the upper row of vertical arrows in (13.2.5). We will construct a commutative
diagram of pushforward maps

H∗,b
X0

(Y0) H∗,b
X (Y) H∗,b

X (Y )

H∗−2d,b−d
syn (X0) H∗−2d,b−d

syn (X ) H∗−2d,b−d
syn (X)

π∗ p̃r∗

∼

pr1∗

∼

(13.2.9)

• Since pr1∗ is smooth and projective, we have on general grounds (§13.2.1) a pushforward map
pr1∗ : H

∗,b
syn(Y ) → H∗−2d,b−d

syn (X). Abusing notation, we define the vertical map pr1∗ in the right
column of (13.2.9) to be its composition with the “forget support” map H∗,b

X (Y )→ H∗,b
syn(Y ).

• For C := PX0
(NX/Y ⊕O), let C be the quotient stack C/Gm, where Gm acts on NX/Y ⊕O via inverse

scaling. As π is a vector bundle, the vertical map π∗ in the left column of (13.2.9) is defined by the
procedure of §12.3: letting π : C → X0 be the projection for the compactification, we define π∗ to be
the isomorphism H∗,b

X0
(Y0) ∼= H∗,b

X0
(C) composed with the “forget supports” map H∗,b

X0
(C) → H∗,b

syn(C)
followed by the pushforward map H∗,b

syn(C)→ H∗−2d,b−d
syn (X0).

• Then the vertical map p̃r∗ in the middle column of (13.2.9) is determined uniquely by the commu-
tativity of the left square.

Lemma 13.2.1. With the definitions above, diagram (13.2.9) commutes.

Proof. Although the Thom isomorphism fails for syntomic cohomology since it is not A1-invariant, there is
a “weighted Thom isomorphism” [Tan24b, Theorem 4.2] which says that H∗,∗

X0
(Y0) is free of rank one over

H∗,∗
syn(X0), with distinguished generator being the Thom class ThTX ∈ H2d,d

X0
(Y0). All cohomology groups

in question are modules over H∗,∗
syn(X0) under pullback and cup product, and the horizontal maps (being

pullbacks) are obviously linear over H∗,∗
syn(X0). Moreover, the pushforward maps π∗ and pr1∗ are also linear

over H∗,∗
syn(X0): this is a reformulation of the projection formula. So it suffices to check the commutativity

on the Thom class ThTX .
By the very construction of cycle classes in [Tan24b, §5], the diagonal cycle class in clX(X × X) ∈

H2d,d
syn (X×X) is the image of ThTX from the top left to the bottom right term36 of (13.2.6). By the uniqueness

properties of cycle classes, this definition of clX(X ×X) agrees with the pushforward of 1 ∈ H0,0
syn(X) under

the diagonal map X ↪→ X ×X. Then from the functoriality of the pushforward, we see that

pr1∗(clX(X ×X)) = 1 ∈ H0,0
syn(X).

On the other hand, by the general property of Thom classes we have π∗(ThTX) = 1 ∈ H0,0
syn(X0), which maps

to 1 ∈ H0,0
syn(X) under the composition from left to right (inverting the middle isomorphism)

H∗,∗
syn(X0) = H∗,∗

syn(X × BGm)
∼←− H∗,∗

syn(X ×A1/Gm)→ H∗,∗
syn(X),

36meaning the inverse of the leftwards restriction, composed with the rightwards restriction, followed by the “forget supports”
map
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since H∗,∗
syn(X × BGm) ∼= H∗,∗

syn(X)[csyn1 ] by [BL22, Lemma 9.3.2], with the restriction map to H∗,∗
syn(X) being

the quotient by csyn1 . Thus we see the desired commutativity. □

13.3. Calculation of syntomic Wu classes. For the rest of this section, p = 2. Recall that X is a smooth,
proper, geometrically connected variety of dimension d over a finite field k of characteristic 2.

13.3.1. Stiefel–Whitney classes of the tangent bundle. The normal bundle of X in its diagonal embedding
into X × X is isomorphic to the tangent bundle TX. Comparing this to the definition of the syntomic
Stiefel–Whitney classes in §12.3 motivates the following.

Lemma 13.3.1. Let sX/X×X ∈ H2d,d
X (X ×X) be the mod 2 cycle class of the diagonal. Then we have

pr1∗ Sq
i
syn(sX/X×X) = wsyn

i ∈ Hi,⌊i/2⌋syn (X), (13.3.1)

where pr1 : X ×X → X denotes projection to the first factor.

Proof. We will use the notation of §13.2.2 and §13.2.3. By naturality of Steenrod operations under pullback,
applying Sqisyn to (13.2.7) shows that the maps

H
2d+i,d+⌊i/2⌋
X0

(Y0) H
2d+i,d+⌊i/2⌋
X (Y) H

2d+i,d+⌊i/2⌋
X (Y )∼

carry

Sqisyn(sX0/Y0
) Sqisyn(sX/Y) Sqisyn(sX/Y )

Then by Lemma 13.2.1, we see that applying the pushforward maps from (13.2.9) carry cohomology classes
as in the commutative diagram below

Sqisyn(sX0/Y0
) Sqisyn(sX/Y) Sqisyn(sX/Y )

π∗Sq
i
syn(sX0/Y0

) p̃r∗Sq
i
syn(sX/Y) pr1∗ Sq

i
syn(sX/Y )

π∗ p̃r∗ pr1∗

inc∗0 inc∗Gm

(13.3.2)

where the maps inc∗0 and inc∗Gm
are the pullbacks

H
2d+i,d+⌊i/2⌋
syn (X/Gm) H

2d+i,d+⌊i/2⌋
syn (X ×A1/Gm) H

2d+i,d+⌊i/2⌋
syn (X)

inc∗0 inc∗Gm

From the Cartesian square

TX Y0

X X0

π

q

π

q

where the maps q are the quotient by Gm,we obtain that

q∗π∗Sq
i
syn(sX0/Y0

) = π∗q
∗Sqisyn(sX0/Y0

) = π∗Sq
i
syn(sX/TX) = wsyn

i (TX). (13.3.3)

