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PRISMATIC STEENROD OPERATIONS AND
ARITHMETIC DUALITY ON BRAUER GROUPS

SHACHAR CARMELI AND TONY FENG

ABsTrRACT. We construct and analyze the “syntomic Steenrod algebra”, which acts on the mod p syntomic
cohomology (also known as étale-motivic cohomology) of algebraic varieties in characteristic p. We then
apply the resulting theory to resolve the last open cases of a 1966 Conjecture of Tate, concerning the existence
of a symplectic form on the Brauer groups of smooth proper surfaces over finite fields. More generally, we
exhibit symplectic structure on the higher Brauer groups of even dimensional varieties over finite fields.

Although the applications are classical, our methods rely on recent advances in perfectoid geometry
and prismatic cohomology, which we employ to define a theory of “spectral syntomic cohomology” with
coefficients in motivic spectra. We then organize the resulting cohomology theories into a category of
“spectral prismatic F-gauges”, generalizing the prismatic F-gauges of Drinfeld and Bhatt—Lurie, for which
we establish a “spectral Serre duality” extending classical coherent duality. These abstract constructions are
leveraged to explicitly compute the syntomic Steenrod operations.
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1. INTRODUCTION

1.1. Classical motivations. At the 1962 ICM, Tate announced his famous arithmetic duality theorems
[Tat63], which exhibited parallels between:

e the étale cohomology of global fields and the singular cohomology of 3-manifolds, and
e the étale cohomology of local fields and the singular cohomology of 2-manifolds.

Using these results, Tate constructed a perfect pairing between the (non-divisible quotient of) the Tate—
Shafarevich group of an abelian variety over a global field and its dual, and proved in [Tat63, Theorem 3.3]
that it is alternating under a technical hypothesis (which is always satisfied for elliptic curves). Therefore,
under the hypothesis, on this non-divisible quotient group there is a symplectic form, now known as the
Cassels—Tate pairing, which forces the group’s size to be a perfect squanﬂ — a numerology which had been
empirically discovered by Selmer and proved by Cassels for elliptic curves. In fact, Venkatesh has suggested
that Tate’s discovery of arithmetic duality was motivated by a desire to explain this very numerology via a
symplectic duality, which he realized should come from an arithmetic analogue of Poincaré duality wherein
local and global fields played the role of manifolds.

A few years later, Tate’s 1966 Bourbaki seminar [Tat95] generalized the Birch and Swinnerton-Dyer
Conjecture to abelian varieties and formulated its geometric analogue — now called the Artin—Tate Con-
jecture — for a smooth, proper, geometrically connected surface X over a finite field k& of characteristic
p. Moreover, Tate conjectured that there should be an analogous symplectic form on the Brauer group
Br(X) := H% (X;Gy,), a torsion and conjecturally finite abelian group which is closely connected to the
Tate—Shafarevich groupﬂ This conjecture has been studied in many works over the decades since, notably
[Man67, Man86l, [Ura96, [LLRO5. [Fen20a), and in this paper we will settle its remaining open cases.

1.1.1. The size of the Brauer group. Let X be a smooth, proper, geometrically connected surface over a
finite field k of characteristic p. According to the Artin-Tate Conjecture, # Br(X) is the main invariant
featuring into a special value formula for the leading order term of the zeta function of X at the center of its
functional equation. Motivated by parallel properties of Tate-Shafarevich groups, Tate made the following
Conjecture about # Br(X).

Conjecture 1.1.1 (Tate, [Tat95]|). The size of Br(X) is a (finite) perfect square.

Although the finiteness of Br(X) is unknown, we know unconditionally that its non-divisible quotient
Br(X)na — the quotient of Br(X) by its subgroup of divisible elements — is finite, and is equal to Br(X) if
the latter is finite. Therefore, an unconditional version of Conjecture [1.1.1]is:

Conjecture 1.1.2 (Tate, [Tat95]). The size of Br(X )nq s a perfect square.

Conjecture has been the subject of considerable attention. “Counterexamples” were found by Manin,
but later debunked Urabe, who then went on to prove |[Conjecture 1.1.2 for p # 2 in [Ura96]. For all p, it
was proved by Liu-Lorenzini-Raynaud [LLRO5| that if Br(X) is finite, then its size is a perfect square. (The
proof of [LLRO5| proceeds by comparing # Br(X) to the size of a certain Tate-Shafarevich group, whose
finiteness is equivalent to the Birch and Swinnerton-Dyer Conjecture in that instance.) On the one hand,
this gives great confidence that the conjectures are true; but on the other hand, the finiteness assumption
is very strong: it is equivalent to the BSD Conjecture for Jacobians over function fields. The unconditional
statement that # Br(X),q is a perfect square has remained open in characteristic p = 2 until now, when we
will finally prove:

Theorem 1.1.3. Let X be a smooth, proper, geometrically connected surface over a finite field of charac-
teristic 2. Then the size of Br(X)na is a perfect square.

1.1.2. Tate’s Symplecticity Conjecture. As mentioned, Conjecture [1.1.1] was motivated by an analogy to the
Birch and Swinnerton-Dyer Conjecture. Under this analogy, the Brauer group Br(X) corresponds to the
Tate—Shafarevich group III of a Jacobian variety. Motivated by his proof that the Cassels—Tate pairing on

IWe are implicitly invoking the fact that a finite abelian group with a symplectic form must have size a perfect square.

2For example, work of Milne [MiI75} [Mil86] and Kato-Trihan [KT03] shows that the finiteness of Br(X), for all X, is
equivalent to finiteness of the Tate—Shafarevich group plus the Birch and Swinnerton-Dyer Conjecture for all Jacobian varieties
over function fields.
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(the non-divisible quotient of) such a II is symplecticﬂ Tate conjectured that there should be a natural
symplectic form on Br(X),q as well.

Indeed, for every prime £ # p, M. Artin and Tate defined in a non-degenerate skew-symmetric pairing on
Br(X)na[¢*°], which was named the Artin-Tate pairing in [Fen20a]. The restriction ¢ # p was due to the
lack of a suitable p-adic cohomology theory at that time, and motivated the search for a p-adic cohomology
theory to play an analogous role to /-adic cohomology, but at the defining characteristic. This problem was
solved by Milne’s discovery of the logarithmic de Rham—Witt cohomology, which is now also known under the
synonymous names of p-adic étale-motivic cohomology, and syntomic cohomology. Imitating Artin—Tate’s
construction, [Mil75] constructed a non-degenerate skew-symmetric pairing on Br(X),q[p™] when p # 2.
The restriction p # 2 came from deficiencies in p-adic cohomology theory for p = 2 at the time, and was
removed in [Mil86] using Illusie’s development of the de Rham—Witt complex [III79]. The upshot is that we
now have a non-degenerate skew-symmetric form on all of Br(X),q in all characteristics, which we call the
Milne-Artin—Tate pairing.

We remind the reader that a pairing (—, —) is said to be

skew-symmetric if (u,v) = —(v,u) for all u,v
and alternating if (u,u) =0 for all u.

Alternating implies skew-symmetric, but the converse can fail if the group has non-trivial 2-torsion. Finally,
a pairing is symplectic if it is both alternating and non-degenerate.

The skew-symmetry of the Artin—Tate pairing and Milne—Artin—Tate pairing can be proved in a couple
of lines, and together with non-degeneracy implies that the ¢-primary part Br(X),q[¢°°] has size a perfect
square for ¢ # 2. However, it is not enough to deduce that # Br(X),q[2°°] is a perfect square. We refer to
the assertion that the Milne-Artin—Tate pairing on Br(X),q is actually symplectic as Tate’s Symplecticity
Conjectureﬁ

Conjecture 1.1.4 (Tate’s Symplecticity Conjecture, [Tat95]). The (Milne-)Artin—Tate pairing on Br(X )ng
is symplectic.

We emphasize again that Conjecture implies Conjecture Conjecture has a long and
tortuous history, which is described in the introduction of [Fen20a]. Since the pairing is skew-symmetric,
the content of the Conjecture is concentrated at the 2-primary part of Br(X),q. When p # 2, it was
finally resolved in the second author’s thesis [Fen20a]. The methods of [Fen20a| were restricted to p # 2 for
fundamental reasons, since they use aspects of f-adic cohomology theory for ¢ = 2, which are only applicable
when ¢ # p. The second author has been trying since 2018 to solve the p = 2 counterpart. One of our main
results finally settles this problem:

Theorem 1.1.5. Let X be a smooth, proper, geometrically connected surface over a finite field of any
characteristic p, including p = 2. Then the Milne—Artin—Tate pairing on Br(X)ng is symplectic.

Remark 1.1.6 (Higher dimensional generalizations). We construct a generalization of the Milne—Artin—Tate
pairing for any smooth, proper, geometrically connected variety of even dimension over F,, and prove that

it is symplectic — see

Remark 1.1.7. Conjecture [I.1.4] was motivated by the symplecticity of the Cassels—Tate pairing, but iron-
ically the Cassels—Tate pairing turned out not to be symplectic in the generality originally envisioned by
Tate in [Tat95], as was discovered by Poonen—Stoll [PS99]. The Milne-Artin-Tate pairing is also analogous
to a topological duality, the linking form on a 5-manifold, which is always skew—symmetric but also turns
out not to be alternating in general. Thus, Theorem [I.1.5] affirms a rather special feature of Brauer groups,
not witnessed in other closely analogous mathematical settings.

The proof of the p # 2 case of Conjecture in [Fen20a| exploited the étale Steenrod operations,
which are subtle symmetries of mod 2 étale cohomology. As has been mentioned, a historical difficulty
in constructing the pairing at p = 2 was the lack of an appropriate cohomology theory. The cohomology

3Under the technical hypothesis in [Tat63, Theorem 3.3], which however was mistakenly dropped in the discussion of [Tat95].
This led to a long misconception that was finally resolved in work of Poonen—Stoll [PS99).

4Milne’s extension of the Artin—Tate pairing did not exist yet at the time of [Tat95], but we interpret this extended version
of the question as fulfilling Tate’s conjecture in [Tat95].
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theory now exists and is called (among other names) “syntomic cohomology”, but its symmetries are not
satisfactorily understood. In order to prove Theorem we therefore need to build a theory of syntomic
Steenrod operations acting on syntomic cohomology, which will we describe next. We emphasize that we
develop the theory of syntomic Steenrod operations for all primes p, even though the application to Theorem
[L.T.5] concentrates on the case p = 2. That is, the bulk of the paper is devoted to developing a general theory,
which is not specific to characteristic 2.

1.2. The syntomic Steenrod algebra. Geisser-Levine [GL00] proved that for smooth varieties over finite
fields, syntomic cohomology coincides with p-adic étale-motivic cohomology. This contextualizes the issue
of constructing syntomic Steenrod operations in terms of a classic problem raised by Voevodsky in his
manuscript [Voe02| on “Open problems in motivic homotopy theory”: developing a theory of motivic Steenrod
operations at the defining characteristic.

We recall some historical context for this problem. Away from defining characteristic, the mod p motivic
Steenrod algebra for varieties in characteristic 0 was studied by Voevodsky [Voe03bl, [Voel0], and for varieties
in positive characteristic £ # p by Hoyois—Kelly—@stveer [HKOsr17]. Thanks to their work, the mod p motivic
Steenrod algebra is now well-understood away from characteristic p, but in characteristic p it is still highly
mysterious. Voevodsky conjectured a description of it in [Voe02], which implies that it should be have a
Milnor basis of power operations over the motivic cohomology of the base field. This conjecture remains wide
open, but partial evidence was given by Frankland—Spitzweck [FS18| who showed that Voevodsky’s “expected
answer” for the dual motivic Steenrod algebra does at least appear as a (module-theoretic) summand of the
true answer. This allows one to define power operations on motivic cohomology, as was suggested already in
[FS18] and carried out by Primozic in [Pri20], but one would not be able to control the properties of these
operations. For example, our calculations require basic information such as:

e A formula for the product of power operations (which should be given by motivic Adem relations),
e A formula for the coproduct of power operations (which should be given by a motivic Cartan for-
mula).

In the special case of mod p Chow groups, these formulas were proved by Primozic [Pri20], but this case is not
enough for us, nor does the argument generalize. In this approach to motivic Steenrod operations, one can
control the product and coproduct only up to the “error” summand intervening between the motivic Steenrod
algebra and the submodule generated by power operations, which should vanish according to Voevodsky’s
conjectures (but again, this is wide open). In the special case of the H2"! line considered in [Pri20], the
relevant “error” terms vanish by general vanishing properties of motivic cohomology.

For the aforementioned reasons, as well as subtler ones that will be mentioned later, we introduce a new
approach to mod p (étale-)motivic Steenrod operations in characteristic p. Very recently, Annala—Elmanto
[AE25] independently gave a new construction of motivic Steenrod operations in defining characteristic,
for which they can prove motivic Adem relations and a motivic Cartan formula. Their approach is some-
what similar to ours, as will be discussed further in but our applications require still more
information about the operations, which is only yielded by our method.

1.2.1. Structure of the syntomic Steenrod algebra. We write Hgyn(—) for syntomic cohomology (cf. ,
and

HI,(X) = HL, (X5 By () and HEL(X) = @D HEL(X).

syn syn syn syn
i,jEZ

The index i is the degree and the index j is the weight. The cup product makes H};; (X) into a graded
F-algebra.

We construct and analyze syntomic Steenrod algebra AZ;,, which acts by natural transformations on the
syntomic cohomology of algebraic varieties in characteristic p. Here is a summary of what we will prove
about the syntomic Steenrod algebra.

Theorem 1.2.1. Let p be any prime and let k be a field of characteristic p. Then there is a cocommutative
Hopf algebra A3} over H;;,Tl(k), which we call the syntomic Steenrod algebra, equipped with an algebra
homomorphism to the ring of natural endomorphisms of syntomic cohomology HX% (=) viewed as a functor

syn
from varieties over k to Fy,-vector spaces. Moreover, ALY has the following the properties.



o AL is generated as an HEY (Spec k)-algebra by power operations Piyn7 BP:  fori > 0, which change

syn S syn
degree and weight as indicated:
Pl i HEY (=) = HEL 2@ Dbhem=h () (1.2.1)
i oppab a+2i(p—1)+1,b+i(p—1
ﬂPsyn' Hsyn(i) — Hsyn (p=1) (b )(*) (122)
o A basis of ALY over Hijj (Spec k) is given by

PY = BPl . B9Pl o

syn syn syn
as a ranges over elements of the set
I ={(r €r iy, ... €1,01,€0) |7 >0,1; > 0,¢; € {0,1},4;41 > pij + €5}
e The product on A%Y is given by explicit Adem relations (

syn

e The coproduct on A%y, is given by an explicit Cartan formula (

Theorem is proved in for k = Fp. It then follows for any extension k/F, by tensoring over
Hin(Spec Fy) with HZ} (Spec k).

By the aforementioned work of Geisser—Levine, Theorem [I.2.1] can be summarized as the construction of
an étale-motivic Steenrod algebra acting on mod p étale-motivic cohomology, which has exactly the structure
predicted by Voevodsky’s conjectures. Note however that we do not claim that AZ7 is the full ring of stable
cohomology operations on syntomic cohomology, so we are not proving (the étale localization of) Voevodsky’s
conjectures. Rather, we are showing that there is a Hopf sub-algebra of the true (étale-)motivic Steenrod
algebra that behaves “correctly” in all aspects.

We also emphasize that the results discussed here apply to all p, even though only the case p = 2 was is

invoked for the applications to Brauer groups in §I.1]

Remark 1.2.2. As we were completing an initial draft of this paper, Annala—Elmanto communicated to
us their independent work [AE25| which provides another construction of motivic Steenrod operations in
defining characteristic. They are able to establish the motivic Cartan formula and motivic Adem relations
in general, improving upon [Pri20]. Moreover, étale sheafifying their work gives another proof of Theorem
and we expect that their operations recover ours in this way.

The strategy of [AE25| follows a similar initial path to ours, both specializing from characteristic zero
via infinitely ramified mixed characteristic rings, though the implementation is different (even after étale
sheafification); according to our understanding, the approaches had a common origin in ideas of Lurie (to
be sketched below).

However, for our applications we would not be able to get away with using the operations of [AE25] as a
black box. For example, we also need the key compatibility statements in Theorem and Theorem [1.4.1
below, which are bound up with our approach, and responsible for the bulk of this paper.

1.2.2. A hint of the construction. The construction of the syntomic Steenrod algebra Ag;Y documented here
was explained to us by Jacob Lurie. It borrows elements of his vision for “prismatic stable homotopy theory”,
an extension of prismatic cohomology to extraordinary coefficients. Indeed, the classical Steenrod algebra
can be thought of as the (derived) endomorphism algebra of the Eilenberg-MacLane spectra F,, over the
sphere spectrum S, and we will ultimately realize the syntomic Steenrod algebras as endomorphisms of
syntomic cohomology over a certain “syntomic sphere spectrum”.

We set up some language needed to articulate our strategy more precisely. For a scheme S, let SHg be
Morel-Voevodsky’s p-complete motivic stable homotopy category of Al-invariant cohomology theories over S.
Thus SHg contains an object F3** representing mod p motivic cohomology. Annala-Hoyois-Iwasa [AHI25]
constructed the category of p-complete motivic spectra MSg, an enlargement of SHg which includes non-
Al-invariant cohomology theories. In particular, mod p syntomic cohomology (which is not A'-invariant in
general) promotes to an object F; € MSg. The objects of MSg give rise to Nisnevich sheaves of (p-complete)
spectra on smooth schemes over S. If S = Spec R, we will also denote MSg := MSg and SHg := SHg.

The first instinct is to simply define the syntomic Steenrod algebra to be the algebra of (derived) endo-
morphisms of F¥" over the symmetric monoidal unit of MSy. This indeed gives the universal algebra of
operations, but we would not be able to control the structure of this algebra. To define AZ;} in a way that
gives us a handle on the desired properties, we crucially use perfectoid geometry (which bridges characteristic
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0 and characteristic p) to make a construction that can be “controlled” in terms of characteristic 0 objects
which are already understood.

We will summarize the construction below, but in a slightly oversimplified way that elides some technical
issues. We start by considering the integral perfectoid ring & = Z[pp] 1/3\ obtained by adjoining all p-power
roots of unity to Z, and then p-adically completing. Its generic fiber will be denoted K and its special fiber
will be denoted k. Following a construction explained to us by Jacob Lurie (and credited by him to Akhil
Mathew), we define a “perfectoid nearby cycles” functor ¢: SHx — MSg. The key calculation is that 1
carries the motivic cohomology spectrum IFg‘Ot € SHk to the syntomic cohomology spectrum F™ € MS.
This fact ultimately allows us transmute information about the motivic Steenrod algebra in characteristic
0, which was explicated by Voevodsky in [Voe03bl [Voel(], into information about the syntomic Steenrod
algebra in characteristic p. Indeed, the motivic Steenrod algebra over K can be defined as

k% mot mot
Extgm,: (Fpot, Fot)

where S™°t € SHy is the symmetric monoidal unit, which is the p-complete motivic sphere spectrum. Taking
inspiration from the key calculation mentioned above, we may regard 1(S™°) as “the syntomic sphere
spectrum” over k, and then try to define our syntomic Steenrod algebra as

Bt oy (0 (FR), (ER)).

Our actual definition of AZ7 is a technical variation on this idea.