We explained earlier that inc∗0 is an isomorphism. Comparing (13.3.2) and (13.3.3), we see that it suffices to
show that inc∗Gm

◦(inc∗0)−1 = q∗. Since the projection map pr1 : X×A1/Gm → X/Gm satisfies pr1 ◦inc0 = Id,
and inc∗0 is an isomorphism, we must have pr∗1

∼= (inc∗0)
−1. This implies that

inc∗Gm
◦ (inc∗0)−1 = inc∗Gm

◦ pr∗1 = (pr1 ◦incGm)
∗ = q∗

as desired. □
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13.3.2. The map φ∗. Let
φ∗ : H

∗,∗
syn(X ×k X)→ H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X) (13.3.4)

be the map studied at the beginning of §11.1.
We will now discuss features specific to characteristic p = 2. We have the syntomic Steenrod operations

Sqsyn on H∗,∗
syn(X×kX), and also on H∗,∗

syn(X). Although H∗,∗
syn(X)⊗FpH

∗,∗
syn(X) is not the syntomic cohomology

of a variety over k, it admits a natural A∗,∗
syn-module structure because of the Hopf algebra structure of A∗,∗

syn,
as discussed in §10.6. Concretely, for x⊗ y ∈ H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X), we have

Sq2isyn(x⊗ y) =
i∑

j=0

Sq2jsyn(x)⊗ Sq2i−2j
syn (y)

and

Sq2i+1
syn (x⊗ y) =

i∑
j=0

(
Sq2j+1

syn (x)⊗ Sq2i−2j
syn (y) + Sq2jsyn(x)⊗ Sq2i−2j+1

syn (y)
)
.

From Theorem 11.1.1, we have that
Sqsynφ∗ = φ∗Sqsyn. (13.3.5)

We give another perspective on the map φ∗ from (13.3.4). Note that H∗,∗
syn(X×kX) acts by correspondences

on H∗,∗
syn(X), inducing an Fp-vector space map

H∗,∗
syn(X ×k X)→ EndFp

(
H∗,∗

syn(X)
)

(13.3.6)

which sends α ∈ H∗,∗
syn(X ×k X) to the endomorphism

H∗,∗
syn(X) ∋ u 7→ (pr1)∗(α · pr∗2 u) ∈ H∗,∗

syn(X). (13.3.7)

Using Poincaré duality, we may identify

EndFp
(
H∗,∗

syn(X)
) ∼= H∗,∗

syn(X)∨ ⊗Fp H
∗,∗
syn(X) ∼= H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X).

After unraveling the definitions, one sees that under this identification, (13.3.6) agrees with (13.3.4).

Lemma 13.3.2. Let ∆ := clX×X(X) ∈ H2d,d
syn (X ×k X). Then the map (13.3.6) sends ∆ 7→ Id.

Proof. Let f : X ↪→ X ×k X denote the diagonal embedding. Then we may view ∆ = f∗(1) as explained in
§13.2.1. Taking α = ∆ in (13.3.7), we see that ∆ corresponds to the endomorphism

γ 7→ (pr1)∗(f∗(1) · p∗2γ) = (pr1)∗f∗(1 · f∗ pr∗2 γ)

by the projection formula. But since pr1 ◦f = pr2 ◦f = IdX , this last expression is just γ again. □

13.3.3. Decomposition of the diagonal. We will now compute Sq(φ∗∆) explicitly and use it to prove Theo-
rem 13.1.2.

Lemma 13.3.3. Let X be a smooth, proper variety over a finite field (of any characteristic). Let
• {em} be a basis for H∗,∗

syn(X), and
• {fm} be the dual basis of H∗,∗

syn(X) under Poincaré duality.

For a cohomology class x ∈ Hi,∗syn(X) let |x| = i. Then, letting ∆ be as in Lemma 13.3.2, we have

φ∗∆ =
∑
m

(−1)|em|em ⊗ fm ∈ H∗,∗
syn(X)⊗H∗,∗

syn(X), (13.3.8)

where φ∗ is as in (13.3.4).

Proof. Lemma 13.3.2 says that the action of ∆ induced on H∗
syn(X) by (13.3.7) is just the identity map.

Therefore, it suffices to show that the right hand side of (13.3.8) acts as the identity on H∗
syn(X), which

is a straightforward linear algebra exercise about dual bases in graded vector spaces (cf. [MS74, Theorem
11.11]). □
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Let (pr′1)∗ and (pr′2)∗ denote the “pushforward” maps

H∗,∗
syn(X)

(pr′1)∗←−−−− H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)

(pr′2)∗−−−−→ H∗,∗
syn(X)

which are dual to the obvious “pullbacks”

H∗,∗
syn(X)

(pr′1)
∗

−−−−→ H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)

(pr′2)
∗

←−−−− H∗,∗
syn(X).

Note that (pr′1)∗ and (pr′1)
∗ are not induced by a map of varieties pr′i, since indeed H∗,∗

syn(X)⊗Fp H
∗,∗
syn(X) is

not the cohomology of a variety; we are just introducing formal notation. Concretely, (pr′1)∗ and (pr′2)∗ are
characterized by the identities

(pr′1)∗(pr
′∗
1 x⊗ pr′∗2 y) = x ·

(∫
X

y

)
for all x, y ∈ H∗,∗

syn(Y ), (13.3.9)

(pr′2)∗(pr
′∗
1 x⊗ pr′∗2 y) =

(∫
X

x

)
· y for all x, y ∈ H∗,∗

syn(X), (13.3.10)

where
∫
X

is the projection to H2d+1,d
syn followed by the trace map.

Proof of Theorem 13.1.2. Since the pullback H∗,∗
syn(X)

pr∗1−−→ H∗,∗
syn(X ×k X) obviously factors as

H∗,∗
syn(X)

(pr′1)
∗

−−−−→ H∗,∗
syn(X)⊗Fp H

∗,∗
syn(X)

pr∗1 · pr∗2−−−−−→ H∗,∗
syn(X ×X)

(morally, “pr1 = pr′1 ◦φ”) we have a corresponding factorization of the pushforward maps as

(pr1)∗ = (pr′1)∗φ∗. (13.3.11)

Combining Lemma 13.3.1 and (13.3.11), we find that

wsyn = (pr1)∗Sqsyn(∆) = (pr′1)∗φ∗Sqsyn(∆) ∈ H∗,∗
syn(X). (13.3.12)

We saw in (13.3.5) that φ∗Sqsyn = Sqsynφ∗. Let {em} and {fm} be dual bases for H∗,∗
syn(X). Then by Lemma

13.3.3, we may rewrite (13.3.12) as

wsyn = (pr′1)∗Sqsyn

(∑
m

(pr′1)
∗em · (pr′2)∗fm

)
. (13.3.13)

By the Cartan formula for Sqsyn and the “projection formula for (pr′1)∗” (13.3.9), we have

(pr′1)∗Sqsyn

(∑
m

(pr′1)
∗em · (pr′2)∗fm

)
=
∑
m

(pr′1)∗
(
(pr′1)

∗Sqsyn(em) · (pr′2)∗Sqsyn(fm)
)

=
∑
m

(
Sqsyn(em)

∫
X

Sqsyn(fm)

)
. (13.3.14)

Combining this with (13.3.13) and (13.3.14) and using that
∫
X
Sqsyn(fm) =

∫
X
(vsynfm) by definition of vsyn,

we find that

wsyn =
∑
m

(
Sqsyn(em)

∫
X

(vsynfm)

)
= Sqsyn

(∑
m

em

∫
X

vsynfm

)
= Sqsyn(v

syn),

with the last equality using that {em} and {fm} are dual bases. □

Part 5. Applications to Brauer groups

In this final Part, we will assemble the preceding theory for applications to arithmetic duality on Brauer
groups. In §14, we define the Milne–Artin–Tate pairing ⟨−,−⟩MAT for surfaces over Fp and higher dimen-
sional generalizations. We prove that ⟨−,−⟩MAT is always skew-symmetric and non-degenerate. Our goal is
to show that it is symplectic, so the interesting case left is p = 2. Thanks to the skew-symmetry, the map

u 7→ ⟨u, u⟩MAT
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defines a linear functional on Br(X)nd[p
∞], which we want to explicate. In §15, we will prove a formula for

this functional in terms of E∞ Steenrod operations, of the form

“⟨u, u⟩MAT =

∫
X

[2n−1] ◦ PdE(βn(u)).”

See Theorem 15.0.1 for explanation of the terms. Crucially, this is one of the “edge” cases of Corollary 8.1.2
where the E∞ power operation PdE coincides with the syntomic power operation Pdsyn. That allows us to
transfer the formula to one involving syntomic Steenrod operations instead, which we can then calculate in
terms of characteristic classes using the results of Part 4. In §16, we carry out this computation to finally
show that the pairing is symplectic.

14. The Milne–Artin–Tate pairing

In this section, we define various pairings of interest, including the Milne–Artin–Tate pairing on the Brauer
group of a surface and its higher dimensional generalizations, and prove their skew-symmetry.

14.1. The Brauer group. Let X be a scheme. The (cohomological) Brauer group [Poo17, §6.6.1] of X is
H2

ét(X;Gm) ∼= H2
fppf(X;Gm). If X is a smooth projective surface over a finite field k of characteristic p,

then Br(X) is a torsion abelian group, which is conjecturally finite. We will express its p-primary part in
terms of syntomic cohomology.

The short exact sequence of fppf sheaves

0→ µpn → Gm
pn−→ Gm → 0

induces a long exact sequence in cohomology

. . . H1
fppf(X;Gm) H1

fppf(X;Gm)

H2
fppf(X;µpn) H2

fppf(X;Gm) H2
fppf(X;Gm)

H3
fppf(X;µpn) H3

fppf(X;Gm) . . .

pn

pn

pn

from which we extract a short exact sequence

0→
H1

fppf(X;Gm)

pnH1
fppf(X;Gm)

→ H2
fppf(X;µpn)→ H2

fppf(X;Gm)[pn]→ 0. (14.1.1)

Taking the colimit over n ∈ N in (14.1.1) along the multiplication-by-p map, we get a short exact sequence

0→ H1
fppf(X;Gm)⊗ Qp

Zp
→ H2

fppf(X;µp∞)→ Br(X)[p∞]→ 0. (14.1.2)

For an abelian group G, we write Gnd for the non-divisible quotient of G (i.e., the quotient of G by its
subgroup of divisible elements), and we write Gtors for the torsion subgroup of G. Since Qp/Zp is divisible,
(14.1.2) induces an isomorphism

H2
fppf(X;µp∞)nd

∼−→ Br(X)[p∞]nd ∼= Br(X)nd[p
∞].

On the other hand, we have by Example 2.4.1 a canonical identification H2
fppf(X;µp∞) ∼= H2

syn(X;Qp/Zp(1)),
which when combined with the preceding discussion yields

H2
syn(X;Qp/Zp(1))nd ∼= Br(X)nd[p

∞].

14.2. Duality on the Brauer group. Now suppose that X is a smooth, proper, geometrically connected
surface over a finite field k of characteristic p. By Poincaré duality, there is a trace map∫

X

: H5,2
syn(X;Z/pn)

∼−→ Z/pn

and the resulting pairing

Ha,bsyn(X;Z/pn)×H5−a,2−b
syn (X;Z/pn)→ H5,2

syn(X;Z/pn)

∫
X−−→ Z/pn
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is perfect for every a, b ∈ Z, and n ∈ N. Taking colimits in n in one factor and limits in n in the other, we
obtain a non-degenerate pairing

H2,1
syn(X;Qp/Zp)×H3,1

syn(X;Zp)→ H5,2
syn(X;Qp/Zp)

∼−→ Qp/Zp.

Since the divisible subgroup is the annihilator of the torsion subgroup, this induces a non-degenerate pairing

H2,1
syn(X;Qp/Zp)nd ×H3,1

syn(X;Zp)tors → H5,2
syn(X;Qp/Zp)

∼−→ Qp/Zp.