1.3. Application to arithmetic duality. We will describe how the syntomic Steenrod algebra is applied
to prove Theorem [T.1.5]

1.3.1. Ew Steenrod operations. In fact, there is another flavor of Steenrod operations acting on HZ,(—),
thanks to the realization of H, (—) as the cohomology ring of a cochain complex RI';,, (—) which has a
natural E,-structure. This leads to an action of E., Steenrod operations P& and SP%on HE W (=)

On motivic cohomology, there would also be the action of two types of Steenrod operations: the motivic
Steenrod operations, and the E,, Steenrod operations. Their interaction is invisible in topological coho-
mology and étale f-adic cohomology, where they essentially coincide in either of those settings. In other
words, they are collapsed onto each other under the realization from motivic cohomology to Betti or ¢-adic
cohomology. However, they are distinct on syntomic cohomology, as can already be seen from the fact that

they affect the degree and weights differently from the syntomic operations in (|1.2.1]),

Pi: Hgy’l;l(_) N Hg}j;l?i(p—l),pb(_) (1.3.1)
BPh: Hh () — HG =D (o), (13.2)

In our story, the interaction of these two flavors (motivic and E,) of Steenrod operations plays a key role.
Each individual flavor is by itself insufficient for the desired applications, but when combined they exactly
supplement each other’s deficiencies. Concretely, we can access the Milne—Artin—Tate pairing in terms of
E.o-Steenrod operations, but then we cannot compute these operations. On the other hand, we can compute
some syntomic Steenrod operations in terms of characteristic classe&ﬂ since they are of motivic nature, but
this is not useful a priori for understanding the pairing. We therefore also need a comparison theorem to
combine the two types of operations. We will proceed to describe the situation, and its resolution, more
precisely.

1.3.2. Connection to the Milne—Artin—Tate pairing. The connection between E., Steenrod operations and
the Milne—Artin—Tate pairing (—, —)maT comes from a formula

(u, uymaT = /X PL(Bu) for all u € Br(X)[2] (1.3.3)

if X is a smooth, proper, geometrically connected surface over a finite k of characteristic p = 2. (There is a
generalization of this formula to varieties of higher dimension, in Theorem ) We want to prove that
the Milne-Artin-Tate pairing is alternating, so we want to show that (u,u)yat = 0; the formula
allows us to translate this into a problem of calculating the effect of certain E,, Steenrod operations. There

5Actually, this computation itself also uses some properties of syntomic Steenrod operations that we prove using the eventual
relation to Eo, Steenrod operations.
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is a generalization of to u € Br(X)[2"], and also to elements of the “higher Brauer groups” of higher
dimensional varieties, in Theorem which we need but do not describe here.

For u € Br(X)[2] where p # 2, an analogous result was established in [Fen20al, and was a crucial part of
the strategy used there to show that the Artin—Tate pairing is alternating. The proof in loc. cit. reduced
to topological statements via étale homotopy theory, hence does not generalize immediately to the present
situation. More seriously, however, the rest of the strategy in [Fen20a] definitively fails when p = 2.

1.3.3. Calculation of Steenrod operations. At this point, it may be helpful for the reader to refer to the
Introduction of [Fen20a] for a summary of the proof. In brief, it draws inspiration from classical topology of
manifolds to calculate the relevant Steenrod operations in in terms of characteristic classes, using an
arithmetic analogue of Wu’s theorem relating Steenrod operations and Stiefel-Whitney classes.

But in the context of syntomic cohomology, simple weight considerations (using for example that Chern
classes must live in the motivic line H?"%) reveal that the analogous formulas are only plausible for the
syntomic Steenrod operations, rather than the E. operationsﬁ So at this point, the flavor of Steenrod
operations that we can calculate is not the relevant one for the Milne—Artin—Tate pairing, presenting a
major gap for our strategy. What saves us is a comparison theorem mediating between certain Steenrod
operations of different flavors, evaluated on certain syntomic cohomology groups, and we discuss this next.

1.3.4. The comparison theorem. As has been mentioned, the syntomic and E,, operations cannot agree in
general, since they have different effects on weights: compare the codomains of and (L.3.1). Note,
however, that the codomains sometimes agree. For example, a crucial instance for Theorem [I.1.5]is the case
p=2,a=3,and b = 1, where P} and P;yn coincidentally both take the form Hgy}l — Hgyf1 We prove
the following comparison theorem asserting that the two flavors of operations agree whenever they have the
same domain and codomain.

Theorem 1.3.1. If b =1, so that the two maps

P]%: HYb Hg;fi(p—l),pb and PP HMY H(SL;;lZi(p—l),b—&-i(p—l)

syn syn* ~syn
have the same source and target, then they agree.

In fact, we prove a more complete statement, which determines the relationship between
Py and P{ , in all cases. To be clear, the main content comes from an analogous result of Bachmann-
Hopkins [BH25| for motivic cohomology, in characteristic 0, which we bootstrap to characteristic p using our
perfectoid nearby cycles functor.

Theorem allows us to bridge the gap between the two halves of the strategy adapted from [Fen20a],
the first about calculating the Milne—Artin—Tate pairing in terms of E., Steenrod operations, and the second
about calculating motivic Steenrod operations in terms of characteristic classes. It turns out, however, that

the second half is much more difficult in our present setting, and we shall discuss this next.

1.4. Spectral prismatization. It turns out that our strategy requires a certain subtle compatibility of the
syntomic Steenrod operations with Poincaré duality (for the proof of the Arithmetic Wu formula,
rem 13.1.2)). The statement is elementary, so we give it below. Perhaps more interestingly, the proof leads us
to develop an apparatus which is likely of deeper importance: a generalization of prismatization in the sense
of Drinfeld and Bhatt—Lurie, for the syntomic sphere spectrum, and an attendant “spectral Serre duality”.
In particular, we construct an approximation to Lurie’s conjectural prismatic stable homotopy category over
k, which is an extension of the category of prismatic F-gauges over k in the spirit of stable homotopy theory.
To be clear, the idea for how to do this was explained to us by Lurie. We emphasize that we develop this
story for general p, even though only the case p = 2 is invoked for the results on Brauer groups in §I.1]

6This issue does not arise in the p # 2 situation considered in [Fen20a|] because the étale sheaf po is isomorphic to the
étale sheaf Z/2, so the weight index is negligible; this makes it plausible that the E and étale motivic Steenrod operations
essentially coincide in that case, which turns out to be true.
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1.4.1. Arithmetic duality and Steenrod equivariance. Let us formulate the key compatibility that we require.
The Poincaré duality theorems for syntomic cohomology over finite fields were established by Milne in
[MiI76l, Mil86]. Indeed, suppose that X is a smooth, proper, geometrically connected variety of dimension d
over a characteristic p finite field k. Then there is a trace map

/ tHI(X) S F,
X

and Milne proved that the pairing

Ix
=

Ha,b (X) % H2d+1—a,d—b(x) N HQd—‘,—l,d(X) F

syn syn syn p

is perfect for every a,b € Z. Dualizing the cup product
Hn (X) @, HL(X) = HEL (X < X)

syn syn syn
and then applying Poincaré duality, we obtain a commutative diagram

H** (X)\/ ®Fp H*:* (X)\/ « H** (X X & X)\/

syn syn syn

f f (1.4.1)

2 (X) @p, Hih (X) e HEgn(X xp X)

syn syn syn

Note that the horizontal map ¢, in the bottom row increases cohomological degree by +1. Both its source
and target have natural actions of the syntomic power operations, the source because it is the cohomology
of a variety, and the target by the coproduct on the syntomic Steenrod algebra (see , which is given
by the Cartan formula. Then our entire strategy hinges upon the following result.

Theorem 1.4.1. The map p. is equivariant for the action of A%,

The main difficulty in the proof of Theorem [1.4.1] comes from the arithmetic nature of the duality on
Hz;n(X), which combines the arithmetic duality on the ground field with the geometric duality on X. (See

the discussion at the beginning of Part [4] for more about this.)

Remark 1.4.2. We will give a toy metaphor for Theorem Heuristically, ¢, behaves like a pushforward
malﬂ on cohomology, hence the notation (even though there is no actual map ¢ which induces it). Indeed,
Spec k is topologically analogous to S*, so that X is topologically analogous to a manifold M fibered over
S'. Then X x; X is analogous to M xg1 M and HZ}(X) ®p, Hi5(X) is analogous to the cohomology
of M x M. In these terms, ¢, would be analogous to the pushforward map on cohomology associated to
M xg1 M — M x M. Typically, pushforward maps are not equivariant with respect to Steenrod operations;
the failure of equivariance should be measured by the Stiefel-Whitney classes of the relative normal bundle.
But in this particular situation, because S! has trivial tangent bundle, one would expect equivariance. Of
course, this discussion is all heuristic: in our actual situation, there is not even a geometric object whose
cohomology realizes H3% (X) ®@p, H33 (X).

syn syn
1.4.2. Spectral prismatic F-gauges. The authors were stymied by this point for a long time, before stumbling
upon a lifeline in the recent works of Drinfeld [Dri24] and Bhatt-Lurie [Bha22]. These works lift syntomic
cohomology to prismatic F-gauges (in the terminology of [Bha22|), which are quasicoherent sheaves on
certain stacks called prismatizations. In particular, for each smooth and proper f: X — Spec k, there is a
perfect complex H¥X /p of quasicoherent sheaves on a stack (Spec k)%ﬁn, such that RT'((Spec k)%};n;’HX /D)
canonically identifies with RI'syn(X;Fp). The category of mod p prismatic F-gauges over k iﬂ
FGauge (k)r, := QCoh((Spec k)%};n)

Our proof of Theorem [1.4.1] exploits prismatization in an essential way. While the full proof is too

complicated to explain here (the entirety of is devoted to it), we can hint at the ideas.

Firstly, we may “prismatize” the problem by prismatizing the Steenrod algebra itself. This first involves
constructing (following ideas of Lurie) a category of spectral prismatic F-gauges FGauge (k)§'° that extends

Talso sometimes called “Umkehr map” or “wrong-way map”
8Tn the body of the paper, we take a very different definition as our starting point, and show that it is equivalent to this
one.



FGauge (k)r, analogously to how the usual stable homotopy category extends the derived category of abelian
groups. This category FGauge (k)§'° is closely related to the “prismatic stable homotopy category” (over k)
envisioned by Lurie; the superscript “pre” reflects that it is only an approximation to the latter, which however
is an equivalence on all the objects that we consider in this paper (see Remark for an explanation of
the precise meaning of this statement).

There is an adjunction
*: FGauge (k)5 = FGauge (k)r, : t«

which should morally be thought of as coming from an embedding ¢ of (Spec k:)%ypn into a “spectral prisma-
tization stack” (Spec k)gyn. Let 1 be the unit of FGauge (k)g,, which in concrete terms corresponds the
pre

structure sheaf (’)(Spec RySn- We then define the internal Hom algebra in FGauge (k)g ,

%yn = HomFGauge (k)‘S)re(L*]lv L*]l)a

as the “prismatization of the syntomic Steenrod algebra” it recovers A by taking global sections in
FGauge (k). By construction, all objects of FGauge (k)p, which come via ¢* from (Spec k)SY" are
equipped with a tautological action of #yy.

Now let us explain how this helps for Theorem [[.4.] It eventually allows us to “localize” the problem
onto (Spec k)%yyn After such localization, there is a new perspective on Milne’s Poincaré duality results due
to Bhatt-Lurie [Bha22 §4], which dissects arithmetic Poincaré duality for syntomic cohomology into two
more elemental phenomena:

(1) “geometric Poincaré duality” (proved by Longke Tang [Tan24b]) for the association X — #*/p €
FGauge (k)r,, and
(2) Serre duality for FGauge (k)r,.

Ultimately, this enables us to distill a generalization of Theorem which is local on the stack (Spec k;)%in

It says that a certain map of quasicoherent sheaves ¢ , which may be viewed as the “prismatization of ,”,
is compatible with the @yn-action; this recovers Theorem after applying global sections. In turn, this

compatibility then has a conceptual explanation: if the map ¢ can be lifted to the spectral prismatization
FGauge (k)L™, then it would be compatible with the iy,-action for formal reasons. We will discuss this
lifting next.

1.4.3. Spectral Serre duality. Serre duality is the key input for defining the map ¢ ; correspondingly, the key
input for lifting ¢ to (Spec k)gyn is to lift Serre duality to (Spec k)gyn. For this, the key is to find a good
candidate for the dualizing sheaf, and here we take our cue from the classical theory of Brown-Comenetz
duality [BCT6], which is a generalization of Pontrjagin duality to spectra.

To be precise, let Sp be the category of p-complete spectra and I € Sp be the p-completion of the
Brown-Comenetz spectrum. We “pull back” (in a suitable sense) I from Sp to define a dualizing sheaf
in FGauge (k)£™, which we show fits into a good theory of “spectral Serre duality” on FGauge (k)g,
compatible with the classical theory of coherent duality in FGauge (k)r,. We moreover show that this
spectral Serre duality plays well with the prismatized Steenrod algebra @y, which supplies the key ingredient
to the proof of Theorem [1.4.1

Remark 1.4.3. The lengths just described may seem fairly outrageous for proving such elementary state-
ments as Conjecture [[.1.2) and Conjecture [.1.4] While the authors sympathize with this sentiment, they
can assure the reader that they have tried many less arduous routes over the past decade, and have resorted
to this one by necessity (and indeed, desperation). As noted already, these problems have resisted solution
for almost sixty years.

1.5. Outline of the paper. This paper is divided into five Parts. The contents of each Part are summarized
in more detail where it appears. Figure[T]depicts the logical flow to the classical applications to Brauer groups.

is concerned with syntomic cohomology. It constructs what we call spectral syntomic cohomology,
which is short for “syntomic cohomology with coefficients in motivic spectra”. Furthermore, it defines certain
module categories of “coefficients” for these spectral cohomology theories, which we call syntomic spectra. It
also introduces the perfectoid nearby cycles functor.
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is concerned with Steenrod operations. It constructs the syntomic Steenrod algebra and establishes
its formal properties (e.g., . It also defines the E,, Steenrod operations and establishes the
comparison with syntomic Steenrod operations (e.g., [Theorem 1.3.1]).

is about prismatization of spectral syntomic cohomology. It defines the category FGauge (k)&°,
studies a prismatized version of the syntomic Steenrod algebra, and establishes spectral Serre duality and,
finally, Theorem [1.4.1

develops a theory of certain characteristic classes in syntomic cohomology, namely Stiefel-Whitney
classes and Wu classes, and establishes their relation to the theory of Chern classes from [BL22]. It also
proves the arithmetic Wu formula relating syntomic Stiefel-Whitney classes and syntomic Wu classes; it is
for this proof that we need and the entire theory of spectral prismatization. This yoga of
characteristic classes is used to eventually compute syntomic Steenrod operations.

Finally, contains the applications to the main theorems on (higher) Brauer groups, including
[Theorem 1.1.3] [Theorem 1.1.5] and their higher dimensional generalizations.

M'du- }\r\"m-Tnh,
poicing & &) 8ig £, Steenod

Opesstions (87)
Metive Steesrod Compaison
Operations Theorew (3 8)
esfectoid
nenclon cydes (54) Syromi Steewrad
Operartions tS 6)

N
Speckral Serte
ddlity (811

}

—_ SPQM Pf'lgmw‘r”tc
(39)

Swﬁom

Stiekel- Whitney
dosses (§12)

F- qauges

3 sgqywum+3 of
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FIGURE 1. This roadmap depicts the long, winding journey to the symplectic arithmetic
duality on higher Brauer groups.
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1.7. Notation. We fix a prime number p.

1.7.1. Conventions on spectra. We denote by Sp the oco-category of p-complete spectra. We denote by
S the unit of Sp, which goes by the name of p-complete sphere spectrum. This boldface notation is to be
contrasted with the blackboard-bold notation used for motivic spectra: see Remark [3.6.3

1.7.2. Conventions on coefficients. In this paper, we will consider two p-adic “directions” one is the base,
which might (for example) be Q5¥¢,Z¥, F,, and the other is the coefficients, which might (for example) be
F,,Z,,8S, etc.

We will study cohomology theories defined on schemes over the base, which are modules over the coeffi-
cients. We allow the coeflicients to be ring spectra, while our “test” schemes are classical.

To make these directions more visually distinct, we write & for a p-adic ring of integers, K := ¢'[1/p] for
its fraction field, and k for its residue field, when they are being thought of as the “base” direction. Starting
with Part [2} we will specifically take & := Z;¥ (the p-adic completion of Zy[u,=]), so K = Q¥¢, and k = F,.

1.7.3. oo-categories. We use the formalism of co-categories following [Lur09, Lurl7]. A phrase that does not
appear in loc. cit., but which we invoke frequently, is “presentably symmetric monoidal co-category”. By this
we mean a symmetric monoidal co-category C which is presentable and whose tensor bifunctor ®: C xC — C
commutes with colimits in each variable (separately).

1.7.4. Sheaf and presheaf categories. For a (small) co-category C and a presentable co-category D, we denote
by Z(C; D) the presentable co-category of functors C°? — D. We think of this as the category of “presheaves
on C valued in D”. If C is equipped with a Grothendieck topology 7, we denote

Z.(C; D) = Shv(C,; D)

for the presentable oo-category of sheaves on the site C,.
For a stack S, we denote by D(S) the co-category of quasicoherent sheaves on S, and Perf(S) C D(S)
the full subcategory of perfect complexes. For a commutative ring R, we abbreviate D(R) := D(Spec R).

Part 1. Spectral syntomic cohomology

This Part is concerned with the construction and properties of p-adic cohomology theories which include
and generalize syntomic cohomology. We first review what we mean by (classical) syntomic cohomology in
and establish some technical properties for later use.

One of the goals of this Part is to expand the notion of syntomic cohomology to more general coefficients,
parallel to how the theory of spectra expands singular cohomology. We therefore refer to this expansion
as spectral syntomic cohomology, in order to evoke the image of “syntomic cohomology with coefficients in
spectra”.

With this in mind, we review in §3|the theory of motivic spectra, which will be used as an ambient category
to house our cohomology theories and constructions.

The heart of this Part is §4 which defines and analyzes a certain “perfectoid nearby cycles” functor ¢
from the motivic stable homotopy category over characteristic zero perfectoid fields K (such as ngc) to
motivic spectra over their residue fields (k = F), in the example). The main theorem of §4)is that ¢ carries
motivic cohomology over K to syntomic cohomology over k. This calculation has to do with the idiosyncratic
behavior of algebraic K-theory and motivic cohomology of smooth algebras over perfectoid valuation ringsﬂ

9For example, an inspiration (which we do not logically use) is the main theorem of [AMM?22], which establishes that the
algebraic K-theory of a smooth algebra over a perfectoid valuation ring coincides with the algebraic K-theory of its generic
fiber.
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For a more general motivic spectrum E € MSk, this justifies considering ¢ (F) € MSy as the associated
syntomic cohomology theory. Finally, in §5| we consider the case where £ = S™°' is the motivic sphere
spectrum, and define an associated module category, which we call the category of “syntomic spectra”.

2. SYNTOMIC COHOMOLOGY

In this section, we recall syntomic cohomology and related notions, and prove some vanishing properties
that will be needed later.

Historically, the concept of syntomic cohomology has been studied in varying levels of generality by various
different approaches. In this paper, we follow the recent perspective of Bhatt—Lurie [BL.22], building on work
of Bhatt—-Morrow—Scholze [BMS19]. The advantage of this approach over earlier ones (e.g., [FM87, [Kat87,
Tsu99, [CN17]) is that it works for all weights, and over very large (perfectoid) rings.

2.1. Syntomic cohomology of schemes. Bhatt—-Morrow—Scholze [BMS19] defined the syntomic cohomol-
ogy of p-adic formal schemes. For each n € Z, and a formal scheme X over Spf Z,,, they define complexes
Z,(n)Y" on the quasisyntomic site of X', whose cohomology is the syntomic cohomology

RTsyn (&5 Zp(n))

Bhatt-Lurie [BL22) §8] defined a “decompleted” version of the theory, extending syntomic cohomology to
schemes over Z,,. Let us describe it for an affine scheme X = Spec R over Z,, the general case being deduced

from this one by Zariski descent. Let R be the p-adic completion (in the derived sense) of R. Bhatt—Lurie
constructed in [BL22l §8.3] an étale comparison map

Yer{n}: Rlgyn (Spf R; Z(n)) — RT(Spec R[1/p]; Z,(n)) (2.1.1)

and defined in [BL22| Construction 8.4.1] the “decompleted” syntomic cohomology RI'syn(Spec R;Z,(n)) as
the homotopy fibered product in the derived category D(Z,) of p-complete abelian groups,

RIgyn(Spec R;Z,(n)) —— RI¢(Spec R[1/p]; Z,(n))
l l (2.1.2)
RIgyn (Spf }A{; Z,(n)) L{n}> RT ¢ (Spec ﬁ[l/p}; Z,(n))

The resulting cohomology theory R +— RI'syn(Spec R;Z,(n)) satisfies étale descent, and we denote by
Z,(n)Y" the corresponding étale complex on X = Spec R, so that

Rlyn (X;Zy(n)) =2 RU4 (X Zy(n)T).