On the other hand, the short exact sequence

0→ Zp(1)→ Qp(1)→ Qp/Zp(1)→ 0

yields a boundary map on cohomology δ̃ : H2,1
syn(X;Qp/Zp)→ H3,1

syn(X;Zp), and from the long exact sequence
we see that it induces an isomorphism

δ̃ : H2,1
syn(X;Qp/Zp)nd

∼−→ H3,1
syn(X;Zp)tors.

Definition 14.2.1 (Milne–Artin–Tate pairing). Let X be a smooth, proper, geometrically connected sur-
face over a finite field k of characteristic p. The Milne–Artin–Tate pairing on Br(X)nd[p

∞] sends u, v ∈
Br(X)nd[p

∞] ∼= H2,1
syn(X;Qp/Zp)nd to

⟨u, v⟩MAT :=

∫
X

u · δ̃v ∈ Qp/Zp

14.3. Higher Brauer groups. We next give a higher-dimensional generalization of the Milne–Artin–Tate
pairing. Following Jahn [Jah15], for an integer r ≥ 1 we define the rth higher Brauer group of a smooth
quasiprojective variety X over a field to be the étale-motivic cohomology

Brr(X) := H2r+1
ét (X;Z(r)).

These groups are torsion, since H2r+1
ét (X;Q(r)) ∼= H2r+1

mot (X;Q(r)) = 0.

Example 14.3.1. For r = 1, Z(1)[1] ∼= Gm so that Br1(X) = Br(X) recovers the usual cohomological
Brauer group.

Lemma 14.3.2. Assume that X is a smooth quasiprojective variety over a finite field k of characteristic p.
Then there is a natural isomorphism

Brr(X)nd[p
∞] ∼= H2r,r

syn (X;Qp/Zp)nd. (14.3.1)

Proof. Consider the exact triangles of étale-motivic sheaves on X,

Z(r)ét
pn−→ Z(r)ét → Z/pn(r)ét.

As explained in §2.4.2, the results of Geisser–Levine [GL00] identify Z/pn(r)ét with Milne’s logarithmic
de Rham–Witt sheaves, which in turns are identified with Z/pn(r)syn by Bhatt–Morrow–Scholze [BMS19,
Corollary 8.21 and Remark 8.22]. (Recall from §2.1 that we regard Z/pn(r)syn as an étale sheaf.) In
particular, we have natural isomorphisms

H∗
ét(X;Z/pn(r)ét) ∼= H∗

ét(X;Z/pn(r)syn).

From these identifications and the associated long exact sequence in cohomology, we obtain exact sequences

H2r+1
ét (X;Z(r)ét)⊗ Z/pnZ→ H2r

syn(X;Z/pn(r))→ H2r+1
ét (X;Z(r)ét)[pn]→ 0.

Taking the direct limit over n, the leftmost term becomes H2r+1
ét (X;Z(r))⊗Qp/Zp, which is divisible. Hence,

after passing to non-divisible quotients we obtain the claimed isomorphism. □

Now suppose that X is furthermore proper and geometrically connected over k, of dimension 2d. For
ℓ ̸= p, Jahn defines a pairing on Brd(X)[ℓ∞]; this is recalled in [Fen20a, §2] and called the Artin–Tate
pairing. We will now extend the pairing to the full Brd(X) by defining it on Brd(X)[p∞], and we will also
call this extension the Milne–Artin–Tate pairing.

Let
δ̃ : H2d,d

syn (X;Qp/Zp)nd → H2d+1,d
syn (X;Zp)tors (14.3.2)

be the map induced by the boundary map for the exact triangle of syntomic sheaves

Zp(d)
syn → Qp(d)

syn → Qp/Zp(d)
syn (14.3.3)
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Lemma 14.3.3. The map (14.3.2) is an isomorphism.

Proof. The long exact sequence associated to (14.3.3) reads

H2d,d
syn (X;Qp) H2d,d

syn (X;Qp/Zp)

H2d+1,d
syn (X;Zp) H2d+1,d

syn (X;Qp)

From this, we see that the image of the boundary homomorphism is H2d+1,d
syn (X;Zp)tors, and its kernel is

divisible. Therefore, it factors over an isomorphism δ̃, as claimed. □

Definition 14.3.4. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a
finite field k of characteristic p. For u, v ∈ H2d,d

syn (X;Qp/Zp)nd, we define

⟨u, v⟩MAT :=

∫
X

(u · δ̃v).

By (14.3.1), we may view this as a pairing on Brd(X)nd[p
∞]. This extends the Artin–Tate pairing to a

pairing on all of Brd(X)nd, which we call the Milne–Artin–Tate pairing.

From Poincaré duality and the fact that (14.3.2) is an isomorphism, it is evident that this pairing is
non-degenerate on Brd(X)nd. We prove below that it is skew-symmetric, i.e.,

⟨u, v⟩MAT = −⟨v, u⟩MAT for all u, v ∈ Brd(X)nd.

Recall that this is weaker than symplectic, or alternating, which would say

⟨u, u⟩MAT = 0 for all u ∈ Brd(X)nd.

We will even prove the stronger property that the pairing is symplectic.

Theorem 14.3.5. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite
field k of characteristic p. Then the Milne–Artin–Tate pairing on Brd(X)nd is symplectic.

The proof of Theorem 14.3.5 will be completed in §16.

14.4. Skew-symmetry. Let X be a smooth, proper, geometrically connected variety of dimension 2d over
a finite field k of characteristic p. We will define an auxiliary pairing on the group H2d,d

syn (X;Z/pn).

Definition 14.4.1. Consider the exact triangle of syntomic sheaves on X:

Z/pn(d)syn → Z/p2n(d)syn → Z/pn(d)syn

and call the induced boundary map

βn : H
i,d
syn(X;Z/pn)→ Hi+1,d

syn (X;Z/pn). (14.4.1)

We define the pairing
⟨·, ·⟩n : H2d,d

syn (X;Z/pn)×H2d,d
syn (X;Z/pn)→ Z/pn

by

⟨u, v⟩n :=

∫
X

(u · βnv).

Proposition 14.4.2. The pairing ⟨·, ·⟩n is skew-symmetric.

Proof. The assertion is equivalent to
x · (βny) + y · (βnx) = 0.