Now suppose R is an algebra over Z;¥°. We record a consequence of this definition for later technical use.
As in [BL22, §8.5|, we let € := (1, (p,(p2,-..) be a choice of compatible system of primitive p-power roots of
unity in . We may view ¢ € H2  (Spec &;Z,(1)). Multiplication by € then induces a map

syn

RIsyn (Spec R; Zy(n)) 5 RIsyn (Spec R; Zp(n + 1)).

Lemma 2.1.1. Suppose R is a commutative algebra over Z;Y°. Then the commutative diagram
Rl syn(Spec R;Z,(n)) —— RIsyn(Spec R; Z,(n + 1))
l l (2.1.3)
RDgyn (Spf R; Zyy(n)) —=— RDyyn(Spf R; Zy(n + 1))
is derived Cartesian.
Proof. By the Cartesian nature of , it suffices to prove that the analogous commutative square
Rl (Spec R[1/p]; Z,(n)) —— RIe(Spec R[1/p]; Z,(n+ 1))

| l

RI'g (Spec ﬁ[l/p]; Z,(n)) —— RI¢(Spec ﬁ[l/p]; Z,(n+1))
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is Cartesian. Indeed, since ¢ induces an isomorphism Zj,(n) = Z,(n+1) over Z5¥°[1/p] = Q;¥, multiplication
by € is in fact an isomorphism in both rows. O

2.2. Notation for syntomic cohomology. Let X be a scheme over Z,. For n > 1 and b € Z, we write
Z/p™(b)Y" for the cone of multiplication by p™ on Z,(b)Y". When n = 1, we also write F,(b)¥" := Z/p(b)¥".
We abbreviate the cohomology of these sheaves by

H (X5 Z/p" (D) == HE (X Z/p" (D)Y"), ete.

We use the notation Z,(b)Y" = Z3¥"(b)x interchangeably.
For integers a,b € Z, we write
HE (X) = HE, (X, (0).
We will use the abbreviation
H:&?(X) = @ H:yn(X; Fp(b))
a,beZ
and define H% (X) and Hzb (X) similarly. In all the “nice” situations that we consider, these are supported
on only finitely many a and b; for example, Proposition [2.3.3] provides an estimate for the support of the
cohomological degrees when X is a smooth qcqgs scheme over Z;Y°.

There is a map
Fp(b)X ® Fp(b/)X — Fp(b + b/)X,
syn

which equips H;;, (X) with a ring structure (and similarly with coefficients in (Z,)¥" or (Z/p™)¥" instead).

2.3. Vanishing estimates for syntomic cohomology of formal schemes. We will establish some van-
ishing estimates on syntomic cohomology, which are needed later for technical purposes. Below, for a (formal)
scheme X over Z, we make use of the absolute prismatic cohomology RI' (X) defined in [BL22|, as well
as the relative prismatic cohomology RT' (X/A) of Bhatt—Scholze [BS22] when X is defined over A/I for a
prism (A4, I).

Lemma 2.3.1. Let X := Spec R be a smooth aﬁinAe scheme of relative dimension d over a perfectoid ring
O, R be the p-adic completion of R, and X := Spf R. Then H' (X) vanishes for i ¢ [0,d].

Proof. Since € is perfectoid, it corresponds to a perfect prism (A,I); in particular, & = A/I. Hence
the absolute prismatic cohomology RI’ ()? ) is canonically identified by [BL22, Proposition 4.4.12] with the
(relative) prismatic cohomology RT ()? /A) in the sense of Bhatt—Scholze [BS22]. The prismatic cohomology
RI ()? /A) is equipped with a filtration whose associated graded pieces are Breuil-Kisin twists of RF*()? JA).
Hence it suffices to show that Hi (X /A) = 0 for i ¢ [0,d].

To this end, the Hodge-Tate comparison [BS22, Theorem 4.11] identifies

HL (X /A) = Q% i}

Since X is smooth of relative dimension d over &, Q’)? o= 0 for i ¢ [0,d], as desired. O

Proposition 2.3.2. Let X be a smooth affine formal scheme of relative dimension d over a perfectoid ring

0. Then for alln € Z, H: (X, Z,(n)) vanishes fori ¢ [0,d + 1].

syn
Proof. By definition [BMST9, §7.4], the syntomic cohomology of X is defined as the (derived) fiber
Rl (X Z,(n)) := Fib (Filﬁ/ Rl (X) 25 R ()?))

where ¢ is the Frobenius and Fily, RT'" is the nth filtrant of the Nygaard filtration on prismatic cohomology.
Arguing as in the proof of Lemma [2:3.1} the associated graded of the Nygaard filtration is identified by
[BS22, Theorem 1.16(3)] up to Frobenius twist as truncations of Breuil-Kisin twists of RI'—(X /A), which

are concentrated in degrees [0,d]. Therefore, Fili, R’ (X) is also concentrated in degrees [0,d]. Hence

Rl (X;Z,(n)), being the derived fiber of a map between complexes concentrated in degrees [0, d], is itself
concentrated in degrees [0,d + 1]. O
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Proposition 2.3.3. Let X := Spec R be a smooth affine scheme of relative dimension d over Z;Y°. Then
for alln € Z, H. (X;Z,(n)) vanishes fori ¢ [0,d + Q]H

syn
Proof. Let € := (1,(p, (2, ...) be a choice of compatible system of primitive p-power roots of unity in Z;>°.
We may view ¢ € HY  (Spec Z¢¥%;Z,,(1)). By [Proposition 2.3.2, the bottom row of vanishes on
cohomology in degree ¢ > d + 1. Then the Cartesian nature of (2.1.3) implies that the top row is an
isomorphism on cohomology in degrees i > d 4 2. Therefore, for i > d + 2 we have

HZj, (Spec R) 2 lim (H (Spec R) S Hi'+!(Spec R) < ) > H¥* (Spec R)[e ).

syn syn syn syn

By [BL22, Theorem 8.5.1], the étale comparison map

Hig, (Spec R)[=1] — ;' (Spec R[1/p]) = @) Hiy(Spec R[1/p); Fy(n))
nez
is an isomorphism. It therefore suffices to show that H (Spec R[1/p]; Fp(n)) = 0 for i > d 4 2. Since Q3¥°
has cohomological dimension 1, and Spec R[1/p] has dimension d, this follows from the Hochschild—Serre
spectral sequence

H'(QgY; HE, (Spec R[1/p] ®qye Qi Fy(n))) = Hgl(Spec R[1/p]; Fy(n))
and the vanishing of HZ, (Spec R[1/p] ®@qge Qp; Fy(n)) for j > d (by the Artin vanishing theorem). O

2.4. Syntomic cohomology over finite fields. A case of particular interest to us is when X is a smooth
variety over a finite field k. In this case, we recall some older and more concrete approaches to syntomic
cohomology.

2.4.1. Logarithmic de Rham-Witt sheaves. For smooth X over k, the cohomology groups HZ; (X) were first
constructed by Milne, from the perspective of what he called logarithmic de Rham—Witt cohomology. For a
smooth variety X, Milne defined sheaves v,,(b) in terms of the de Rham-Witt complex, which are shown in
[BMST9, Corollary 8.21 and Remark 8.22| to be isomorphic to the (derived) pushforward of Z/p™(b)[b] from

the quasisyntomic site to the étale site of X.

Example 2.4.1. For each n > 1:

e 1,(0) is isomorphic to the constant sheaf Z/p"Z.
e v, (1) = A pipn[1] where A is the map from the flat site to the étale siteg

2.4.2. Mod p motivic cohomology. Let X be a smooth scheme over a field. For b € Z, there is a motivic

complex Z(b)2°* on X, which is a Nisnevich sheaf on X. The motivic cohomology of X is

RT ot (X5 Z()) := RTNis (X Z(D)%°Y).

We denote by Z(b)$! the étale sheafification of Z(b)2°t. The étale-motivic cohomology of X is RU' (X ; Z(b)$).
If / is a prime number which is invertible in the base field, then it follows from a result of Suslin—Voevodsky
[SV00, Proposition 6.7] that the étale motivic complex Z/¢"(b)§ = Z(b)$t ®z Z/¢" is identified with the
Tate twist Z/¢"(b) := u%f’. See [Gei0f] for a survey of motivic cohomology, which provides references for
these facts.

On the other hand, if £ = p is the characteristic of the base field, then Geisser-Levine proved [GL00O,
Theorem 8.3] that Z(b)St ®z Z/p" is isomorphic to Milne’s v, (b)[—b], which as discussed above is identified
with syntomic cohomology.

3. MOTIVIC SPECTRA

In this section, we review motivic spectra, and establish some machinery for promoting cohomology theories
of interest, such as motivic and syntomic cohomology, to motivic spectra.

To put this in context, recall that for a scheme .S, Morel-Voevodsky defined the motivic stable homotopy
category over S: a universal category for Al-invariant cohomology theories on schemes over S. But many
of the cohomology theories that we care about (such as prismatic and syntomic cohomology) are not A'l-
invariant. Annala—Hoyois—Iwasa [AHI25| defined the category of motivic spectra over S, an enlargement of

10We suspect that this bound can be improved to [0,d + 1].
lgor b > 1, we note that v, (b) is not in general isomorphic to )x*,u?,f’.
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the motivic stable homotopy category which encompasses such cohomology theories. This seems to provide
the “right” ambient context in which to construct and consider our spectral syntomic cohomology theories.

3.1. Recollections on motivic spectra. Let S be a scheme. Following work of Annala—Hoyois—Iwasa
[AHI25], we will define a presentably symmetric monoidal stable co-category MSg of p-complete motivic
spectra over S.

3.2. Symmetric spectra objects. Given a presentably symmetric monoidal co-category C and an object
c € C, one can form the oco-category Clc™!], obtained by universally inverting the object c. The goal of
this subsection is to recall an explicit construction of C[c™!] using “symmetric c-spectra objects” and related
constructions.

Let ¥ be the free commutative monoid on one element in the oo-category of spaces. Concretely, X is
equivalent to the category of finite sets where maps are isomorphisms, so

> =[] B,
where X, is the symmetric group on n elements.
For an oo-category C we let C* := Fun(X,C) be the oo-category of functors from ¥ to C; informally

speaking, C* is the co-category of tuples (Y, Y7, ...) where each Y,, € C is endowed with an action of ¥,,.
A presentably symmetric monoidal structure on C induces one on C*, via Day convolution: for Y =
(Yo )nen and Z = (Z,)nen in C=, their Day convolution is Y ® Z defined byﬁ

Y@Z)m= @ Mmdim,y, (Ya®Z).
at+b=m
Example 3.2.1. In this situation, for each X € C there is a canonical commutative algebra object
Sym(X) := (1,X,X%2%,...) € ComAlg(C¥)

where 1 is the unit of C. Here ¥, acts on X®" by permuting the tensor factors. This Sym(X) can be
characterized as the free E-algebra on the object X (1) := (0, X,0,...) € C¥, where 0 denotes the initial
object of C.

The construction of Example [3.2.1] upgrades to a functor
Sym: C — ComAlg(C*). (3.2.1)

3.2.1. Stabilization. We set up a general framework for “stabilization” with respect to tensoring with an
object.

Definition 3.2.2. Let C be a presentably symmetric monoidal co-category and let ¢ € C. Then we define
SPE*(C) == Modsym(e) (C*).

An object of Splax(C) consists of, in particular, the data of a sequence (X, X1, ...) of objects of C, and the

C

module structure over Sym(c) gives maps ¢ ® X; — X, 11 with adjoints o;: X; = Home(c, Xit1). We let
$p.(C) C Sp™(C) (3.2.2)

to be the full subcategory spanned by the objects (X, X1, ...) for which o;: X; — Home(c, X;41) are all
isomorphisms. The inclusion (3.2.2)) admits a left adjoint

et Sp(C) — Sp.(C) (3.2.3)

C
realizing Sp,.(C) as a localization of Sp:™*(C).
By [AHI25, Proposition 1.3.14], there is a canonical colimit preserving symmetric monoidal functor

$®: C — Sp,(C) which identifies Sp,(C) with C[c™!], i.e., it is obtained from C by universally inverting
the object c.

1211 the formula below, € means the coproduct, so that it applies even if C is not additive. However, we shall only consider
it for additive categories.
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3.2.2. Functoriality. For a symmetric monoidal colimit preserving functor f*: C — D with right adjoint f,,
we obtain an adjunction
(F)": Sp(€) = S (D) (1)
which are given by applying f* and f, pointwise.
These induce an adjunction

in which the right adjoint is the restriction of f!** and the left adjoint is the composition of (f*)®* and

lax

the localization functor 7p: Sp<.(D) — Spy..(D). We abusively denote these functors again by f. and f*
respectively. The following examples illustrate their calculation in more concrete terms.

Example 3.2.3. The functor f** hence also the functor f, from (3.3.3) — sends a c-spectrum Y =
(Yo, Y1,...) € D* to f.Y = (f.Yo, f«Y1,...) € C¥, and the structure maps are given by the composition

f*O'n Y *
fi Y #fﬂ—[omp(f ¢, Yna1)

gf>l<;"[0777'D(f*ca Yn+1) = Homc(c, f*}/n-ﬁ-l)

Example 3.2.4. The functor (f*)!** has a similar description. It is given on symmetric c-spectra objects
by

(f)™(Yo,Y1,...) = (Yo, f*Y1,...).
The structure maps o, ((f*)'*¥Y) are given by

. *on(Y " * *
f Yn f—()> f Homc(c7 Yn+1) — HOmD(f Caf YTL-‘rl)

Since the second map in this composition is not an isomorphism in general, (f*)'** does not necessarily carry
the full subcategory Sp,(C) C Sp**(C) to Sps-.(D) C Splfa*xc(D). In particular, f*: Sp.(C) — Sp« (D) is not
simply given by restricting f*. Instead, it is the composition

F1 8p.(C) = Spi(€) L splax (D) T2 Sp . (D), (3.2.4)

where 7p is the left adjoint to the fully faithful embedding Sp;..(D) C Splfafc(D).

3.2.3. Motivic spectra. Recall that we are denoting by Sp the oco-category of p-complete spectra. We denote
by Smg the category of smooth schemes over S. We will now consider the constructions of §3.2] for the
oo-category
Cs = Pnis,ebu(Smg; Sp),
of Nisnevich sheaves of spectra on Smg satisfying elementary blowup excision. We denote by Home,(—, —)
the internal Hom of Cg.
We denote the Yoneda embedding of Smg into Cg as

Ef: Sms — Cs'. (3.2.5)
It factors as a composition
Sms — (Sms)* & CS

where (Smg), is the category of S-pointed smooth schemes over S, and the first functor sends X to X :=
X U S with the obvious section. We view P} € (Smg), as pointed by the constant section at oo, and we
abbreviate its image under £ by X°PL, or if S is clear from the context, by P!

Definition 3.2.5. As a special case of [Definition 3.2.2] we define the oo-categories
MSEX .= Spia% 1, (Cs) and  MSg := Spywpi (Cs).

lax

To unpack the definition: an object of MS&* can be represented by a sequence Y := (Yy,Y7,...) € C§
equipped with a module structure over Sym(X°°P?!). This structure provides, in particular, canonical maps
(in the category Cg)

on=0n(Y): Y, = Homey (S°P Y, 11), (3.2.6)

MSg is defined as the full subcategory of MS}.;E‘IX spanned by the objects Y for which the morphisms o, are
all isomorphisms.
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We write
To: MSEX - MSg (3.2.7)

for the left adjoint (3.2.3) to the inclusion. This exhibits MSg as a symmetric monoidal localization of MSEX,
so it inherits a symmetric monoidal structure.

Definition 3.2.6 (Motives of schemes). There is a tautological colimit-preserving symmetric monoidal
functor &(Smg;Sp) — MSs. Abusing notation, we also let ¥5° be the composition

EOO
¥: Smg —— Z(Smg; Sp) — MSg

relying on context to make the target category clear (from now on, it will almost always be MSg). For
X € Smg, we refer to X5°X as the “motive of X” in MSg.

We have the usual Tate twisting functor in MSg, defined as follows.
Definition 3.2.7 (Tate twist). Let Y € MSg. For any n € Z, we denote
Y(n) =Y @ (Z°P")®"[-2n]

and refer to Y (n) as the (n-th) Tate twist of Y. Note that since (tensoring with) P is formally inverted in
MSg, this makes sense also for negative values of n.

3.2.4. Remarks on p-completion. In the literature, MSg usually refers to a version without p-complete coeffi-
cients; in other words, using spectra instead of p-complete spectra. Since this paper is concerned with p-adic
cohomology theories, it is convenient for us to use p-complete coefficients everywhere. There is a standard
yoga for porting over results from the non-completed situation to the p-complete situation, which we will
describe now.

The Lurie tensor product of presentable co-categories [Lurl7l §4.8.1] gives a purely categorical definition
of p-completing a category: namely, tensoring with the oo category of p-complete spectra Sp (over the usual
oo-category of spectra). In particular, our p-complete version of MSg is obtained from the one of Annala—
Hoyois—Iwasa via this operation. The analogous remarks apply when discussing the motivic stable homotopy
category SHg below.

For a presentable stable co-category C, let us denote by Czlv\ its p-completion, i.e., its tensor product with
the category of p-complete spectra. This is equipped with a canonical p-completion functor C — Cﬁ, which
is left adjoint to a fully faithful embedding C,;' < C. This construction has the following properties that
we shall repeatedly use when importing results regarding MS and other categories under consideration. Let
F: C — D be a colimit-preserving functor between presentable stable co-categories.

(1) There is an associated colimit preserving functor Fg\: Cﬁ — D;\, given by the composition
F).chcetpo ), (3.2.8)

where the last functor is the p-completion functor.

(2) The right adjoint (F")f of F*: C)) — D)) is the restriction of the right adjoint F* to the p-complete
objects.

(3) If F® preserves colimits, then so does (F)f. Furthermore, if F' admits a left adjoint then so does
Fzﬁ\, which is the p-completion of the left adjoint F'* in the sense of .

3.2.5. Relation to the motivic stable homotopy category. Following work of Morel-Voevodsky, we let SHg be
the p-complete stable homotopy category. It is a presentably symmetric monoidal stable co-category, given
by the formula
SHg = L @NiS(Sms; Sp)[(Pl)il].

Here Pis(Smg;Sp) is the oo-category of Nisnevich sheaves on Smg valued in Sp, then Lp: is its Al-
localization, and finally [(P')~!] inverts tensoring with the Tate motive. We emphasize that we demand
p-completeness in the definitions of SHg, in contrast to the usual conventions; results from the usual situation
will be ported over according to the p-completion yoga discussed in

There is a fully faithful embedding SHg < MSg, whose essential image is spanned by objects which
are Al'-invariant. This has both a left and a right adjoint, hence preserves all colimits and limits. The
left adjoint is Al-localization, and the right adjoint comes from [AHI24, Proposition 6.1], by the general
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procedure of The left adjoint is symmetric monoidal, which gives a lax symmetric monoidal structure
to the inclusion SHg < MSg.

We denote by SF° (or just S™°' when context makes S clear) the unit of SHg; this goes by the name of
“p-complete (Al-invariant) motivic sphere spectrum”.

3.2.6. Comparison with sheaves of spectra. By construction, there is a colimit-preserving symmetric monoidal
functor Pnis(Smg; Sp) — MSg, with right adjoint

(=)o :== Q%1 MSs — Pnis(Smg; Sp). (3.2.9)

In terms of symmetric P!-spectra, this construction indeed extracts the O-th object of the symmetric spec-
trum, justifying the notation. We think of Y, as the cohomology theory on smooth S-schemes associated
with the motivic spectrum Y.

We turn to analyze the functor Y — Y. For this, we need the following feature of Nisnevich sheaves,
which we will repeatedly use.

Lemma 3.2.8. Let S be a geqs scheme. Then the fully faithful embeddings (cf. for notation)
Pris,ebu(Sms; Sp) € Pis(Sms; Sp) € & (Sms; Sp)
are both colimit-preserving.

Remark 3.2.9. By definition of £ (Smg;Sp), the collection of evaluation functors

F—F(X
{2(Sms;5p) 227, Sp) ke

is colimit preserving and jointly conservative. Hence Lemma [3.2.8] is equivalent to the statement that for

every X € Smg, the functor

CS = gZNis,ebu(SmS; Sp) w) Sp

is colimit-preserving, and similarly for Pyis(Smg; Sp).

Proof. Since these are fully faithful embeddings, we need to check that each subcategory is closed under
colimits in the next. For the first inclusion, this is because the elementary blowup excision condition involves
only pullback squares, so it is clearly closed under colimits (as we work with stable co-categories). For the
second inclusion, Nisnevich descent is equivalent to satisfying Nisnevich excision, which is again a condition
involving only pullback squares (e.g., as in [Lur21, Theorem 2.9]). So this condition is also closed under
colimits among all presheaves valued in stable co-categories. O

Proposition 3.2.10. Let S be a qcqs scheme. For any n € Z, the functor
Y — Y(n)o: MSS — f@NiS(Sms; Sp)
is colimit-preserving, and the collection of all such functors for all n € Z is jointly conservative.

Proof. For the colimit-preservation: since both the source and target are stable co-categories, and the functor
Y — Y (n)o preserves limits as it is a right adjoint, it suffices to show that the functor in question preserves
filtered colimits. Since the target is p-complete, we can check this after reducing modulo p.

We claim that ¥°P!/p € Cg — the cofiber of multiplication by p on ¥°°P! - is a compact object. Given
the claim, it follows from [AI22al Lemma 1.5.2] that ¥ — Y'(n)o preserves filtered colimits. In order to
prove the claim, we observe that ¥°°P! is compact in the non p-complete version of MSg from [AHI2H|
because Map(X*°P!, —) is given by evaluation at P!, which preserves filtered colimits by the argument of
Lemma 3.2.8] This then implies that ¥°°P!/p is compact in the p-complete version of MSg that we are
considering here.

For the joint conservativity, since the shifts by —2n are invertible, it is equivalent to show that the
collection of functors

Y = (Y @ (B°PHY®),
is jointly conservative. This follows directly from [AI22al Lemma 1.6.2]. |

Another consequence is the compact generation of MSg.

Proposition 3.2.11. Let S be a gcgs scheme. The category MSg is compactly generated by the collection of

objects (cf. |Definition 3.2.6) {X°X/p(n)} for X € Smg and n € Z.
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Proof. First we argue that such objects generate MSg. Since our categories are p-complete, these objects
generate in particular the objects (where we have not reduced mod p) 3°X (n) for X € Smg and n € Z. So
it suffices to show that the collection of functors {Homwmg, (XX (n), —)} is conservative. For F € MSg, we
have
Homysg (X7 X (n), F) = F(—n)(X)

factors as the composition F +— F(—n)o from [Proposition 3.2.10} followed by evaluation at X. The collection
of functors {F +— F(—n)o}nez was proved to be conservative in [Proposition 3.2.10} It therefore suffices to
see that collection of functors {F — F(X)} xesms on Pnis(Smg; Sp) is conservative, but this is tautological.

Next we argue that ¥3°X/p is compact for all X € Smg. Note that the canonical functor &(Smg;Sp) —
MSg has a colimit-preserving right adjoint by the combination of [Proposition 3.2.10| and [Lemma 3.2.8|
hence sends compact objects to compact objects. Since the Yoneda embedding of X in &?(Smg; Spectra) is
compact, its reduction mod p is compact in #(Smg; Sp), and then its image ¥3° X /p in MSg is compact. [

3.3. Functoriality in the base. Let f: .S — T be a morphism of qcgs schemes. We investigate the induced
functors on the categories of motivic spectra.
We have a symmetric monoidal adjunctiorﬁ

f*: gNis,ebu(SmT; Sp) = c@Nis,ebu(srns; Sp) : f* (331)

Moreover, the functor f* carries X°PL to $°°P%. Hence, by the constructions of [Section 3.2.2] we obtain
symmetric monoidal adjunction

(F*)™: MSP & MSE™ : fi (3.3.2)
of lax symmetric P!-spectra objects, and a corresponding symmetric monoidal adjunction
f5: MSy S MSgs : f. (3.3.3)

between the corresponding full subcategories of symmetric P'-spectra objects, The concrete descriptions of
these functors are summarized in

3.3.1. Properties. We turn to some of the basic properties of these functors. First, we note that f*: MSp —
MSs commutes with Tate twist:

FY () = (Y @ (2%Pp)%")[=2n] = (fY) @ (B%P5)*"[-2n] = (f*Y)(n).

Since the Tate twist functor Y +— Y (n) is invertible with inverse Y — Y'(—n), passing to the right adjoints
we deduce that f.: MSg — MSt also commutes with Tate twist:

fe(Y (=n)) = (£.Y)(=n).
Next, observe that by construction the functor (—)g from (3.2.9) commutes with f, from (3.3.3). From
this, we deduce the following.

Proposition 3.3.1. Let f: S — T be a morphism of qcqs schemes. Then the functor f,: MSg — MSr is
colimit-preserving.

Proof. Since the functors Y — Y (n)q are colimit-preserving and jointly conservative by [Proposition 3.2.10}
it suffices to show that the functors

are colimit-preserving for all n € Z. The Tate twist functor is an equivalence, so it suffices to consider the
case n = 0. Since (f.Y)o = f.(Yp), it suffices to show that

far Pris(Smg; Sp) = Pris(Smr; Sp)

is colimit-preserving. Consider the commutative square

f
Pris(Smg; Sp) —— Pis(Smr; Sp)

Z(Smg; Sp) SEELEN Z(Smr; Sp).

13By definition, this means that the left adjoint is symmetric monoidal, so the right adjoint is lax symmetric monoidal.
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By the vertical fully faithful functors are colimit-preserving. Therefore, in order to show that
the upper horizontal functor is colimit-preserving, it suffices to show that the lower horizontal one

fe: P(Smg; Sp) — & (Smr; Sp)
is colimit-preserving, which is clear. O

Note that in general we have a map f*(Yy) — (f*Y)o, but this map may not be an isomorphism. We
next record a simple criterion for when it does.

Corollary 3.3.2. Let f: S — T be a morphism of qcgs schemes, and let Y = (Yo,Y1,...) € MSt. If for all
n € N the maps

frHome, (Z°PLY,) — Home, (S°PL, £*Y;,) (3.3.4)
are isomorphisms, then
fT(Yo) = (f*Y)o.

Proof. By (3.2.4), it would suffice to show that (f*)!*(Y) € MSg. In view of the description of o, ((f*)**Y)
from (3.2.4)), this follows immediately from the hypothesis that (3.3.4]) is an isomorphism for all n € N. O

3.4. Etale sheafification. There is an étale version of motivic spectra, which is obtained by repeating the
constructions of §3.2.3] with the étale topology replacing the Nisnevich topology.

There is an obvious forgetful functor MS§ — MSg, with left adjoint the “étale sheafification” functor
MSg — MS?. We denote the composition MSg — MS? — MSg by Let.

Remark 3.4.1. The functor Lg can also be described more or less explicitly. Namely, étale sheafification
(followed by the forgetful functor) induces an analogous functor Le; : Pnis,ebu(Ss; SP) — Pnis,ebu(SMg; SP),
which in turn induces

L. MSE* - MSkex
given by L*(Yp, Y1,...) = (L&t Yo, Let Y1, - - - ). Then Lg: MSg — MSg is given by the composition

Ll’ax r
Ly MSg — MSE* ¢y MSex ™5, MS . (3.4.1)
where 7g is as in (3.2.7)).

3.5. Oriented graded algebras. In [AHI25, §6] the authors develop a useful technique to produce com-
mutative algebras in MSg. We recall a simplified version of their construction here. It will be convenient to
develop the theory in full generality for an object of a symmetric monoidal oco-category.

Definition 3.5.1. Let C be a presentably symmetric monoidal co-category and let ¢ € C. A c-preoriented
graded algebra in C is a graded commutative algebra E, € ComAlg(CN) together with a map w: ¢ — Ej.
Equivalently, it is a map ¢(1) — E in CN of graded objects, where ¢(1) is the object ¢ concentrated in degree
1. The c-preoriented graded algebras in C organize into a presentably symmetric monoidal co-category
ComAlgP°r(CN).

Definition 3.5.2. Let C be a presentably symmetric monoidal co-category and let ¢ € C and let (E,,w) be a
c-preoriented graded algebra in C. For each i € N, the map w: ¢ — Fj givesamap cQFE; - F1QFE; — E; 11
which adjoints to a map o;: E; — Hom(c, E;11). We say that E is c-oriented if o; is an isomorphism for all
i. We let ComAlg® (CN) C ComAlgP°" (CN) be the full subcategory spanned by the oriented graded algebras.

C C

3.5.1. Turning oriented graded algebras into symmetric spectra objects. There is a truncation functor 7: ¥ —
N which induces a lax symmetric monoidal functor 7*: CN — C*. Recall from [Example 3.2.1|that Sym(c) =
Frg__ (7*c(1)) is the free Eo-algebra on 7*¢(1), so the data of a map from 7*¢(1) into a commutative algebra
in C* is the same as that of a Sym(c)-algebra. We thus obtain a functor

v :=7": ComAlgP® (CN) — ComAlg(Sp'**(C)).

C
In fact, as explained in [AHI24l §6], by “doubling the grading” this functor canonically promotes to a functor

lax
c

into the category of graded algebras ComAlg(Sp.*(C)N), and we denote this promotion abusively by the

same notation.
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Remark 3.5.3. Unwinding the definitions, we see that the map v takes a graded algebra (Ey, Eq,...) to
the symmetric sequence (Eg, F1,...) in which %,, acts trivially on E,,, and the maps o;: F; — Hom(c, E;11)
induced from the oriented graded algebra and lax spectrum structures agree. It follows immediately that v
carries ComAlg? (CN) into ComAlg(Sp,(C)); in fact, we have a pullback square of co-categories

ComAlg?" (CN) ——— ComAlgP" (CN)

ComAlg(Sp,.(C)) — ComAlg™(Sp,.(C))

Example 3.5.4. Assume that c is already invertible in C, so that C = Sp.(C). Then, an oriented graded
algebra in C is a graded algebra (Ey, E1,...) together with a map ¢ — E; such that E; = Hom(c, Fit1).
Since c is invertible, this is equivalent to the original map ¢ ® E; — FE; 1 being an isomorphism, so that F,
assumes the form (Ey, By ® ¢, By ® ¢®2,...). Hence, an object of ComAlg®" (CN) is the data of

e a commutative algebra Ey € ComAIg(C), together with

e a structure of graded commutative algebra on @, o (Eo ® c®™).

This latter datum is equivalent to what is called a strict structure on Ey ® ¢ (see for example [Car23]): a

factorization of the map

Jo: 8 5 Pic(C) L2 pic(By)

through the truncation map of spectra S — Z. In this situation, the functor

v: ComAlg® (CN) — ComAlg(Sp,.(C)N) = ComAlg(CN)
(in which the second functor is induced by the equivalence Q3°: Sp.(C) — C) agrees with the forgetful
functor ComAlg®" (CN) — ComAlg(CN) that forgets the orientation.

3.5.2. Naturality of v. Let f*: C — D be a colimit preserving symmetric monoidal functor with right adjoint
f+. They induce an adjunction

(f)P": ComAlgh™ (CN) = ComAlghe (DY) : (f.)P°
in which the functor (f*)P°F carries (E,,w: ¢ = E1) to (f*Es, f*w: f*¢c — f*E1), and the right adjoint f{°"
carries (Fo,w: f*c — El) t0 (fsEe,c — nit, ff*c ELLN = f.E1).
Since the functor 7* is given by pre-composition with a symmetric monoidal functor p: ¥ — N, it is

compatible with post-composition with arbitrary colimit preserving symmetric monoidal functors f*: C — D.
We immediately deduce the following.

Proposition 3.5.5. Let f*: C — D be a colimit preserving symmetric monoidal functor between presentably
symmetric monoidal co-categories. Then the square
(f*)por

ComAlgP" (CN) ——— ComAlngE )(DN)

ComAlg(Sp(C)) L5 ComAlg(Spl*(D))

canonically commutes.
Since the horizontal functors in this square have right adjoints, we obtain a Beck—Chevalley transformation
POY - fhx .
Proposition 3.5.6. Let f*: C — D be a colimit preserving symmetric monoidal functor between presentably
symmetric monoidal co-categories. Then the Beck—Chevalley transformation v — f**u is an isomor-
phism. Hence, we obtain a canonical homotopy rendering the diagram

ComAlgpor (CN) W ComAlgI;olEC) ('DN)

ComAlg(Sp™*(C)) <T ComAlg(Sp™(D))

*
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commutative.

Remark 3.5.7. The analogous compatibilities hold for the factorization of v through N-graded motivic
spectra, which was mentioned in the first paragraph of §3.5.1] by essentially the same arguments.

Proof Both v (E,,w) and f**u(FE,,w) have underlying symmetric sequence (f.Eo, f«E1,...) by

and its analogue for pre-oriented graded algebras. Moreover, from the definition of v we see
that the Beck-Chevalley map restricts to the identity on the underlying symmetric sequences, hence is an
isomorphism. O

Corollary 3.5.8. With the same settings as in [Proposition 3.5.6, the functor fY°" restricts to a functor
: ComAlg®" (DY) — ComAlg®" (CN).
Proof We have to check that if (E,,w) € ComAlg" (DY) then f,w is an orientation of f,F,. This is

equivalent to the claim that vfP*"(E,,w) € Sp.(C), which follows from v fP*"(E,,w) = fl*u(E,,w) since
flax carries specta obJects to spectra objects. O

Note that the functor fo* has a left adjoint (f*)°* given by the composition

COmAlgor(CN) — ComAlgPr (cN) AP ComAlgh® (DY) — ComAlg® (DY)

in which the last functor is the left adjoint to the inclusion of the oriented algebras into the preoriented ones.

Corollary 3.5.9. Let C be a presentably symmetric monoidal co-category and let ¢ € C. Let £5°: C — Sp,(C)
be the c-stabilization functor, with right adjoint Q°. Then, for (Es,w) € ComAlg? (Sp,(C)N) there is a
natural isomorphism
V()P (E,,w)) = E,

in ComAlg(Sp.(C)N).
Proof. Let ¢ € Sp.(C) be the image of ¢ under ¥2°. Applying |[Proposition 3.5.6[to f* = ¥5°, and using the
observation at the end of we obtain

v((Q2°)P (Be,w)) = ()™ v(Ea,w) = E,
as desired. ]

3.5.3. Oriented graded algebras in Cs. Recall that we defined Cs := Pxis,ebu(Stis; Sp)

Definition 3.5.10. Specializing the construction of oriented graded algebras to the case C = Cs and ¢ =
Y>°PL, we can form the co-category of P!-pre-oriented graded algebras in Cg, which we denote

ComAlghy (CY') := ComAlght . (CF)

We further have the full subcategory
ComAlg®: (CY) := ComAlgyep: (CY)

spanned by the P'-oriented graded algebras. Recall that these are the pre-oriented graded algebras for which
the resulting maps
On: Ep — Homey(S°P B, 11) (3.5.1)
are isomorphisms.
We denote the co-categories of pre-oriented and oriented graded algebras in Cg by

ComAlgg: (C§) C ComAlghy (CS).
There is also a variant of this definition which will be useful later.

Variant 3.5.11. Let Pic = BG,, be the Nisnevich sheaf of (connective, 1-truncated) spectra on schemes,
assigning to a scheme X its Picard stack Pic(X), so that mp Pic(X) is the Picard group of X and m Pic(X) =
O(X)*. We implicitly restrict Pic to smooth S-schemes. A Pic-pre-oriented graded algebra in Cg is a graded
algebra E € ComAlg(CY) together with a map X Pic(1) — E, or equivalently, a map ¥*° Pic — F;. We
denote by ComAlgh" (CY') the co-category of Pic-pre-oriented graded algebras in Cs.

The canonical (pointed) map P* — Pic induces a forgetful functor ComAlgh:: (CY) — ComAlgh, (CY).
We define the co-category of Pic-oriented graded algebras ComAlg$;.(CY) to be the preimage of ComAlgp: (CY)
along this forgetful functor. In other words, we say that a Pic-pre-oriented graded algebra is oriented if the

underlying P!-pre-oriented algebra is oriented.
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Remark 3.5.12. Roughly speaking, a Pic-orientation of E € ComAlg(CSN) is responsible for the existence
of Thom isomorphisms for E-valued cohomology.

3.5.4. Constructing motivic spectra from oriented graded algebras. Applying the construction from
tion 3.5.1|to the case where C = Cg and ¢ = X>°P!, we obtain a functor

v: ComAlgly (CY) — ComAlg((MSEY)). (3.5.2)

By [Remark 3.5.3| this functor restricts to a functor from P'-oriented algebras to ComAlg(MSgI)7 namely,
we have a commutative diagram

ComAlgp: (CY) -7 > ComAlg(MSg) (3.5.3)

ComAlghy (CY) —— ComAlg(MS¥)

3.5.5. The fully faithful inclusion ComAlgg: (CY) C ComAlghy (CY) admits a left adjoint which we call
Ts: ComAlgpor(Cs ) — ComAlgg (CY). (3.5.4)
It is compatible with the 75 from (3 under the realization functor v (3.5.2)), in the sense that the following

diagram commutes
ComAlghy (CY) —=— ComAlgg: (CY)
ly ly (3.5.5)
ComAlg(MS2*) — ComAlg(MSg)
and analogous remarks apply to the Pic-oriented variant.

3.5.6. Functoriality in the base. Let f: S — T be a morphism of qcgs schemes. The functor f*: Cr — Cg
carries the object P to the object °°PL, hence gives a functor

(f*)P°": ComAlghy (CY) — ComAlgh (CS). (3.5.6)
defined as the composition
£*: ComAlgl: (€N) < ComAlgty (CN) Y7 ComAlgRY (CN) 255 ComAlgl (CN). (3.5.7)
By [Proposition 3.5.5]it fits into a commutative square
*\ypor
ComAlg2 () L2 ComAlgP () (3.5.8)

ComAlg(MSE<) Y ComAlg(MS)

As in the functor (f*)P°" admits a right adjoint
(f<)P°r: ComAlgly (CY) — ComAlghy (C]),

which by [Proposition 3.5.6| fits into a commutative diagram

ComAlghy (CY) LN ComAlghy (C)
| Lo
ComAlg(MSE*) ©5 ComAlg(MS¥)
and restricts to a functor between the full subcategories of P'-oriented algebras, namely:

Corollary 3.5.13. Let f: S — T be a morphism of qcqs schemes. The functor
fPo": ComAlghy (CY) — ComAlghy' (CY)

carries Pl-oriented algebras to P'-oriented algebras.
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Corollary 3.5.13|says in other words that (f,)P°" restricts to a functor
fi: ComAlgy: (CY) — ComAlgy: (CX). (3.5.9)
This f, is right adjoint to (3.5.7)), and fits into a commutative diagram

ComAlgp: (CY) SELEN ComAlgg: (CIY)

l” lu (3.5.10)

ComAlg(MSg) BELEN ComAlg(MSr)

Remark 3.5.14. Since the étale sheafification functor is a composition of a symmetric monoidal left adjoint
and a right adjoint, similar considerations apply to it. Namely, for every qcqs scheme S, we have a functor
L2 ComAlghy'(C§) — ComAlghy (CY)

fitting into a commutative square
por

ComAlghy (CY) —= ComAlghY (CY) (3.5.11)

Pk

ComAlg(MSE*) —“> ComAlg(MSE™)

Composing L2 with the functor 7g from (3.5.5)), we obtain the oriented version of étale sheafification:

por

Lev: ComAlgZh (CN) 2 ComAlgh (CY) 7% ComAlgl: (CY). (3.5.12)

From the definition of étale sheafification and (3.5.5)), it is clear that these functors are compatible with étale
sheafification of (lax) motivic spectra, in the sense of the commutative diagrams

& or Lgtor or
ComAlg®: (CN) —£25 ComAlgd: (CY) ComAlgyy (CF) —— ComAlgpy (CY)
ComAlg(MSs) —“5 ComAlg(MSs) ComAlg(MS2¥) 2% ComAlg(MSE¥)

3.6. Promoting motivic and syntomic cohomology to motivic spectra. The language of oriented
graded algebras allows us to lift syntomic cohomology into a motivic spectrum. Apart from that, it will be
a convenient language to compare syntomic cohomology with motivic and étale cohomology, so we shall now
explain how all three theories organize into P!-oriented graded algebras, resulting in motivic spectra.