Since βn is a derivation, we have x · (βny) + y · (βnx) = βn(x · y). Then the result follows from the next
Lemma. □

Lemma 14.4.3. The boundary map βn : H4d,2d
syn (X;Z/pn)→ H4d+1,2d

syn (X;Z/pn) vanishes.
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Proof. By the obvious long exact sequence, the image of βn is the kernel of

[pn] : H4d+1,2d
syn (X;Z/pn)→ H4d+1,2d

syn (X;Z/p2n)

which is identified with the inclusion pnZ/p2nZ ↪→ Z/p2nZ by Poincaré duality. □

Proposition 14.4.4. The boundary map

H2d,d
syn (X;Z/pn)→ H2d+1,d

syn (X;Zp) (14.4.2)

induced by the exact triangle of syntomic complexes

Zp(d)
syn pn−→ Zp(d)

syn → Z/pn(d)syn

surjects onto H2d+1,d
syn (X;Zp)[p

n]. Moreover, it is compatible for the pairings ⟨·, ·⟩n and ⟨·, ·⟩MAT in the sense
that the following diagram commutes

H2d,d
syn (X;Z/pn)

(14.4.2)
����

× H2d,d
syn (X;Z/pn)

(14.4.2)
����

⟨·,·⟩n // H4d+1,2d
syn (X;Z/pn)

≀
��

H2d+1,d
syn (X;Zp)[p

n] × H2d+1,d
syn (X;Zp)[p

n]
⟨·,·⟩MAT

// H4d+1,2d
syn (X;Qp/Zp)[p

n]

Proof. This follows formally from a diagram chase, exactly as in [Fen20a, Proposition 2.5]. □

Corollary 14.4.5. The Milne–Artin–Tate pairing is skew-symmetric.

Proof. Combine Proposition 14.4.2 and Proposition 14.4.4. □

Corollary 14.4.6. If the pairing ⟨·, ·⟩n on H2d,d
syn (X;Z/pn) is alternating, then so is the pairing ⟨·, ·⟩MAT on

Brd(X)nd[p
n].

Proof. This follows immediately from Proposition 14.4.4. □

Therefore, to prove Theorem 14.3.5, it suffices to establish:

Theorem 14.4.7. The pairing ⟨·, ·⟩n is alternating for all n.

The proof of Theorem 14.4.7 will be the focus of the rest of the paper. Thanks to Corollary 14.4.6, the
only non-trivial case is p = 2.

15. Arithmetic duality and E∞ Steenrod operations

The goal of this section is to prove the following result, which relates the pairing of Definition 14.4.1 with
E∞ Steenrod operations.

Theorem 15.0.1. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite
field k of characteristic 2. For all u ∈ H2d,d

syn (X;Z/2n), we have

u · βn(u) = [2n−1] ◦ PdE(βn(u))

where:

• βn : H2d,d
syn (X;Z/2n)→ H2d+1,d

syn (X;Z/2n) is the Bockstein homomorphism (14.4.1).
• βn(u) denotes the reduction of βn(u) mod 2.
• [2n−1] : H4d+1,2d

syn (X;Z/2) → H4d+1,2d
syn (X;Z/2n) is the map on cohomology induced by the map of

syntomic sheaves Z/2(2d)synX → Z/2n(2d)synX given by multiplication by 2n−1.
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15.1. The Bockstein spectral sequence. The key ingredient behind Theorem 15.0.1 is a more general
formula relating the E∞-power operations and the differentials in the Bockstein spectral sequence, which we
will now formulate.

For M ∈ D(Z), we can form the derived 2-adic filtration

M/2• : . . .M/23n →M/22n →M/2n → 0

where all quotients are formed in the derived sense, that is, M/2n is the derived cofiber of multiplication by
2n on M . The limit of this filtration is, by definition, the derived 2-adic completion M∧

2 .
The filtration M/2• is obtained by tensoring M with the filtered commutative algebra Z/2•. Let t be the

class of 2n in the first graded piece Gr1(Z/2
•) ∼= 2nZ/22nZ[−1]. Then the associated graded algebra of Z/2•

is given by Gr(Z/2•) ∼= Z/2n[t] (where t has degree 1). Consequently, the associated graded of Gr(M/2•) is

Gr(M/2•) ∼=M ⊗Gr(Z/2•) ∼=M/2n[t].

The spectral sequence of cohomology groups associated with this filtration is the familiar Bockstein spectral
sequence, which therefore assumes the form

E1
k,l = Hl(M/2n) · tk ⇒ Hl(M∧

2 ). (15.1.1)

(where t should be treated as an indeterminate polynomial variable with grading degree 1 and cohomological
degree 0).

The d1-differentials in the Bockstein spectral sequence are given by d1(x) = βn(x)t for x ∈ H∗(M/2n).
The d2 differentials are divisible by t2 and we denote

d2(x) = β(2)
n (x)t2

for a partially defined map β
(2)
n : H∗(M/2n) → H∗+1(M/2n) that we refer to as the secondary Bockstein

homomorphism. It is defined on the kernel of βn and modulo the image of βn in the appropriate degrees.
If A =

⊕
b∈ZAb is a Z-graded E∞-algebra over Z, we write

Ha,b(A) := Ha(Ab).

Although both sides of the equation in Theorem 15.0.1 can be defined for general such E∞-algebras, the
equality does not hold in this generality. The abstract ingredient in the proof of the Theorem, which does
hold for general graded E∞-algebras, is the following.

Proposition 15.1.1. Let A be a Z-graded E∞-algebra over Z. Let β(2)
n be the secondary Bockstein homo-

morphism for A. Then, with similar notations as in Theorem 15.0.1, for all u ∈ H2a,b(A/2n) we have

βn(2
n−1u2) = 0

and
β(2)
n (2n−1u2) = u · βn(u)− [2n−1] · PaE(βn(u)).

15.2. Calculation of differentials. In this subsection, we will prove Proposition 15.1.1.
Let Dgr(Z) be the∞-category of graded Z-module spectra, or equivalently the graded derived∞-category

of Z. We write Ha,b(M) for the ath cohomology group of the bth graded piece of M .
For M ∈ D(Z), we suggestively denote by37 M(a) ∈ Dgr(Z) the module M concentrated in degree a.