3.6.1. Syntomic cohomology. For n € Z, let Z3"(n) denote the absolute syntomic cohomology functor of

[BL22] §8.4]. Taking the direct sum over n € Z, these assemble into a functor Z;"(e) := P, <z Z;""(n)

from schemes to graded commutative algebras in D(Z,), the p-completed derived category of abelian groups.
Since it satisfies Nisnevich descent and elementary blowup excision, we may regard

Z5(6) = (Z5" (1)) nen € ComAlg(CY).
Then we can shear it to get a new graded commutative algebrapﬂ
Z;" (e)[20] = (Z)"(n)[2n])nen € ComAlg(CY).
In [BL22| Proposition 7.5.2], Bhatt—Lurie construct the syntomic first Chern class
" Pic — 2 (1)[2].

Forgetting the spectrum structure, we may regard Pic as sheaf of pointed spaces together with a map of
sheaves of spectra ¥°° Pic — Pic. Composing with it, we obtain a Pic-pre-orientation

csyn
£V % Pic — Pic 2 Z™(1)[2).

MNote that the commutative algebra structure on the shearing uses the fact that Zf,yn(o) lands in Z-algebras. In general,
such a shearing of a graded commutative algebra is only an Ex-algebra.
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Proposition 3.6.1. The Pic-pre-orientation 3" is an orientation, so that
(237" (o)[20]5,€™) € ComAlgy; (CY)
for every qcqs scheme S.
Proof. By definition of orientation, we have to show that the map
Z3"(n) — Homey (S°PY, 2™ (n + 1)[2])

induced from & is an isomorphism. This can be checked after taking sections over an arbitrary smooth
S-scheme X, so it suffices to show that &Y and evaluation at the basepoint of P! together induce an
isomorphism

HS2 X x PL Zy(n) =5 HEGH (XS Zp(n) @ HL (X3 Zy(n)).

syn syn syn

This is a special case of the projective bundle formula of [BL22, Theorem 9.1.1]. O

This leads to the following construction.

Definition 3.6.2 (Syntomic cohomology as a motivic spectrum). Let S be a qcgs scheme. We define the
commutative algebra

(Zy™)s = 2,;"(0)s € ComAlg(MSg)

to be the commutative algebra in motivic spectra corresponding to (Z3)™(e)[2e]g,£*¥™), or in other words
(Z;yn)s = u(Z;yn(o)po]S,gSy“).

We further define Z3"(n)s := (Z3™)s(n). When S is clear from the context, we shall omit it from the
notation. We also denote F)Y" := ZY" ®z, F,, (the tensor product being derived, of course).

Remark 3.6.3. One can view “syntomic cohomology” as a cohomology theory or as a motivic spectrum.
These are morally similar but the latter is a more refined piece of structure, and we distinguish them by the
font, with boldface indicating syntomic sheaves and blackboard-bold indicating the corresponding motivic
spectra.

The most important property of Z;y“(n) s from our perspective is that it comes equipped with a natural
isomorphism
(Zy"(n)s)o = 2" (n)s;
in other words, the cohomology theory represented by Z;Y"(n)s is the restriction of absolute syntomic
cohomology with n*® Tate twist to smooth S-schemes.
Syntomic cohomology is an “absolute” cohomology theory for schemes, not restricted to any specific base.

This claim has a motivic refinement. Namely, Z3™ (n)g is the S-component of an “absolute motivic spectrum”.
We shall only consider the incarnation of this fact for individual morphisms.

Proposition 3.6.4. Let f: S — T be a morphism of qcqs schemes. Then there is a canonical isomorphism
FH(Z™ (n)r) = Z7 ().

Proof. Since f* intertwines the Tate twists, it suffices to treat the case n = 0. Let (ZY"(e)[20]7, ™) be the

Pic-oriented graded algebra from and similarly for S. First, we shall construct a canonical
isomorphism
(f7)P (25" (@) 207, E77) = (Z5™ (o) [20] 7, £77). (3.6.1)

By definition, f*Z;"(n)r is constructed by applying the following sequence of operations:

(1) Left Kan extension from smooth T-schemes to all (qcgs) T-schemes. Let us denote the inclusion of
smooth T-schemes into all qcgs T-schemes by p: Smp — Schy, and the relevant left Kan extension
of presheaves by 4, with right adjoint u*.

(2) Restriction to smooth S-schemes; note that every smooth S-scheme acquires the structure of a qeqs
T-scheme via f.

(3) Nisnevich sheafification.
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Let Z;y“(O)[%] be the absolute syntomic cohomology complex, regarded as a sheaf of commutative graded
algebras on qcgs schemes. Then Z;Y" (e)s[2e] is obtained from Z" (e)[2e] by restriction to smooth S-schemes,
and similary for 7. The counit of the symmetric monoidal adjunction py 4 u* is a natural transformation

e Zy" (o) [20] =2 g™ (Z)" (@) [20][schy ) — Ziy" (@)[20]|schr (3.6.2)

which restricts to a map
(s Z™ ()r(26) lsms — Z™ (#)[20]lsms = Z57(o)s[20]. (3.6.3)

We want to show that is an isomorphism; since both sides are Nisnevich sheaves, it suffices to assume
that T, S are affine and that is an isomorphism. As that arises as restriction from (3.6.2)), it suffices
to show that the latter map is an isomorphism, which means in other words that syntomic cohomology for
qcgs T-schemes is the left Kan extension of its restriction to smooth T-schemes. For T' = Spec Z, this is
[BL22l Proposition 8.4.10], but the proof applies to an arbitrary affine base.

To construct (3.6.1]), it remains to verify that f* carries the Pic-pre-orientation & to £&™; this would
follow from the functoriality of the first Chern class ¢ : Pic — Z3™(1)[2] in arbitrary maps of qcgs schemes.
In turn, this functoriality follows by Zariski descent from the affine case, where it is part of the definition of
¢ in [BL22, §7]. This completes the construction of (3.6.).

Now, recalling that 7g: MS?X — MSg is the left adjoint to the inclusion, we have

* (r7Syn (1r\/) *\ lax syn syn
f (Zpy )T :TS(f ) V(Zpy (.)[2.]T7 Ty )

2 ﬂ syn
=rsv(f7)PN(ZE" (o) 20)7, &77)

(3) "
%TSV(ZZVH(O)[Qo]S, )
(4 (5)
=75(Z)")s = (Z)")s,
where the isomorphisms are explained as follows:

(1) is direct from the definitions of (Z3¥™)r and f* (cf. (3.2.4)),

)
(2) is the commutativity (3.5.8]),
) is (E6.1),
) is by definition of (Z")s, and
(5) follows from the fact that (Z3'")s already belongs to MSg C MSEx,
This completes the proof. (|

3.6.2. Motivic cohomology. Our next goal is to explain how the motivic cohomology spectrum arises from
an oriented graded algebra. This will be done by running the machinary of in reverse. The
task is easier over a field of characteristic zero, and since this is the only case we need, we only consider this
generality.

Let K be a field of characteristic 0. Voevodsky defined the Eilenberg—MacLane spectra in [Voel(], thanks
to which we have the p-adic motivic cohomology spectrum Z;“Ot € SHx. We want to upgrade it to a Pic-
oriented graded commutative algebra (Z3'°*(e)[2e],£m°") € ComAlgf;.(CE). To achieve this, we will promote
Zg“’t into a Pic-oriented graded algebra in SHx C MSg in the following sense.

Definition 3.6.5. A Pic-oriented graded algebra in MS is a graded algebra E, € ComAIg(MSE) together
with a map ¥ Pic — F; such that its restriction along Z°P! — > Pic is a P'-orientation of E, in MSg.

The forgetful functor (—)g: MSk — Cx induces a functor
(-)g": ComAlgg (MSE) — ComAlg;. (CR).

Our strategy is to construct the Pic-oriented graded algebra Zg“’t(o)[Qo} as the image under (—)&" of a
Pic-oriented graded algebra Z;“Ot(o)[Zo] in SHx € MSgk.

We will realize Z:'°"(e)[20] as the associated graded for Voevodsky’s slice filtration [Voe02, §2] on the
motivic K-theory spectrum. First, we need to recall some aspects of the formalism of the slice filtration.
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Define F=2 SHx C SHg to be the full subcategory generated under colimits and shifts from objects of the

slice

form XX for X € Smg. Then for all n € Z,
>n SHK (EOOP1)®TL ® F

sllce

O SHp .

slice

This defines a Z-indexed filtration by full stable subcategories closed under colimits and compatible with
the symmetric monoidal structure, i.e.,

| SHy — F2U SHy .

slice

SHK ®F

sllce slice

It follows formally that there is a symmetric monoidal functor f>e: SHx — Fil(SHg) (the target being the
oo-category of Z-filtered objects in SHg) such that f>; is the coreflection of SHx onto SH>,;(K), i.e., f>;
is right adjoint to the embedding SH>;(K) C SHg. For X € SHy, we further denote by f<;X € SHg the
cofiber of the counit map f>;+1.X — X, and by f; X € SHg the cofiber of the map f>;,11X — f>;X. Hence
for the associated graded functor gr: Fil(SHg) — (SHx )%, we have

gr(f>eX @an € SHZ

nez

Let KGL € ComAlg(SH ) be the p-completion of the Al-invariant algebraic K-theory spectrum [AT22h].
Recall that S™°' denotes the motivic p-adic sphere spectrum. Voevodsky proved in [VoeO3a] (in the setting
that K has characteristic zero) that

FoS™O" = foKGL = 7ot (3.6.4)

as commutative algebras in SHy. Using the Bott periodicity isomorphism KGL(1)[2] 2 KGL, we obtain that
the associated graded algebra of f>4KGL is given by

gr(f>eKGL) 22 ZI™(e)[20] € (SH)?. (3.6.5)
Note that this identification holds for all e € Z. Restricting to the non-negative part of the grading, we
obtain an identification

gr(f>eKGL) = Z%(e)[20] € (SHx)N (3.6.6)
of N-graded motivic spectra. The LHS has a tautological commutative algebra structure induced by that
on KGL, which restricts to the isomorphism (3.6.4) of commutative algebras in degree 0. Henceforth, by
gr(f>eKGL) we meant this N-graded commutative algebra. We may therefore transfer the commutative
algebra structure to the RHS, to view Z'**(e)[2¢] € ComAlg((SHx)N).

As explained in [AHI24| §6], there is a canonical map 8: ¥°° Pic — f>1KGL, which turns f>4KGL into a
Pic-oriented filtered algebra in SHy in the sense that after restriction along the map P! — Pic, the resuling
maps

fZiKGI— — HOT)’LSH(F) (Zool:)l) f2i+1 KGL) = f2i+1 KGL(—l)[—Z]
(where 3°°P! refers to the image in SHy ) are all isomorphisms. Passing to the associated graded algebra
of the filtration, we thus obtain a Pic-orientation &: X Pic — Z°*(1)[2] of Z***(e)[2e].

Definition 3.6.6 (Motivic cohomology as an Oriented Algebra). Let K be a field of characteristic zero.

We define the oriented graded algebra (Z1°*(e)[2e],£™°") € ComAlgf;.(CK ) be the image of (Z*(e)[2e], &)
under the functor (—)8": ComAlgh; (SHY) — ComAlgh,.(Cr).

By design, this oriented graded algebra models motivic cohomology.
Proposition 3.6.7. We have
V(ZP (o) 20], €)= 2"
in ComAlg(SHg).

Proof. Since (Z;°*(e)[2e],£™") = (Z'°"(e)[20],£)§", the claim follows from |Corollary 3.5.9) (where (=)o is
denoted Q22°). O

Remark 3.6.8. The map £™°': ¥ Pic — Z°*(1)[2] decomposes as X Pic — Pic — Z1'°*(1)[2] where
the first one is the canonical map coming from the fact that Pic is a sheaf of spectra and the second map is

~

the p-completion and shift of the classical isomorphism Z™°¢(1)[1] & G,,.
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4. PERFECTOID NEARBY CYCLES

Let & be a rank-one p-adic perfectoid valuation ring, which we moreover assumﬂ can be written as a
p-completed filtered colimit & = (@n Oy);,, where 0, is a local finite Z,-algebra. Let K := &[1/p] be the
fraction field of & and k be the residue field of &.

Example 4.0.1. The main example of interest to us is & = Z;Y°, in which case we may for example take
On = Zp|ppn].

In this section we define a functor ¥: SHxg — MS;, whose form is reminiscent of the nearby cycles
functor. (This ¢ in fact arises as the restriction of a functor MSx — MS, to SHx C MSk.) We will see
that, thanks to certain miraculous properties of perfectoid rings, this functor is well-behaved, and carries
motivic cohomology (as a motivic spectrum over K) to syntomic cohomology (as a motivic spectrum over
k). One significance of this fact is that it will eventually allow us to transport knowledge about the motivic
Steenrod algebra from characteristic 0 to knowledge about the syntomic Steenrod algebra in characteristic p,
the latter of which is a priori mysterious. In characteristic 0, the motivic Steenrod algebra was calculated
by Voevodsky [Voe03bl [Voel0], and through 1 this will give our initial traction on the syntomic Steenrod
algebra.

Remark 4.0.2. Some of our results in this section are similar to some results discovered independently by
Bouis—Kundu in the recent paper [BK25|. The technical arguments appear to share some similarities, which
we have not attempted to analyze in detail.

By combining [BK25| with forthcoming results of Bachman—Elmanto-Morrow on motivic cohomology in
mixed characteristic, it should be possible to “descend” our results to the motivic level. A more precise

statement is made in [Remark 4.3.4] below.

4.1. The functor. We define the (lax symmetric monoidal) functor
V: SHx — MSe (4.1.1)

as the composition of the (lax symmetric monoidal) functors
U: SHy = MSk 25 MSy 25 MS,
from §3.2.5] (3.3.3), and §3.4] respectively.

Remark 4.1.1. We emphasize that although L factors through MS?, we are forgetting back down to
MSg in the definition of W. (Later, we use the notation L4 for étale sheafification without forgetting back
down to the Nisnevich topology.)

Remark 4.1.2. The definition of ¥ could have been made starting over a general extension K/Q,, but it
would not behave well in general. The highly ramified nature of the perfectoid field K is needed for ¥ to
have good properties, a phenomenon that can be traced back to observations of Niziol in [Niz98|. We do
expect the analogous definition to behave well whenever & is a perfectoid valuation ring over Z,.

Consider the closed embedding ¢: Spec k < Spec €. We define the (lax symmetric monoidal) functor
¢Z SHy — MSk (412)
as the composition of ¥ with i*: MSg — MSy.

Remark 4.1.3. The definition of i resembles that of the p-adic nearby cycles, except we have not base
changed to an algebraic closure of K as we would do for the formation of nearby cycles. That this construction
behaves well relies crucially on the perfectoid nature of K (and that we are taking p-adic coefficients). A
related phenomenon appears in [BMS19, Theorem 10.1]El

Over the rest of the section, we will investigate the properties of this functor when evaluated on motivic
cohomology (viewed as a motivic spectrum via [Definition 3.6.6). In particular, the goal of this section is to

construct an isomorphism

G((ZP) k) =2 (Z™) € MSy, .

15T his assumption is likely superfluous, and should be removable using forthcoming work of Bouis—Kundu [BK25| and
Bachmann—-Elmanto-Morrow [BEM|
16Although the result there is stated with C' algebraically closed, it is not necessary for the proof.
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Remark 4.1.4. The functors ¥ and @ are each compositions of the functors considered in all of which
are compatible with the Tate twist in the obvious way. Hence we have (compatible) isomorphisms of functors
(=(n)) = ¢(=)(n): SHg — MSy

for all n € Z, and similarly for .
4.2. “Local constancy” of syntomic cohomology. Our first goal is to show that the functor ¥ carries
the motivic cohomology spectrum over K to the syntomic cohomology spectrum over ¢, or more precisely
to construct an isomorphism

\I/((Z?Ot)K) = (Z)")e € MSg . (4.2.1)
We will do this by comparing the oriented graded algebras (Z:"(e)[2e]s, %) and (Z)°(e)[20]x,£™°%). In
fact, rather than comparing them directly, we shall compare each with the oriented graded algebra computing
p-adic étale cohomology.

4.2.1. Etale comparison for syntomic cohomology. Let Zf,t (n)k = @N u?ﬁ, regarded as an étale sheaf on

smooth schemes over Spec K. There is an obvious commutative algebra structure on €, . Zf,t(n) K, which
we shear to obtain a commutative algebra

Zf;t(O)[%}K = (Zit(n)[2n]K)neN € ComAlg( P4 (Smg; Sp)N).

The first Chern class for étale cohomology of BG,, equips ZS(e)[2e]x with an orientation, promoting
Zzé,t(O)[QO]K to an object of ComAlgp; (P (Smy; Sp)N).

Proposition 4.2.1 (Bhatt-Lurie). There exists a canonical morphism of étale Pic-oriented graded algebras

over O,
Yor: (Z3"(0)[20) 6, €37) = (25 (9)[20] k,€) € ComAlgf;. (Pt (Sme; Sp)N).
Proof. This follows from the étale comparison morphism of Bhatt—Lurie [BL22] Theorem 8.3.1]. |

4.2.2. FEtale sheafification of motivic cohomology. Let us write
ﬁétl gZNiS(SmK; Sp) — :@ét(sm[(; Sp) (4.2.2)

for the étale sheafification functor. Note the distinction from Ly, which is the composition

Pris(Sm; Sp) —2 P (Smc; Sp)

forget
N) et |

Pris(Smg; Sp)

Next we use that the étale sheafification of p-adic motivic cohomology is p-adic étale cohomology. Such
statements were initially proved by Suslin—Voevodsky [SV00], and reproved by Geisser—Levine in [GLO1], but
we want to invoke a more structured version involving the commutative algebra structure on @, ., Zp**(n)[2n]x
constructed in (3.6.2)), that does not seem to have been established in the literature until [BEM]. More pre-

cisely, [BEM| Proposition 6.5] implies that
Let(Z7°(0)[20] , €M) == (fo(n)[Qn]K,ﬁét) € ComAlgh, (Pe(Smy; Sp)N). (4.2.3)
Now, we have a Beck—Chevalley comparison map

, ,
5 Leeu (Z0(0)[20]10, €)= JuLen (Z0(0)[20]10, %) "2 j(ZE(0)[20], E).

4.2.3. Upshot. In summary, we have a diagram of solid arrows in ComAlgp;. (P (Sme; Sp)),
Leej (2 (o) [20], €M) (4.2.4)

T
ié

(Zn(0)[20],€57) — " . (251 () 28], 6)

Our next goal is to construct the dashed isomorphism in (4.2.4), making the triangle commute. This will
require some preparations.
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4.2.4. Beilinson’s t-structure on graded objects. Recall that if C is a stably symmetric monoidal co-category
with a compatiblﬂ t-structure 7=*, then the oo-category CN (of N-graded objects in C) inherits a symmetric
monoidal t-structure Tg.Sr* with

T (X0, X1,...) = (75" X0, 75" Xy, TS T X, ).

This is a graded version of Beilinson’s ¢t-structure [Bei87], and we shall therefore refer to it as the Beilinson
t-structure on CN.

Example 4.2.2. For a qcgs scheme S, the co-category P« (Smg; Sp) of étale sheaves of p-complete spectra
admits a canonical t-structure for which % is connective (i.e., concentrated in non-positive degrees) if
and only if .% /p is connective as an ordinary sheaf of spectra. This induces a Beilinson t-structure on
Pet(Smyg; SP)N~

We will start by constructing the dashed arrow in (4.2.4)) at the level of commutative graded algebras,
ignoring the pre-orientations. At this level, we may regard the objects as lying in P (Smg; Sp)N with the

t-structure of [Example 4.2.2] and we will show that both maps s and § from (4.2.4)) identify their respective

sources as the connective cover of Zf,t(O) [2e]; this will show in particular that they are canonically isomorphic
to each other.

4.2.5. The map e 18 a connective cover. We begin by focusing on the map g from ((4.2.4]).

Proposition 4.2.3. The map
Yer: Z3"(0)[20] 5 — .25 (@)[20] i
exhibits Z3"(e)[20] 5 as the connective coveﬁ of juZs (e)[20] in Per(Smyg; Sp)N, with respect to the t-
structure of [Ezample 4.2.2 In other words, for every n € N the étale comparison map induces an isomor-
phism
Yeedn}t: 2P (n)e = TS"j*Zzéf(n)K € P (Smg; Sp). (4.2.5)

Proof. Using the definition of the Beilinson ¢-structure and the universal coefficients cofiber sequence, the
assertion can be checked after reduction modulo p. Hence, it suffices to prove the analogous question with
F, coefficients instead: the ¢tale comparison map e {n}: F3™(n)o — j.(F5(n) k) induces an isomorphism
F"(n)e = TS"j*(FIéJt(n)K).

Since all the sheaves in question are cohomologically bounded below, hence hypercomplete, we can check
both properties on the stalks. Let X € Smg, and let € X with strictly Henselian local ring R := (’)3?736.

Note that by , we have
J«(Fy(n) i) (Spec R) 2RI (Spec R[1/p]; u&™).
Then it would suffice to show that the étale comparison map
Yet{n}: Rlsyn(Spec R; Fp(n)) — Rl (Spec R[1/pl; pus") (4.2.6)
induces an isomorphism
RTgyu(Spec R; Fy(n)) = 75"RIg (Spec R[l/p];uff”).
If x lies over the generic point Spec K of Spec &, then the result follows from the observations that

o ¢ {n} is (tautologically) an isomorphism for schemes over Q,, and
e RIs(Spec R;p") is concentrated in degree 0 (as R is strictly Henselian).

Assume next that x lies over the special point Spec k. By [AMMN22] Theorem GJ, the cohomology groups
of RT'syn(Spec R; Fp(n)) are supported in cohomological degrees < n. By [BM23| Theorem 1.8], the map
induces an isomorphism on cohomology groups in degrees < n — 1, and an injection in degree n. It
therefore suffices to show that it is surjective in degree n. By the Bloch-Kato type isomorphism of [LM23]
Theorem 3.5], the target is generated by products of cohomology classes in degree 1, so we are reduced to
the case n = 1, where we want to show that the map

Yer{1}: HLL (Spec R; F,) — Hi, (Spec R[1/p]; up) (4.2.7)

syn

17meaming that the tensor product of connective objects is connective

I8«connective cover” means equivalently the truncation 7=0
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is an isomorphism. By the Kummer sequence and the definition of v {1}, (4.2.7)) identifies with the map

R* ®z Z/p — R[1/p]* ®z Z/p. (4.2.8)
induced by R C R[1/p]. By construction, R is a filtered colimit of smooth -algebras along étale maps, or
in other words R is essentially smooth over €, so we reduce to the following Lemma (taking @ = p). |

Lemma 4.2.4. Let R be an essentially smooth local algebra over a perfectoid valuation ring O, with uni-
formizer w. Then the map

R* ®zZ/p — R[l/w|”* @z Z/p
s surjective.

Proof. Let p be the maximal ideal of &’; we shall use the same notation for its extension to a prime ideal of
R.

Claim: the localization R, is a valuation ring, with the same value group as ¢'. Granting the claim for now,
let us see how to finish the proof. Since R is essentially smooth, it is normal, so we have R = R, N R[1/w],
hence

R* = RS NR[1/w]*.

This implies that the obvious map

R[1/@]*  Rp[l/=]

R< RS

p
is injective, and it is surjective by the claim, so it is an isomorphism. In other words, the cokernel of the
map R* — R[1/w]* is isomorphic to the value group of R,. But the claim asserts that this value group is
isomorphic to the value group of &, and the latter is p-divisible since & is perfectoid [Sch12l, Lemma 3.2], so
it vanishes modulo p. Thanks to being an isomorphism, this completes the proof up to establishing

the claim, which we do next.

For this, we present R, = ligi R; as a filtered colimit of localizations of smooth £-algebras along étale
transition maps (with each R; being local). By the structure theorem for smooth maps, R; is a localization
of an étale algebra over a polynomial ring O[T, ..., T,],. If the claim is granted for O[Th,...,T,],, then
by [Sta24, Tag 0ASF, specifically Tag 0ASJ], each R; is a valuation ring and the transition maps induce
isomorphisms on value groups. Hence we have reduced to the case R, = O[T1,...,T,],. In that case, from

direct inspection of the definitions we see that R, is a valuation ring for the valuation induced by the “Gauss
norm” on O[T1,...,T,],

(4.2.9)

I XI:GJTIH = m}aX|a1|,
which clearly has the same value group as @¢. This establishes the claim, which completes the proof. O

4.2.6. The map § is a connective cover. Next, we consider the comparison map ¢ from (4.2.4). We shall
similarly show that it is a connective cover.

Proposition 4.2.5. The map
0: Leoj<(Zy* (0)[20] k) = ju(Z5) (o)[20] k)
exhibits Lej.(Z°(e)[20] k) as the connective cover of j.(Z5(e)[20]x) in Per(Smg;Sp)N, with respect to
the t-structure of [Ezample 7.2.3 In other words, for every n € N it induces an isomorphism
Leeju(Z7(n) ) = 75"5,(Z8(n) k) € Pe(Smig; Sp). (4.2.10)

Proof. According to the Beilinson—Lichtenbaum Conjecture proved by Voevodsky, for smooth Y/ K we have
a natural isomorphism (cf. [HWI19l §1.4])

Fyot(n)lyg., = 7" (Ruapd™) (4.2.11)

where v: Yz — Y7z, is the change-of-topology map between the small étale and small Zariski sites of Y.
As in the proof of [Proposition 4.2.3| in order to prove that (4.2.10) is an isomorphism we may reduce to
F-coefficients and check the claim at stalks along R := 03?,95 for all X € Smg and z € X.

By (£.2.11)) j.(F}*°*(n)x) is given by
(j*Fg“Ot(n)K)(U) =~ RIz..(U[1/p]; TS"(RV*;L?")) for all U € Xza,. (4.2.12)
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Taking the colimit of the isomorphisms (4.2.12)) over étale neighborhoods U of x € X, we obtain a commu-
tative triangle

(3 Fpt(n) i) (X 2) RI'z.:(Spec R[1/p); 7<"Ruspd™) (4.2.13)

\ /

RT¢(Spec R[1/p]; u5™).

The map from right-to-bottom in (4.2.13) clearly becomes an isomorphism after applying the truncation
functor 7<", and we want to show that it induces an isomorphism

RI'z.:(Spec R[1/p]; TSRRV*LLSn) =5 7="RT¢(Spec R[1/p]; u?"). (4.2.14)

For this, it suffices to show that the source of the map is already cohomologically bounded by n. By the
hypercohomology spectral sequence

H},,(Spec R[1/p); R7v,p$™) = Hy"! (Spec R[1/pl; Rups™)
this follows from the next Lemma. |

Lemma 4.2.6. Let X be a smooth €-scheme and let x € X with strict Henselization R := (’)As,?’z. Then for
all 7 <n and all i > 0 we have

Zar(Spec R[1/pli RIv,pf™) = 0. (4.2.15)

Proof. The proof will be carried by reduction to the case of smooth schemes over a discrete valuation ring
rather than over a perfectoid base. Recall that we assumed that & could be presented as a filtered colimit
0 = (lim 0,)), where 0, is a finite extension of Z,. Let &' := J,, €,. By [Tan24a, Corollary 1.4], the

p ?
map 0" — 0 is ind-smooth. Hence we may write any smooth R/& as a filtered colimit

R=1lmR
% m

where each R, is an essentially smooth local algebra over &,,. This presents Spec R as a cofiltered inverse
limit of qegs schemes with affine transition maps, hence by [Sta24, Tag 03Q4] the natural map

hﬂHiZar(SpeC Rm[l/p]7 R]V*N’];@n) — H%ar(SPEC R[l/p],RjI/*/J,?n)

is an isomorphism. Since R,, is an essentially smooth local algebra over the discrete valuation ring &,
[LM23| Lemma 4.2(i)] applies to say that for ¢ > 0 and j < n each of the terms in the filtered system on the
LHS vanish. Hence their colimit vanishes, completing the proof. ([

Corollary 4.2.7. There is a um’quﬁ isomorphism Z"(e)[20]p = Leij« (2" (8)[20] k) of commutative
graded algebras in P (Sme; Sp)N, together with a commutative triangle

Lo (Z0 (o) [20] ) . (4.2.16)

lzs

250 (o) 2] — = 1. (25 (#)20]10)

Proof. We have already constructed § and v as maps of commutative graded algebras in ComAlg(Z¢ (Sme; Sp)N).
By [Proposition 4.2.3land [Proposition 4.2.5, we have identifications of both Z:" (e)[2e] 5 and L j. (Z;ﬂot (e)[20] )
with the connective cover of j.(Z:'(e)[2e]x) for the Beilinson t-structure of at the level of
underlying N-graded sheaves of spectra (i.e., forgetting the commutative algebra structure). The connective
cover of a commutative algebra inherits a unique commutative algebra structure, making it universal among
maps from connective commutative algebras. Thus,  and - automatically identify their respective sources
with this connective cover, as objects of ComAlg(Z(Smg; Sp)N). O

19Up to contractible space of choices, as usual.



33

4.3. Matching the Pic-orientations. By pushing down the isomorphism of Corollary down to the
Nisnevich site, we obtain an isomorphism

Z37" (0)[20] = Lewjie(Z3* () [20] ) € ComAlg(Pnis(Sme; Sp)™). (4.3.1)

In order to promote this isomorphism to the level of motivic spectra, it remains (by the construction of
Zy™ and Z;“Ot as motivic spectra in i) to show that this isomorphism is compatible with the respective
Pl orientations. In fact, we even have compatibility with the Pic-orientations.

Proposition 4.3.1. The isomorphism (4.3.1) carries the Pic-orientation {¥" of Z:3Y"(e)[2e]4 to the Pic-
orientation £ of Leij«(Zp°" (e)[26]k); in other words, it gives the desired commutative triangle (4.2.4)).

Proof. Let &' be the image of £ under (4.3.1]), so that we wish to prove that £ = £™°%. By the construction
of €% we have §(£™m°%) = ¢ while by the defining property of the Bhatt-Lurie comparison map 7 we have
§(€") = 75 (€M) = ¢°t. Hence the images of the Pic-orientations & and £™°* under the comparison map
8¢ Legju (Zot (o)[20] ) — j.(Z5'(o)[20] ) agree. To conclude, it remains to show that the map ¢ is injective
on homotopy classes of pre-orientations, i.e., we have an injection

Home,, (X*° Pic, Létj*(zgl()t(l)[Q]K)) — Homg, (X Pic, fo(l)[Q]K).
Using [Corollary 4.2.7] we can identify this map with the map

ve{1}: HZL (Pice; Z,) — B2 (Pick; Zy)

syn

where the tilde indicates reduced cohomology. Since the map 7 is a map of Pic-oriented theories, we have
a commutative square

HO0 (Spec O; Z,) — H2L (Picy; Zy)

syn syn

i%t{o} J{’Yét{l}

HY%’(Spec K;Z,) — H2' (Pic; Zy).

Since v¢{0} is clearly an isomorphism, it would suffices to show that the horizontal maps are isomorphisms.
To see these, note that by [BL22, Theorem 9.3.1] (applied to BGL; = Pic) we have

o
H35 (Pico: Z,) = (DR 7" (Spec 03Z,),
n=1
and it is classical (and follows) that a similar result holds for étale cohomology. All the terms with n > 1

vanish for degree reasons, and the projection to the first summands are precisely the horizontal maps in the
square above, proving the result. O

Thanks to |Proposition 4.3.1) the isomorphism (4.3.1) promotes to an isomorphism of Pic-pre-oriented
(hence a fortiori also of P!-pre-oriented) commutative algebras,

(Z3"(o)[20],€7) = LE" (2" (o) [20] 1, €™°) € ComAlgpi (CF). (4.3.2)

€

Corollary 4.3.2. The functor U carries the motivic cohomology object (Zg“’t)K € ComAlg(SHg) to the
syntomic cohomology object (Z;Y") s € ComAlg(MSp):

V(2 k) = (Z5™)o € ComAlg(MS,).

Remark 4.3.3. Note that this implies that W(Z;*"(n)x) = Z¥"(n)e for all n € Z, by the compatibility of
¥ with Tate twists (Remark [4.1.4)).

Proof. Straight from the definitions of ¥ and of motivic cohomology as a motivic spectrum (cf.
tion 3.6.6)), we have

V(Zy™) k) = Leejsv(Zy' (o) [20] 5, €™") := To L& j.v (2 (9)[20] . €™") (4.3.3)
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where 75: MSE* — MSg is from (3.2.7) and v: ComAlgp, (CY) — ComAlg(MSs) is from (3.5.3). Then we
rewrite this as

N mo mo (ri/) or - mo mo
V((Zy) k) = To L& j-v(Zy " (o)[20] i, £7) = Tov L . (Z7 (o) [20] k, €7)

2) \ ,
= Tov(Z3" (0)[20] 6, )

ﬁ
1

= To (Z;yn)@’

= (Z;yn)ﬁ

—
Nz

where:
(1) is the compatibility of v with pushforward (see (3.5.10)) and étale sheafification (see
and (B5.11)).
is the definition of Z;Y" as a motivic spectrum (cf. [Definition 3.6.2)).
is because Z;yn is already in MSs C MS?".

~ o~~~
= W N
NN

O

Remark 4.3.4. We can contemplate the “motivic descent” of the functor ¥, defined similarly but without
étale sheafification:

UMt SHy < MSx 255 MS, .

By combining [BK25| Corollary D| with [Bou24] and forthcoming results of Bachman—Elmanto-Morrow on
motivic cohomology in mixed characteristic, it should be possible to prove that W™°*((Zy°*) k) = (Zy°*) 5 €
ComAlg(MS4), and that étale sheafifying this identity recovers At present, even the meaning
of the object “(Z;?Ot)ﬁ” is somewhat ambiguous, as there are multiple approaches to motivic cohomology

which do not obviously agree in this (non-noetherian, mixed characteristic) setting; we understand that this
is one of the issues which is addressed by and [BEM].

4.4. Restriction to the special fiber. Consider the closed embedding i: Spec k — Spec &. Recall that
we defined the (lax symmetric monoidal) functor

as the composition of ¥ with *: MSs — MSk.

Corollary 4.4.1. The functor v carries the motivic cohomology object (Zg“’t)K € ComAlg(SHg) to the
syntomic cohomology object (Z;Y") € ComAlg(MSy):

w((Zg‘Ot)K) = (Z")1 € ComAlg(MSy,). (4.4.2)
Furthermore, for all n € Z, we have
w((Z;n"t(n))K) = (2" (n)x € MSy . (4.4.3)

Proof. gives an isomorphism
BUZE) ) 2 B((Z) ) = i* (Z57) 5 € ComAlg(MS))

and [Proposition 3.6.4] gives an isomorphism

*(Z™) 6 = (Z™), € ComAlg(MSy).

Composing these gives the isomorphism (4.4.2). Then (4.4.3) follows from compatibility with twisting,
Remark {14 O



35

4.5. Technical properties. We record the following technical result, which will be needed later.

Lemma 4.5.1. Suppose {an,} and {b,,} are two sequences of integers with lim;, oo a4y = 00. Then, with
F?Ot € SHg denoting the motivic cohomology spectrum over K, the natural assembly map

P v(EF) [am] (bn) — @ (EB Fpet [am](bm)> (4.5.1)

is an isomorphism in MS¢, and the natural assembly map

@ w(Fgwt)[am](bm) =Y (@ FZIOt [am](bm)> (4.5.2)

is an isomorphism in MSy.
Proof. By definition, w is the composition SHg LN MSg =, MSy. Since i* is a left adjoint, it preserves all
colimits. Therefore, (4.5.2)) being an isomorphism follows from - being an isomorphism.

In turn, ¥ is defined as a composition SHx < MSgk ELN MSes Lev, MS4s. The functor SHig — MSgk
preserves all colimits (7 as does j,. (Proposition 3.3.1)), so the crux is to control Letm In general, for
a collection of motivic spectra {E,, € MSg}, there is an assembly map

B LeEn) > L (@Em> S, 453)
exhibiting the RHS as the étale sheafification of the LHS. In the case at hand, we have E,, := j,.Fy°*[a,](bm),
so the LHS of (4.5.3)) is identified by [Corollary 4.3.2| with

@ Lét (Em) = @ F;yn [anL] (an)ﬁ (454)

m

To show that (4.5.3) is an isomorphism, we will argue that (4.5.4) already satisfies étale descent. For this,
it suffices to see that the natural map

B F " amlbm)o = [[F" [am])(bm)eo (4.5.5)
m m

is an isomorphism, because the RHS satisfies étale descent (as limits preserve the sheaf property). By
[Proposition 3.2.10} it suffices to show that the map is an isomorphism when evaluated on any smooth
scheme X over ¢ (as any additional Tate twist can be absorbed into the formulation by shifting the b,,’s).
Since affine schemes form a basis for the Nisnevich topology, it suffices to consider the case where X is affine.
Then the assertion that it is an isomorphism can be checked in each fixed cohomological degree, where (using
the fact that evaluation of Nisnevich sheaves on X preserves infinite direct sums by it becomes

the statement that
S R I

m
is an isomorphism for every i € Z. But by Proposition 2.3.3 and the assumption that lim,, s @, = 0o, for
each fixed ¢ all but finitely many of the factors H;;,“I‘fm’bm (X) vanish, so this is clear. O

5. CATEGORIES OF SYNTOMIC SPECTRA

One of the motivations for Drinfeld’s and Bhatt—Lurie’s “stacky” approach to prismatic cohomology was
to define appropriate categories of modules for prismatic (resp. syntomic) cohomology. We are interested in
the generalization of this problem for spectral syntomic cohomology. We will develop a different approach, of
which this section constitutes the first step. We will apply some general categorical constructions to MSg in
order to define certain module categories for spectral syntomic cohomology, or what we call syntomic spectra
in short.

5.1. Module categories for cosimplicial commutative algebras. Let C be a symmetric monoidal co-
category. For R € ComAlg(C), we can form the co-category of modules Modg(C).

20Here it matters that we defined Ly as (1) étale sheafification followed by (2) forgetting back down to the Nisnevich
topology, cf. Remark Step (1) preserves all colimits, being a left adjoint, but step (2) does not.
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5.1.1. Cosimplicial modules. When C is presentablﬂ there is a straightforward generalization of Modg(C)
to diagrams of commutative algebras in C, and in particular for cosimplicial diagrams.