15.2.1. Universal models for cohomology classes. We will develop some explicit models to calculate power
operations on cohomology classes.

Lemma 15.2.1. Given a graded E∞-algebra A over Z, the data of a class u ∈ Ha,b(A/2n) agrees with that
of a homotopy class of maps

φu : Z/2
n(−b)[−a− 1]→ A.

37Note that this notation clashes with the Tate-twist notation for motivic spectra. However, they are compatible in our
application: MSS is linear over filtered, and hence graded, spectra, in such a way that the Tate twist agrees with tensoring with
the graded spectrum S(n).
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The base change φu of φu along the map Z → Z/2n classifies the pair (βn(u), u), under the identifications
of the commutative diagram below.

Z/2n(−b)[−a− 1]⊕ Z/2n(−b)[−a]

Z/2n(−b)[−a− 1]⊗Z Z/2n A/2n

≀ φu

φu⊗ZZ/2n

Proof. We have

Ha,b(A/2n) = Exta,b(Z, A/2n) ∼= Ext0(Z(−b)[−a], A⊗ Z/2n)

∼= Ext0(Z(−b)[−a]⊗ (Z/2n)∨, A) ∼= Ext0(Z/2n(−b)[−a− 1], A).

where in the last step we used that the dual of Z/2n in Dgr(Z) is Z/2n[−1].
Explicitly, we can represent Z/2n(−b)[−a− 1] by the complex

. . . 0 −→ Z(−b) 2n−→ Z(−b) −→ 0 . . . (15.2.1)

where the non-zero terms are in cohomological degrees a and a + 1. Hence if A is represented by a graded
chain complex of Z-module with levelwise torsion-free terms, then the map φu can be chosen to send the
summand in degree a to an integral lift ũ of u and the summand in degree a + 1 to d(ũ)/2n. From this
description we immediately get the desired description of the map φu by reducing modulo 2n. □

We can now use this discussion to compute power operations acting on u and βn(u). To ease notation,
from now on we abbreviate Ma+1,b := Z/2n(−b)[−a − 1], which we shall assume to be represented by the
explicit chain complex (15.2.1).

Recall that C2 is the cyclic group of order 2. To compute u · βn(u), we shall consider the composition

ψu : (Ma+1,b)
⊗2
hC2

φ⊗2
u−−→ A⊗2

hC2

mult−−−→ A, (15.2.2)

in which C2 acts on the tensor factors by swapping them, and (−)hC2
is the homotopy quotient by the action

of C2. Let
ψu = ψu ⊗Z Z/2n : (Ma+1,b)

⊗2
hC2
⊗Z Z/2n → A/2n (15.2.3)

be the base change of ψu along Z→ Z/2n.

Proposition 15.2.2. We have

(Ma+1,b)
⊗2
hC2
⊗Z Z/2n ∼= (M2a+2,2b/2

n)hC2
⊕M2a+1,2b/2

n ⊕ (M2a,2b/2
n)hC2

,

where C2 acts on the summands according to the Koszul sign rule. Via this identification, the map ψu from
(15.2.3) is given by the triple of cohomology classes

(P2(βn(u)), u · βn(u),P2(u)).

Here P2(u) : (M2a,2b/2
n)hC2

→ A/2n is the “total square“ (in the sense of Definition 7.5.2, for p = 2) of u,
and similarly for P2(βn(u)).

Proof. Since the functor (−)⊗Z Z/2n : D(Z)gr → D(Z/2n)gr is colimit-preserving and symmetric monoidal,
it commutes with the operations in the definition of ψu (15.2.2). Interchanging the order of operations, the
map ψu can be described as the composition

(Ma+1,b/2
n)⊗2
hC2

φ⊗2
u−−→ (A/2n)⊗2

hC2

mult−−−→ A/2n

where the tensor products are now over Z/2n. Using Lemma 15.2.1, this identifies with the composition

(Ma,b/2
n ⊕Ma+1,b/2

n)⊗2
hC2

(u⊕βn(u))⊗2

−−−−−−−−→ (A/2n)⊗2
hC2

mult−−−→ A/2n.

The result now follows from the (C2-equivariant) distributivity of the tensor product. More precisely, by
distributivity the first map identifies with the direct sum of the maps u⊗2, βn(u)⊗2 and u⊗βn(u)⊕βn(u)⊗u,
which give the desired map formula after composing with the multiplication map by the definition of the
total square. □
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15.2.2. Calculation in the universal case. By functoriality, the preceding results allow us to focus on the uni-
versal case of Ma+1,b. To carry out the computation in this case, we shall work with the explicit presentation
(15.2.1) of Ma+1,b used in the proof of Lemma 15.2.1. We let x ∈Ma+1,b be the generator in cohomological
degree a and y be the generator in degree a+1, so that d(x) = 2ny, and both x and y have grading degree b.
We also assume from now that a is even, though a similar analysis applies to the odd case (giving a different
formula that we shall not need).

We will build an explicit model for the group homology chains C∗(C2;M). Let σ be a generator for C2.
For the trivial module Z of C2, there is the standard resolution

. . .
1−σ−−−→ Z[C2]e2

1+σ−−−→ Z[C2]e1
1−σ−−−→ Z[C2]e0 (15.2.4)

which in degree i is the free rank one Z[C2]-module on a generator ei, satisfying

d(ei) = (1 + (−1)iσ)ei−1.

If M is a complex of modules over C2, then tensoring M with (15.2.4) over Z[C2] gives a model for C∗(C2;M)
by the complex

. . .
d−→ e2 ⊗M

d−→ e1 ⊗M
d−→ e0 ⊗M (15.2.5)

whose differentials are described by

d(ei ⊗m) = ei−1 ⊗ (m+ (−1)iσ(m)) + (−1)iei ⊗ d(m). (15.2.6)

Accordingly, the object (Ma,b)
⊗2
hC2

is representable by a graded complex of abelian groups with generators

ei ⊗ x⊗2, ei ⊗ x⊗ y, ei ⊗ y ⊗ x, ei ⊗ y⊗2 i ≥ 0.