Definition 5.1.1. Let A be the simplex category, with objects [n] := {0,1,...,n} for n € N. Let C be
a presentably symmetric monoidal co-category and let R, € ComAlg(C)® be a cosimplicial commutative
algebra in C. We denote
MOdR. (C) = ]{El MOan (C)
[n]eA
Concretely, an object of Modg, (C) consists of a system of modules {M,, € Modg, (C)}{njea together with
compatible isomorphisms M,, ®g, R,+1 = M, 11 for each of the face maps [n] — [n + 1].

Example 5.1.2. If R, is the constant cosimplicial diagram on R, then we obtain a natural equivalence
MOdR(C) = MOdR. (C)

5.1.2. Lax cosimplicial modules. We now define a lax variant of cosimplicial module categories.

Definition 5.1.3. With A, C, and R, as in|[Definition 5.1.1} let C* := Fun(A, C), endowed with the pointwise
A

symmetric monoidal structure. We define Modg, (C*) to be the laz limit of the diagram [n] — Modg, (C).
Concretely, objects of Modp, (C*) consist of systems of modules {M,, € Modg,, (C)}njea together with
compatible comparison maps M, ®g, Rn4+1 — M,4+1 which are not required to be isomorphisms.

Remark 5.1.4. Since the morphisms in the diagram [n] — Modg, (C) are all colimit-preserving, the limit
is a lax symmetric monoidal colocalization of the lax limit, hence we have a lax symmetric monoidal limit-
preserving functor

Ugr: Modg, (C®) — Modg, (C) (5.1.1)
whose left adjoint is the embedding of the objects for which the comparison maps M,, ®gr, Rp+1 = Mn11
are all isomorphisms.

We are interested in the following type of examples.

Example 5.1.5. For R € ComAlg(C), we obtain a cosimplicial commutative algebra R® € ComAlg(C)? as
the coCech nerve of the map 1¢ — R:

R?:z(RER@R%R@R@R%-~)

Remark 5.1.6. The category of cosimplicial modules Mod pee (C2) is closely related to the construction of
synthetic R-modules (as developed in [Pst23]). Correspondingly, all our applications below could be seen as
a “synthetic” approach to the syntomic Steenrod algebra, but we will make no direct reference to this point
of view.

5.1.3. Functoriality. For a symmetric monoidal colimit-preserving functor ¢: C — D and R, € ComAlg(C)*,
the functor ¢ induces a canonical symmetric monoidal colimit-preserving functor C® — D?, and then a
functor
¢: Modg, (C®) — Mody(r,)(C?),
which restricts to a functor B
¢: Modg, (C) — Mody(r,)(C). (5.1.2)

Indeed, since ¢ commutes with relative tensor products, the comparison maps for ¢(M,) are identified with
the image of the comparison maps for M, under ¢, hence remain isomorphisms.

Now suppose that ¢ is only lax symmetric monoidal (and not necessarily colimit-preserving). Since module
categories are natural in lax symmetric monoidal functors, we still have an induced functor

¢Modp, (C*) — Mod (g, )(D™)
between the lax limits, and we can now define:

~ U
¢: Modpg, (C) < Modg, (C®) 4 Modyn, ) (D™) =225 Modyg, (D), (5.1.3)
recalling the last functor from (5.1.1). This ¢ agrees with (5.1.2) in case ¢ is symmetric monoidal.

2lor more generally, when C has geometric realizations of simplicial objects that distribute over its tensor product
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Remark 5.1.7. Note, however, that if ¢ is not colimit-preserving and symmetric monoidal, then é may not
be computed levelwise; in other words, for M, € Modg, (C) there is a natural map ¢(M,,) — qB(M)n which
is, in general, not an isomorphism. Unwinding the definition, we see that it is an isomorphism precisely
when [n] — ¢(M,,) satisfies the base change condition:

A(My) ®g(r,) P(Rns1) == (M, ®r,, Rny1)- (5.1.4)

5.2. Motivic Adams approximation. Recall that we denote by S™°* € SHx C MSk the unit of SH.
Let S™°" — ¢ be the tautological map of ring spectra in SHy. Taking the coCech nerve (Example|5.1.5)),
we obtain the cosimplicial commutative algebra in ComAlg(SHg )

S; = ( Fgmt JE— Fglot ® Fglot — F;not ® IE‘II;HOt ® F;not = ... )

Remark 5.2.1. Informally speaking, we think of S} as the “completion of S™°* along S$™°* — F;***”. The
necessity of working with S} instead of S™°t comes from the well-known issue that the motivic Adams spectral
sequence does not converge (unlike its classical counterpart). Instead, we manually replace the motivic sphere
spectrum by its Adams spectral sequence, in an appropriate sense.

5.2.1. Applying ¥, we obtain (since ¥ is lax symmetric monoidal) a cosimplicial commutative algebra in
MSg,

(sp) = ((U(FEPe) == V(P 0 FP) == W Rt o Fp) S - ) (5.2.1)
and then applying ¢* gives the cosimplicial commutative algebra in MSg,
Y(Sy) = ( YY) == Y(Fy*t 9 Fp') =3 (Fp' @ Fyt o iyt £ -+ ) (5.2.2)

5.2.2. More generally, any F € ComAlg(SH) is an algebra over S™° in a canonical way, hence can be

tensored with Fgwt to produce a cosimplicial commutative algebra in SHy,
Ey = ( EQF == EQF' F ' =S EQFy* @ Fyt @ Fp* = - ) (5.2.3)
We then obtain cosimplicial commutative algebras W(Ep) € MS, and 9(Ep) € MS;, as above.

5.3. Spectral syntomic module categories. Consider the module categories in the sense of Definition

B.LT}

MOd\I}(S;)(MSﬁ) and MOdw(S;)(MSk)-

5.3.1. Enhanced functors. We can now upgrade the functors ¥ and ¢ with variants that track the motivic
Adams approximations. First, recall that the recipe of (5.1.3) produces ¥: Modgs (SHx) — Mody ss)(MSg).

Definition 5.3.1. We let ¢/°"? and U be the compositions
enh (7)®S; 14
v : SHy —— Modg;) (MSK) — Modq,(sz)(MS@v)

and
¢ =i 0 UM SHe — Mody(ge) (MSy).

5.3.2. Evaluation on motivic cohomology. Our next goal is to analyze the object werh (F5°t(n) k) of Modyss) (MSg).
This will rely on certain facts about the dual motivic Steenrod algebra, which will also be of crucial impor-
tance later. Define the set

I ={(r,er,ir,...€1,01,€0) | 7 >0,i; > 0,¢; € {0,1},4;41 > pij + €5} (5.3.1)

By [HKOsrl7, Theorem 1.1], which in this characteristic zero situation goes back to Voevodsky [Voe(03bl
Voel()], we have a decomposition in SH,

Ft @gmor B0t 2 @ F 2 [pa](¢a) (5.3.2)
aES

where
r r

Do = Zej- + Z?z’j(p —1) and ¢, = Zij(p -1). (5.3.3)

=0 j=1
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Consequently, for any n > 1 we learn that (Fj'°*)®"*! is a direct sum of shifts of (Fj°*)®™ for any of the
n+ 1 maps (F°*)®" — (Fet)®m*+! induced by the simplex category.
As explained in for any E € SHy there is a natural transformation

U((-) @Sp) = U(—): SHg — Modyss) (MS3), (5.3.4)
but it is not an isomorphism.

Proposition 5.3.2. The natural transformation (5.3.4)) evaluates to an isomorphism on the object F;“Ot (n)k,
that is, we have a canonical isomorphism

U(Fy°t @ Sp) = U (FP) € Mody(ss) (MSE). (5.3.5)

Proof. By [Remark 5.1.7, it would suffice to show that for £ = Fg“’t and for each of the coface maps

(Fpot)@t — (Fpet)®*+1, the resulting comparison map
mot\ 7 mot\®i+1 mot\®i+1
V(B @ F)) @y (e T(E*H) = ¥ (B e F) )
is an isomorphism. Using the computation of Fj*** @gmet F1*** in (5.3.2), we can express this map in the form

(D F) Pal(a0)) @y (genyor) T(ERTH) = (€D F)* pal(aa).

acs acS
and it fits into a commutative square

D ¥ (7)) @,y (gnyon) ¥ (FF*) ) Ipal (00) ——= B WIER)**lpal a0)

| |

\I!(@a(lﬁ‘glot)@[pa](qa)) ®\1/((1F;;°t)®i) \I/((F;not)@ﬂ) - \I}(@Q(F?Ot)@)ﬂrl[pa}(qa))’

Since the upper horizontal map is clearly an isomorphism, it remains to show that the vertical maps are
both isomorphisms. From (5.3.2)) we see that for every ¢ > 1, the arguments of ¥ in the bottom row are
sums of shifted and twisted copies of F;“Ot with shifts that grow to co. Hence ¥ commutes with the direct

sum decompositions in the diagram above, by
O

The main advantage of " (Fy°*) over W(F)'°') = F™ is that we can compute its version of the “dual
Steenrod algebra”. More precisely, while it is unclear how to compute FY" @ FY™ within MS¢s (or even over
in MSg), for \I/enh(IF;n‘)t) we have the following Proposition.

Proposition 5.3.3. In MOd\p(S;)(MSﬁ), we have
\I’CHh(FglOt) ®\I!(S;) penh (Fgwt) o~y genh (]F;not Rgmot Fgmt) ~ @ ‘I’C“h(Fgmt)[pa](qa).
acd
Proof. By[Proposition 5.3.2|we have et (Fpot) = U(F°'@Sp). The tensor product in a limit of co-categories

is computed coordinate-wise, so it suffices to show that for every ¢ > 1, the canonical map

\P(Fglot ® (]Fglot)@i) ® \P(Fglot ® (]Fglot)@i) N q,(F;not ® (F;not)@z‘ ® Fglot)

w (@)
is an isomorphism. Using the computation of Fgwt ® Fgmt in (5.3.2), we can rewrite this map as

\II( @(F;not)@[ a](qa)> ®\1;((1Fgwt)®i) \I!< @(Fzr)not)@[ a](Qa))

acd acd
v D E e+ pl g +aa)).
(a,a’)eI X I

From (5.3.2) we see that for every ¢ > 1, the arguments of ¥ involving infinite direct sums can be written
as infinite direct sums of F7*** with shifts that tend to co. Hence ¥ commutes with the direct sum decom-
positions by Then the result follows from the distributivity of the tensor product over direct

sums. O
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By applying the colimit-preserving, symmetric monoidal functor i*, and using similar considerations, we
obtain similar results for 1) and °"".
Proposition 5.3.4. We have
P((FF) K ©Sp) =g (F) k) € Mody(ss) (MSk)
and

'(/Jenh((]F;HOt)K) ®QP(S;) wenh((F;not)K) o~ wenh((Fglot ®Smm F;not)[{) c Mod,/,(g;)(MSk).

5.3.3. Module categories over motivic ring spectra. Let E € ComAlg(MSgk). We can then form the cosimpli-
cial commutative algebra ) := E®S}, and then the module categories Modq,(E;) (MSg) and Modw(E;) (MSy).
There is a canonical map £ — EJ, so by functoriality ¥ induces a functor

Mody g)(MS¢) — Mody(gs)(MSe) (5.3.6)
and similarly ¢ induces a functor

Modyg) (MSk) — Mody(gs) (MSk). (5.3.7)

Lemma 5.3.5. If £ € SHy is an IF;“Ot—algebm, then both functors (5.3.6) and (5.3.7) are equivalences.

Proof. We will prove that (5.3.6)) is an equivalence, the case of (5.3.7) being completely analogous. Since E
is an Fgwt—algebra, we may tautologically present £ = F Qpmot Fgwt. This induces an isomorphism

E Qgmor (Fy®")®" 22 E @pmor (Fy') "1

These isomorphisms fit together into an isomorphism of cosimplicial ring spectra

E® ]F;ﬂ()t E® (Fg]ot)®2 = FQ (F;not)®3 I———J

[~ [~ [~ IN (5.3.8)

E @pyor (F)92 == E @ppor (F7°)® == F Qpyer (F2N)® 35 -

But the bottom cosimplicial diagram has a contraction to E by the extra codegeneracy argument, since it
can be prolonged to a diagram

F—F ®]Fglot (Fglot)(@? = E®]Fg]ot (]F;ﬂot)@)?) Eﬁ E ®]Fg’0“ (Fglot)®4 EKE,

The image of the diagram E — (5.3.8) under any functor will still have a contraction, so the natural map
induces an equivalence

MOd\p(E)(MSﬁ) 'N—> lim MOd\p(E&me(JF;;wt)@n)(Msﬁ) = MOdq,(E;)(MSﬁ),
55‘3‘8 i

as desired. O

Corollary 5.3.6. Regarding \I/enh(]F;HOt) as a commutative algebra in MOdq;(S;)(MSﬁ), there is a natural
equivalence of categories

Mod‘penh(ﬁglot) (MOd\p(S;)(MSﬁ)) = Modﬂz;yn (MSp),
and similarly for ¢ and MSk.

Proof. In general, if A is an R-algebra in a symmetric monoidal co-category C, then we have a natural
equivalence Moda(Modg(C)) = Moda(C). Using the isomorphism ¥e!(Fmot) = W(F°t @ S3) established
in [Proposition 5.3.2) we can apply this levelwise to C := MSg, R = ¥(S?) and A = U(F** ® Sj) to deduce
that

Mod\penh(]FI;ot) (MOd@(&Q(MSﬁ)) = Mod\p((anot);)(MSﬁ).

Then [Lemma 5.3.5( identifies the latter category with MOd\p(F;—not)(MSﬁ)7 which is finally identified with
Modgsy= (MSg) using [Corollary 4.4.1 O
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This has the following more concrete consequence. Recall that objects of Mod\penh(gz)(MSﬁ) are, in
particular, cosimplicial diagrams in MSg, so we can take their limit to obtain an object of MSg. A similar
discussion applies with k in place of &, giving lax symmetric monoidal functors

h&n MOdq;enh(S;)(MSﬁ) — MS,ﬁ and liin: MOd\I]SHh(S;)(MSk) — MSk . (539)

Corollary 5.3.7. There is a canonical isomorphism
ligl \I/enh(FglOt(n)K) o~ F;yn(’n)@,

and similarly
hin wenh (Fpmot (TL) K) o~ F;yn (n)k i

Proof. We prove the claim over &, the proof for k being analogous. Using the compatibility of all the
constructions involved with Tate twists, it is enough to prove the case n = 0.

Unwinding the definitions, the functor lima fits into a commutative diagram of lax symmetric monoidal
functors

MOd\I,enh(Fgmt) (MOdq,(S;) (MS@)) — MOdF;yn (MS@’)

l forget l forget

Mod\p(g;) (MS@) s MS@

The upper horizontal functor is the symmetric monoidal equivalence of hence carries the
unit \Ife“h(IE‘;“Ot) of the upper left category to the unit (F;)™)s of the upper right category. Comparing the
values of the two paths in the diagram on \Ilenh(]FglOt), we obtain the desired identification. ]

Part 2. Steenrod operations

As mentioned in the Introduction, there are two different flavors of Steenrod operations acting on syntomic
cohomology: the syntomic Steenrod operations, and the Eo, Steenrod operations. In this Part, we define and
study these operations and their interaction.

Henceforth, we make the specific choice & := Z7¢, K := Q;’¢, and k := F). We consider the “perfectoid
nearby cycles” functor ¢ from §4] using this choice. In §6 we construct the syntomic Steenrod algebra as the
Ext algebra of (derived) endomorphisms of ;™ over the “syntomic sphere spectrum” ¢(S).

In {7 we define the E,, operations. Their existence is well-known, but we will utilize aspects of their
specific construction via the Tate Frobenius, so we take the opportunity to document the foundations in
detail.

Then in §8] we formulate and prove the Comparison Theorem which determines the precise relationship
between the two types of operations.

6. SYNTOMIC STEENROD OPERATIONS

In this section we define the syntomic Steenrod algebra A% over k and over €. By analyzing the
perfectoid nearby cycles functor ¥, we construct power operations in A%} imported from Voevodsky’s work
on the motivic Steenrod algebra. We show that these power operations freely generate A%} over Hi} (k),
and establish Adem relations in and a Cartan formula in §6.4] which together describe the Hopf algebra
structure of AZ;] in full.

6.1. Syntomic Steenrod algebra. Let Fg’Ot € SHx C MSk be the (Al-invariant) mod p motivic coho-
mology spectrum over K (Definition 3.6.6). The motivic Steenrod algebra over K islﬂ
A;Zt’K = Extgyy (Fg“)t, F?Ot).

Its structure was studied by Voevodsky, and we will recall his results below.

22Here, and in the rest of the section, the bigrading on the Ext groups is given by the cohomological degree and the weight.
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According to we have a canonical lift of the syntomic cohomology motivic spectrum
(F™) g € MSg to Uerh((Fnot) ) € Mody ss)(MSe) under the map Mody(se)(MSg) — MSe given by
formation of limits:

on enh
(F;)nOt)K € SHg Lh> Modqz(s- (MSy) (FL““)K € SHi N Modw<s- (MSy)
\ lhmA \ lhmA (611)
IFsyn )o € MSg Fsyn )i € MSy

where lima is as in (5.3.9). We will abuse notation and denote (F3"™)e € Modyss)(MSg) to denote this
lift, relying on context to disambiguate the ambient category. Similarly, we will denote the canonical lift of
(]F;yn)k € MSy to M0d¢(§;)(MSk) by (]F;yn)k.

Definition 6.1.1 (Syntomic Steenrod algebra). We define the syntomic Steenrod algebra over k to be
Ay = A:yfl g o= Exty d,/,(s;>(Msk)((FZy“) ks (F™)1).

Here the bigrading *,* is by cohomological degree and weight, respectively. We are using the abuse of
notation discussed just above by denoting (F5¥™);, for the object 1 ((FI°?) ).
Similarly, we define the syntomic Steenrod algebra over & to be

‘A:;;ﬁ _EXtModw(c.)(MSﬁ)((F "o (Fsyn) ).

Remark 6.1.2 (Cohomology operations). Since ;™ represents syntomic cohomology, there is a tautological

homomorphism from AZe;% to natural transformatlons HE;% (=) — HEHPeo* 9 (=) of syntomic cohomology

on the category of schemes over k, and similarly for &.

By functoriality, 1°"" induces a homomorphism

syn

b Ange e = A (6.1.2)
and similarly ¥e"? induces a homomorphism

e Ans k= A (6.1.3)

syn, 0"
6.1.1. Voevodsky’s power operations. For each i € N, Voevodsky constructed in [Voe03b] a motivic power
operation in SHy (and more generally in the stable homotopy category over any characteristic zero field)

2i(p—1),i(p—1)
tEAmotK .

We denote by 8 the Bockstein operation
/8 € ‘Amot K
induced by the exact triangle of motivic cohomology complexes,
F;nOt — (Z/pQ)mot N Fglot’
and

2i(p—1)+1,i(p— 1)
mot - ﬂPmot € Amot K

Recall the set
I ={(r,er,ir,...€1,01,€0) | 7 >0,4; > 0,¢; € {0,1},441 > pi;j + €}
To each a € &, Voevodsky defined the motivic power operation
Pooe = B Pl - BUPL B € APy, (6.1.4)

where p,, and g, are defined in (5.3.3). Thus P2, is a cohomology operation of bi-degree (pa, qo)-
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6.1.2. Syntomic Steenrod operations. For each a € .# we denote by Pg, € ALY the image of Voevodsky’s
operation P, under the map (6.1.2)).

Remark 6.1.3. Thanks to|Corollary 5.3.7, we know that under the forgetful functor Modw(s;)) (MSy) — MSk

Sn is simply sent to ¥(Pgo,) € Extypg! (F5Y™, F5'"), and a similar remark applies in MSg.