The differential is determined by (15.2.6) and the σ-action (coming from the Koszul sign rule)

σ(x⊗2) = x⊗2, σ(x⊗ y) = y ⊗ x, σ(y⊗2) = −y⊗2.

Let x̄ (resp. ȳ) denote the reductions of x (resp. y) mod 2n. We are now ready for the computation in our
universal example.

Proposition 15.2.3. Let a ∈ 2Z and n ∈ Z≥1. Then in (Ma+1,b)
⊗2
hC2

/2n, the cochain 2n−1x̄⊗2 is a cocycle,
whose cohomology class [2n−1x̄⊗2] satisfies

βn([2
n−1x̄⊗2]) = 0

and

β(2)
n ([2n−1x̄⊗2]) ≡ [x̄⊗ ȳ]− [2n−1e1 ⊗ ȳ⊗2]

modulo the image of βn.

Proof. The fact that 2n−1x̄⊗2 is a cocycle is seen by calculating directly that d(x⊗2) is divisible by 2.
To calculate the Bockstein operations, consider the integral lift

z := 2n−1x⊗ x+ 22n−1e1 ⊗ x⊗ y

of 2n−1x⊗ x. From the formulas above, we have

d(z) = 22n−1(x⊗ y + y ⊗ x) + 22n−1(x⊗ y − y ⊗ x)− 23n−1e1 ⊗ y ⊗ y
= 22n

(
x⊗ y − 2n−1e1 ⊗ y ⊗ y

)
. (15.2.7)

Since (15.2.7) is divisible by 22n, we learn that βn([2n−1x̄⊗2]) = 0, and the secondary Bockstein is

β(2)
n (2n−1x̄2) =

d(z)

22n
= x⊗ y − 2n−1e1 ⊗ y ⊗ y, (15.2.8)

yielding the result. □
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15.2.3. Reduction to the universal case. To complete the computation of the Bockstein images of the classes
of the form 2n−1u2, it remains to identify the image of the classes appearing in Proposition 15.2.3 under the
map ψu : (Ma+1,b)

⊗2
hC2

/2n → A/2n, which is given by our explicit chain complex presentations as above.

Proposition 15.2.4. The map ψu satisfies

ψu(x⊗ y) = u · βn(u) (15.2.9)

and
ψu(e1 ⊗ y ⊗ y) mod 2 = P

a
2

E (βn(u)). (15.2.10)

Proof. Recall from Proposition 15.2.2 that under the identification

(Ma+1,b)
⊗2
hC2
⊗Z Z/2n ∼= (M2a+2,2b/2

n)hC2
⊕M2a+1,2b/2

n ⊕ (M2a,2b/2
n)hC2

,

the map ψu is the sum of the maps P2(u), u · βn(u), and P2(βn(u)). Explicitly, the first summand is the
restriction to the subcomplex spanned by the tensors ei ⊗ x ⊗ x, the second to ei ⊗ x ⊗ y, and the third
to ei ⊗ y ⊗ y, where the first and third complexes give the standard presentations of (M2a+2,2b/2

n)hC2 and
(M2a,2b/2

n)hC2 as chain complexes (by tensoring with the resolution (15.2.4) over Z[C2]).
It follows that ψu(x⊗ y) = u · βn(u), and that ψu(e1 ⊗ y ⊗ y), after reduction modulo 2, is given by the

composition

M2a+2,2b/2[1]
t1−→M2a+2,2b/2⊗ BC2

∼= (M2a+2,2b/2)hC2

P2(βn(u))−−−−−−→ A/2

where t1 is the homology class of e1 modulo 2. Comparing with Definition 7.5.3 (which is related to our
other definition of the E∞ power operation by Proposition 7.5.5), we see that this composition is precisely
P
a
2

E (βn(u)). □

Proof of Proposition 15.1.1. Let A be a Z-graded E∞ algebra over Z and let u ∈ Ha,b(A/2n). By Proposi-
tion 15.1.1, u corresponds to a map φu : Ma+1,b → A which after tensoring with Z/2n classifies the classes
(βn(u), u) in H∗,∗(A/2n). Taking the C2-equivariant square, we obtain a map

ψu : (M
⊗2
a+1,b)hC2

→ A

whose reduction ψu modulo 2n classifies the triple (P2(βn(u)), u · βn(u),P2(u)), by Proposition 15.2.2. Now,
by Proposition 15.2.4 the map ψu satisfies

ψu(x⊗ y) = u · βn(u), ψu(e1 ⊗ y ⊗ y) mod 2 = PdE(βn(u)) (15.2.11)

where a = 2d. Note that the last equality promotes to an equality mod 2n,

ψu(2
n−1e1 ⊗ y ⊗ y) = [2n−1]PdE(βn(u)). (15.2.12)

Since ψu lifts to an integral map, it is compatible with the Bockstein differentials. Then from Proposi-
tion 15.2.3 we get the identities:

βn(2
n−1u2) = βn(ψu(2

n−1x⊗2)) = ψu(βn(2
n−1x⊗2)) = 0

and, using (15.2.11) and (15.2.12),

β(2)
n (2n−1u2) = β(2)

n (ψu(2
n−1x⊗2)) = ψu(β

(2)
n (2n−1x⊗2))

= ψu(x⊗ y − 2n−1e1 ⊗ y⊗2) = u · βn(u)− [2n−1]PdE(βn(u)),

as desired. □

15.3. Proof of Theorem 15.0.1. We now prove Theorem 15.0.1. Applying Proposition 15.1.1 to the graded
E∞-algebra A := RΓ∗,∗

syn(X;Z/2n), we deduce that

β(2)
n (2n−1u2) = u · βn(u)− [2n−1]PdE(βn(u)) ∈

H4d+1,2d
syn (X;Z/2n)

Im (βn)
.

It then clearly suffices to show the following two items:
(1) Im (βn) ⊂ H4d+1,2d

syn (X;Z/2n) is the zero subspace, and then
(2) β(2)

n (2n−1u2) vanishes in H4d+1,2d
syn (X;Z/2n).
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Thanks to the interpretations of βn and β(2)
n as differentials in the Bockstein spectral sequence, both vanishing

statements follow from the torsion-freeness of H4d+1,2d
syn (X;Z2). We can also spell this out explicitly as follows.

By the commutative diagram of syntomic complexes on X,

Z2(2d)
syn Z2(2d)

syn Z/2n(2d)syn

Z/2n(2d)syn Z/4n(2d)syn Z/2n(2d)syn

2n

2n

we see that βn is the reduction modulo 2n of the connecting map β̃n for the long exact sequence associated
to the upper row. But the long exact sequence shows that the image of β̃n is contained H4d+1,2d

syn (X;Z2)[2
n],

which is torsion-free thanks to Poincaré duality, so we obtain the desired vanishing of Im (βn) ⊂ H4d+1,2d
syn (X;Z/2n).

Similarly, equation (15.2.8) exhibits β(2)
n (2n−1u2) as the reduction of a 22n-torsion class in H4d+1,2d

syn (X;Z2),
which is then necessarily zero. □

16. Symplectic structure on Brauer groups

Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite field of char-
acteristic 2. We will complete the proof of Theorem 14.4.7, which (as already noted in Corollary 14.4.6)
implies Theorem 14.3.5.

16.1. Reductions to characteristic classes. We wish to show that

u · βn(u) = 0 for all u ∈ H2d,d
syn (X;Z/2n).

From Theorem 15.0.1, we have that

u · βn(u) = [2n−1] ◦ Sq2dE (βn(u)). (16.1.1)

Thanks to the coincidence of the weight with the degree of the Steenrod operation, Corollary 8.1.2 implies
that

Sq2dE (βn(u)) = Sq2dsyn(βn(u)) for all u ∈ H2d,d
syn (X;Z/2n). (16.1.2)

Inserting this into (16.1.1), we have to show that

[2n−1] ◦ Sq2dsyn(βn(u)) = 0 for all u ∈ H2d,d
syn (X;Z/2n). (16.1.3)

From the definition of the syntomic Wu classes, we have

Sq2dsyn(βn(u)) = vsyn2d · βn(u). (16.1.4)

It is immediate from the definition of [2n−1] that

[2n−1](vsyn2d · βn(u)) = ([2n−1]vsyn2d ) · βn(u) for all u ∈ H2d,d
syn (X;Z/2n). (16.1.5)

Since βn is a derivation, we have

([2n−1]vsyn2d ) · βn(u) = βn(([2
n−1]vsyn2d ) · u)− βn([2n−1]vsyn2d ) · u. (16.1.6)

Stringing together (16.1.3), (16.1.4), and (16.1.5), we see that it suffices to show that (16.1.6) vanishes for
all u. Since ([2n−1]vsyn2d ) · u ∈ H4d,2d

syn (X;Z/2n), Lemma 14.4.3 implies that βn(([2n−1]vsyn2d ) · u) = 0. Hence
we have reduced to showing that

βn([2
n−1]vsyn2d ) = 0 for all n ≥ 1. (16.1.7)

Lemma 16.1.1. For all v ∈ H∗
syn(X;Z/2(b)) we have

βn([2
n−1]v) = β2,2n(v) (16.1.8)

where β2,2n is the boundary map for the exact triangle of syntomic sheaves

Z/2n(b)synX
2−→ Z/2n+1(b)synX → Z/2(b)synX . (16.1.9)
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Proof. Consider the commutative diagram of exact triangles,

Z/2n(b)synX Z/2n+1(b)synX Z/2(b)synX

Z/2n(b)synX Z/22n(b)synX Z/2n(b)synX

2

2n−1 2n−1

2n

Then (16.1.8) results from comparing the two induced maps on cohomology from the top right to bottom
left sheaves. □

Applying (16.1.8) in (16.1.7), it suffices to show that β2,2n(v
syn
2d ) = 0 for all n. This will be done in the

next subsection.

16.2. Calculations with characteristic classes. So far, we have merely reformulated the question in
terms of syntomic Wu classes. Now, we will draw on the earlier computations that express syntomic Wu
classes in terms of characteristic classes.

Lemma 16.2.1. For any wsyn
j ∈ H

j,⌊j/2⌋
syn (X), its syntomic Steenrod square Sqisyn(w

syn
j ) can be expressed as

a polynomial in the syntomic Stiefel–Whitney classes {wsyn
j′ } with coefficients in Fp.

Proof. Using the Adem relations from Proposition 6.1.6 and the Cartan formula from Proposition 6.4.1, this
follows from the same inductive argument as in the proof of [Fen20a, Lemma 5.4]. □

Lemma 16.2.2. Every syntomic Wu class vsynj ∈ H
j,⌊j/2⌋
syn (X) can be expressed as a polynomial in the

syntomic Stiefel–Whitney classes {wsyn
j′ }.

Proof. We induct on j. The base case is vsyn0 = wsyn
0 = 1 ∈ H0,0(X). Consider the equation

Sqsyn(v
syn) = wsyn

from Theorem 13.1.2. Equating terms in cohomological degree j, we obtain

vsynj + Sq1syn(v
syn
j−1) + . . . = wsyn

j . (16.2.1)

By the induction hypothesis, for i ≥ 1 each term vsynj−i is a polynomial in the {wsyn
j′ } with coefficients in Fp,

so by the Cartan formula and Lemma 16.2.1, each Sqisyn(v
syn
j−i) is a polynomial in the {wsyn

j′ } with coefficients
in Fp. Then solving for vsynj in (16.2.1) completes the induction. □

Corollary 16.2.3. For every j ∈ Z, the syntomic Wu class vsynj ∈ H
j,⌊j/2⌋
syn (X) is the reduction of a class in

H
j,⌊j/2⌋
syn (X;Z2).

Proof. Combine Lemma 16.2.2 and Proposition 12.5.1. □

Completion of the proof of Theorem 14.4.7. At the end of §16.1, we reduced to showing that β2,2n(v
syn
2d ) = 0

for all n. Inspecting the long exact sequence associated to (16.1.9) whose boundary map is β2,2n , we see
that this vanishing is equivalent to the property that vsyn2d lifts mod 2n+1 for all n, which is guaranteed by
Corollary 16.2.3. □
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