Notation 6.1.4. If p > 2, then we denote
i i 2i(p—1)+1,i(p—1
B, 1= BoPi, € AZp-+Lilp=1),

syn

the operation P

If p = 2, then we denote
0 , . 9it1 , o
Sdien == Payn € Ag;g and St :=pBo Pl € AZTL

syn syn syn syn syn

6.1.3. Adem relations. We may now state the Adem relations for our syntomic Steenrod operations. For
p = 2, the integral variants of the Adem relations, which will not be used in this paper, involve the element
T € HYL(S) = ¥ corresponding to —1 € G,,(S) for a scheme S over &. The proofs also reference
p < H;}’,}a(ﬁ), the Kummer image of —1, which vanishes in our situation because &' contains p-power roots
of —1 by assumption.

Proposition 6.1.5 (Adem relations: odd p). Let p be odd. For 0 < a < pb, we have
la/p] .
a b a+i (p - 1)(b - Z) -1 a+b—ipi * %
PsynPsyn - Z (_1) < a—pi 1:)syn Psyn € Asyn?
i=0

and for 0 < a < pb, we have

pe Bb — L§J(_1)a+i ((p - 1)(b - i))Ba—&-b—iPi

syn-—'syn P a— pZ syn syn
[(a—1)/p] .
ario1 ((P=1)(0—=13) =1\ Joipini .-
+ Z (_1) ( a— pi Psyn Bsyn € Asyn'
i=0
The same relations hold in A:yfl o

Proof. Since (6.1.2)) is an algebra homomorphism, the relations in A%* follow by applying ™" to the

syn
analogous statement in SHy for P2 . and BY  , which is [VoeO3b, Theorem 10.3]. For A" ., the same

mot? syn,0?
argument applies using U instead. O

Proposition 6.1.6 (Adem relations over k: p=2). Letp =2 and 0 < a < 2b.
(i) If a=b =0 (mod 2), then we have

lel2l i1

a b -t a+b—1 i %, %

SQSynSQSyn = Z < a— 2 )SQb;l quyn € Asgln'
i=0

1 even

(i) If a=0 (mod 2) and b=1 (mod 2), then we have

la/2] .
b—i—1 e i .
SAeyn Sy = Y ( )Sq:;b Sy, € AL

, a—2i
1=0

(ii) If a =1 (mod 2) and b =0 (mod 2), then we have

ey |

a b -t a+b—igq 1 * %

SQSynSQSyn = Z < a— 2 )qu;l quyn € Asb’zn'
1=0

i even

(iv) Finally, ifa=b=1 (mod 2), then we have

W2l i

a b _ -t a+b—1 i *, %

SdsynSdsyn = Z ( a—2i )SqSyn SAgyn € Agn-
i=0

i odd
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Over O, (i) is replaced by

la/2] .
a i ™Mo —i—1 a i
quynsqls)yn - Z T 2 ( — 9 >S s;;lb quyn € Asyn 2

while relations (ii), (iii), and (iv) are the same as above.

Proof. The same argument as for Proposition[6.1.5| applies here, using instead [Voe03Dbl, Theorem 10.2] (with
typos corrected as in [HKOsrl7, Theorem 5.1]) and noting that p = 0 € HX1 (Spec k) = 0. O
6.2. Freeness of the syntomic Steenrod algebra. We will show that A%} is free over Hi} (k), with
basis given by the power operations.

6.2.1. Dual basis. Recall from [Proposition 5.3.4] that the natural map

YN () @ygenn (gmory T (Fp®) = ¢ (F'°" @gmor Fpy®*) € Mody,(ss) (MSk), (6.2.1)

coming from the lax symmetric monoidality of °", is an isomorphism. In (5.3.2), there is a distinguished
generator £, of the a summand FmOt [Pa)(ga), pinned down by the property that it is dual to the power

operation Pg . from (6.1.4) in the followmg sense. Rewrite ( as

Fo* @gmor FI°F @ FPote,. (6.2.2)
acd

Working in the category SHy, we have

Extgi  (Fp”, Fp*t) 2 Extgine (F ! @gmer Fyot Fp©). (6.2.3)
From (/6.2.2)), we have
Extigpon (Fy ** @gmer By F©') & T Extigo (Fy*" €a, Fp). (6.2.4)
acs

Then the generator ¢, for F;“Otga induces an isomorphism

mot ~v Tpmot
IFpo fa :Fpo [ a}(Qa)

which is pinned down by the characterization that the corresponding map ]F;;IOt — Fgm [Pa](ga) in the left
side of (6.2.3) is the power operatlon Pmot
Applymg Proposition “ 5.3.3| to and using Lemma we obtain a decomposition

wenh(Fglot Rgumot Fzﬂot) ~ @ ,l/)enh(IFg:ot)ga ~ @ 1/Jenh(FglOt)[pa](qa) (625)
aed aedS

where ¢, is dual to the syntomic Steenrod operation Pg, € AZe:%> in the analogous sense.

n

6.2.2. Basis of the syntomic Steenrod algebra. In particular, by [Proposition 5.3.3| and the splitting (6.2.5)),
we have that

A;k},,tl EXtModw(g. (M) (wenh (Fmot) 1Z)enh (Fmot))

~ EXtZ)e*nh (FmOt) (ql)enh (Fglot) ®wenh (smot) wenh (Fglot ) , wenh (Fglot ))

= H EXt;«;s;n (F;yn[ a](Qa)vF;yn)
acd

is free as a graded module over Extﬂ’;sin (Fym, F™) = HEh (Spec k); in the last isomorphism we used Lemma

[£-375] to simplify the simplicial structure, and Corollary [£.4.1]
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6.3. Dual syntomic Steenrod algebra. We will now investigate the structure of the “dual syntomic
Steenrod algebra” over k. Everything we say below applies verbatim over & instead of k, with the same
arguments; we will omit the statements to keep the narrative from sprawling.

Definition 6.3.1. Consider the object
%Syn = wenh(F;HOt) ®,¢)enh(gmot) 'l/]enh (F?Ot) 6 MOd;¢,(S;)(MSk> (63.1)

A priori, &/*™ naturally has the structure of a commutative Hopf algebroid over ¢ (FI*°*) in Mod,(ss) (MSy)

(this is a general pattern in algebra; for example, see [Fen20b] which was a motivation for our construction
here).

Lemma 6.3.2. The Hopf algebroid structure on o/*Y™ is actually a Hopf algebra structure, meaning that the
two tautological maps in

HOMAfod, g 15y (41 (F°1), 27597

coincide.

Proof. The Hopf algebroid structure on IE‘;;““ Rgmot F;“Ot € SH is described in [HKOsr17, §5.1, Theorem
5.6]. From the formulas there we see that the left and right unit maps in

Homgp, (Fy°", Fy'®" @gmor F°) (6.3.2)

differ by a multiple of p. Thanks to Proposition [5.3.3} the left and right units maps in
Hom (4" (F3°), "™ (F1°") @ penn (gmoty 10" (F")) (6.3.3)
are obtained by applying ¢°™ to those in (6.3.2)), so their difference vanishes since p =0 € Hy1 (k) = 0. O

Definition 6.3.3 (Dual syntomic Steenrod algebra). We define the dual syntomic Steenrod algebra to be

syn . *, % Syn syn
AY = EXtMod\p(Sp(MSk)(Fp , /).

Lemma 6.3.4. The A% is free and reflexive as an Hi (k)-module.

Proof. According to (6.2.5)) and [Proposition 5.3.4] we have an isomorphism

YD o @ F;yné-a o @ ]F;yn[pa](Qa) (634)

aced aES

This exhibits &/*™ as a sum of shifts and twists of F}", such that for any given N, there are only finitely
many « such that p, < N. In particular, A3} is finite-dimensional in any degree. In fact, this shows
that @/®" is even free and reflexive over F™. The freeness and reflexivity of AL over HE® (k) follows

syn
immediately.

|
By base change, we have (as already used in
HomMOdF?" (M) (™ ) = HomMOdw(s;,) sy (B F™).
Thanks to the freeness and reflexivity of &®™ over F}’" from , we obtain an isomorphism
Homyyg: ) (A, HG L (R)) = Ay, (6.3.5)
and double-dualizing (and using reflexivity) identifies
AZY = Homyz= gy (A Hin (F)). (6.3.6)

Furthermore, it is clear from tracking definitions that this is compatible with the respective Hopf algebra
structures. In summary, we have established the following.

Corollary 6.3.5. The dual syntomic Steenrod algebra AYY is a commutative graded Hopf algebra over
HEx (k), which is free as a graded HX¥ (k)-module. Its graded dual is identified as a graded Hopf algebra over

syn syn

HE ! (k) with the syntomic Steenrod algebra ALY, which is also free as a graded HZ% (k)-module.

syn syn’ syn
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6.4. Cartan formula. We are now able to identify the coproduct on the syntomic Steenrod algebra explic-
itly.

Proposition 6.4.1. Assume p # 2. Then the comultiplication A: A3% — AL ®F, Ay satisfies

syn syn syn
i
7 _ § J i—7
A(P.syn) - Psyn ® Psyn
Jj=0

and A
A(Bly,) = Y (Bl @ P +PL, @ BL).
=0
The same formulas hold for A: AT 5 — ALY 5 ®r, AL 4
Assume p = 2. Then

i
A(SaZ,) =S, ® Sl € An ®F, AL,
j=0
while over O we have instead

7 1—1
21 29 21—27 27+1 21—25—1 s s
A(SqZ,) =) SaZl, @S + 7Y (S @ (SaZin ¥ € ALY s @ ALY 4.
=0 =0

The formula
i
A(Sazt!) = D (Saii @ Sazyy™ + Sqil, © Saiyn )
§=0

holds for both A%* and A®*

syn syn, 0 *

Proof. The comultiplication on A¥** is induced by the multiplication on %", By Proposition m the

syn
vertical maps are isomorphisms in the natural diagram

T @ joni oy T el

- 5

wenh (F;not ® F;not) ®wenh(ﬂ<‘r;ot) wenh (Fglot ® Fglot) wenh (F;not ® F;not)

where the horizontal arrows are the multiplication maps. By Proposition[5.3.3]again, we have an identification
Qljenh (Fglot ® Fg]ot) ®wenh(]}‘gxot) ,wenh (F;ﬂot ® F;{lot) ~ qZ)enh (Fglot ® ]Fgl()t ® Fg]ot)
o~ wenh((Fglot ® F;r;lot) ®Fg‘°t (]F;not ® ]F;not))7
making the natural diagram commute
wenh(]Fgmt ® ]Fglot) ®¢enh(]F§‘0t) d)enh(Flr)not ® ]F;not) 1/)enh(]Flr)not ® ]F';not)

2//,cnh ((Fglot ® ]F;)not) ®]F;mt (IFI;IO‘Z ® F;not)) QZJC“h(F?Ot ® F}r}not)

(6.4.1)
where the top horizontal arrow is the multiplication map for the commutative algebra wenh(Fgwt ® IE"glOt),

and the bottom horizontal arrow is ¥°"" applied to the multiplication map for Voevodsky’s dual motivic
Steenrod algebra Fy* @ Fi*** € ComAlg(SH),

(Fpet @ Fr) @pmor (FI°F @ FP) — (F2°' @ FI*) € SHy . (6.4.2)

The latter map (6.4.2)) is identified explicitly by [Voe03bl Proposition 9.7], and is given by the asserted
formula if p is odd. If p = 2, then [Voe03bl Proposition 9.7] says that

7 1—1
21 23 21—273 27+1 21—25—-1
A(Sqn’iot) = Z Sqrrzot ® Sqnzot ! +7 Z(ngot ) & (Sqniot ! )
7=0 7=0
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and ‘
K2

i—1
INCERBEDY (Sqiﬁl ® SQnor” + Sqie; & Sqfﬁc?f”l) +p Y S @Saho
=0

j=0
Applying the functor W°"? to these relations, and noting that p = 0, we obtain the asserted formulas for
Ao Instead applying ¢ to the above relations, and further noting that 7 = 0 in Hz% (Spec k), we
obtain the asserted formulas for A** O

syn*

6.5. Structure of the syntomic Steenrod algebra. By Lemma A;w is a Hopf algebra over Hi, (k).
We note that this latter ring is explicit and simple: HX, (Spec k; F,(i)) = 0 for i # 0, so we have

syn

H:* (k) = HE, (Spec k; F,) = Fle] /€ (6.5.1)

syn

where € is a generator of H (Spec k; F,,) = F,. Note that P} and BL,, kill Hi;* (k) for degree and weight
reasons whenever i > 0, so AL} acts trivially on H (k).
We now summarize this section’s results on the structure of the syntomic Steenrod algebra.

Theorem 6.5.1. The syntomic Steenrod algebra ALY is a cocommutative Hopf algebra over HX ¥ (k), with

syn syn

a HE X (k)-basis consisting of the P, for o € &. The algebra structure is then determined by the Adem

syn syn

relations (, and coproduct is determined by the Cartan formula (

Notice that the product and coproduct of power operations Péyn and Béyn € A$L do not involve the

elemt(en;c ¢ from (6.5.1)), and as remarked above act trivially on e. This allows us to “descend” A%} from
HE (k) to .

syn
Definition 6.5.2. We define the reduced syntomic Steenrod algebra A%y C ALY to be the Fy-subalgebra
generated by all the power operations ngn, Béyn € Ay for @ € Z>o. We define the reduced dual syntomic
Steenrod algebra A?.Xf - Ai‘f’ + analogously.

Then AL} is a cocommutative Hopf algebra over F,, equipped with a natural isomorphism
A*’* ®Fp H*,* (k) o~ A*,*

syn syn syn
of Hopf algebras over HY;; (k). From Theorem we see that
e An F-basis of AL is given by Py, for a € 7.
e The algebra structure is given by the Adem relations.

e The coproduct is given by the Cartan formula.

Naturally, we also have the dual statements for AY}.

7. E.c STEENROD OPERATIONS

The cohomology ring of any E..-F,-algebra is equipped with power operations, an observation that goes
back at least to May [May70]. Although this is well-known, it is treated from different perspectives and
in different languages in the literature, so we take this section to set up definitive foundations for use in
this paper. Our presentation is guided by later considerations, e.g., we need to set up the E,, power
operations on syntomic cohomology as morphisms of spectra (which recover the familiar operations upon
taking cohomology). Our formulation is based on the Tate Frobenius; we learned this perspective on E.,
Steenrod operations from Lurie [Lurl8| §2| and Nikolaus—Scholze [NS18| §IV.1].

7.1. The Tate-valued Frobenius. Let C, = Z/p be the cyclic group of order p together with a chosen
generator. Recall that for a semiadditive co-category C with all limits and colimits and X € CB» (in other
words, X is an object of C with an action of C}), we have a canonical “norm map”

Nm: Xpc, — X"

from the homotopy orbits to the homotopy fixed points of the action. The cofiber of this map is, by definition,
the Tate construction

X' = Cofib(Xpc, — X"7).
In [NS18| Definition IV.1.1], the authors construct a natural “Frobenius” map

Fr: R — R!C» (7.1.1)
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(where the Tate construction is with respect to the trivial action) for every E..-algebra R in Sp, equipped
with the trivial action of C,,. This construction can be easily generalized from spectra to sheaves of spectra,
as follows.

Definition 7.1.1 (Tate-valued Frobenius map). Let C be a site. For a sheaf of commutative ring spectra
R € ComAlg(Shv(C; Sp)), equipped with the trivial action of C,, we define the Tate-valued Frobenius map

Fr: R — R
to be the sheafification of the levelwise Frobenius map
UeCw— (Fr: R(U) = R(U)*»)
from .

7.2. E power operations. Let R be a sheaf of E-Fj-algebras. Then the homotopy orbits of the trivial
action of C), on R are computed aﬁ

Ruc, 2R ®BC, = R ®r, (F, @ BC,) 2 R @, @Fp[i] o @R[i],
1=0 =0

where the third isomorphism invokes distinguished generators ¢; € m;(F, ® BC,) = H;(BC),; F,,), which are
pinned down as the duals to the canonical monomial basis of H*(BC); Fp)ﬁ In particular, for each i > 1
we have F-module maps t;: Ryc, — Rli] for i € Z>o.

Definition 7.2.1. Let C be a site and let R € ComAlg(Shv(C;Sp)), equipped with the trivial Cp-action.
For i € Z>q we let PL: R — R[2i(p — 1)] be the composition

Pi: R 5 RIC o Rye [1] 202070 R19i(p — 1),
Thus on cohomology groups, P§ induces a map
Pi: H(U; R) — H*(U; R[2i(p — 1)]) = H*P*@=D(U; R).

Remark 7.2.2. Note that the construction of P§ does not involve sheafification. In other words, the map
Pf is the restriction of the corresponding map on presheaves (i.e., for C with the indiscrete Grothendieck
topology). For presheaves, the construction is “pointwise” in the sense that it is given by applying the
ordinary power operation P} for E.-Fp-algebra in spectra at each object:

i Fr .
PL(U): R(U) = R(U) — R(U)[1] R(U)[2i(p — 1)].

Remark 7.2.3. Assume that R = P, ., R, is a Z-graded algebra (with trivial action of C,). Then the

Frobenius map becomes a graded map after rescaling the grading of R by p. Indeed, we may write Fr as a

composition of the Tate diagonal

t2i(p—1)—1
e Y

R — (R®P)1Cr
followed by the multiplication map
(REP)ICr 5 RCp,

The second map clearly respects the grading, while the first map has a graded refinement provided by
[AMMN22, Example A.10 and preceding discussion] if the grading on the source is scaled by a factor of p.

In particular, the map P% carries the graded piece R,, to the graded piece R,,, hence decomposes into
homogeneous pieces of the form _

Pi: Ryn — Rpn[2i(p — 1)].

In particular, using the notation H**(U; R) := H%(U;Rs), we obtain on cohomology a map of signature

PL: H**(U; R) — HOF2(P—DP (7 R)  for all U € C.

23In the first isomorphism below, we are invoking that Sp is tensored over the category of spaces, so we can tensor spectra
with the space BC). Informally, this tensor product computes the “homology of BC), with coefficients in R”.

2410 spell this out, there is a canonical generator of z; € H! (BCp; Fp) = Hom(Cp, Fp) corresponding to the fixed isomor-
phism Cp = Z/p. If p = 2, then H*(BC)p; F)p) is a polynomial ring on z1, so its powers give a basis of H*(BCy; Fp). If p # 2,
then H*(BC); Fp) is the exterior algebra on ;1 tensored with the polynomial algebra on its Bockstein 8(z1), so their monomials
give a basis.
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Definition 7.2.4. Let S be a qcqs scheme. Applying these considerations to the graded algebra F;'"(e)s =
Drez F3"(n)s in Pyis(Sms; Sp), we obtain the Eo.-power operations

Ph: HEY (X) — HE 2 1rb (X)) (7.2.1)

syn

for any scheme X/S.

7.3. Functoriality along geometric morphisms. Let ¢: C — D be a morphism of sites, so that we obtain
a symmetric monoidal adjunction between their categories of Sp-valued sheaves,
" : Shv(D;Sp) = Shv(C;Sp) : ¢

We will show that, in this situation, the constructions P§ are compatible with the functors ¢* and ¢.. To
avoid notational ambiguity, in this subsection we shall temporarily denote the map PL: R — R[2i(p — 1)]
by P4 (R). (Our results will imply that we never need to worry about this again, as all power operations of
this shape are compatible in the obvious way.)

Proposition 7.3.1. Let ¢: C — D be a morphism of sites, and let R € ComAlg(Shv(C;Sp)). Then the two
maps
P%(QS*R): $«R — ¢ R[2i(p — 1)]
and
¢ PE(R): ¢ R — ¢ R[2i(p — 1)]
are naturally homotopic.
Similarly, if R' € ComAlg(Shv(D;Sp)) then the two maps
¢"PL(R'): ¢"R' — ¢"R'[2i(p — 1)]
and
Pi(¢*R): "R’ — ¢*R'[2i(p — 1)]
are naturally homotopic.

Proof. We start by showing the claim for ¢,. Using|Remark 7.2.2] we reduce to the case of presheaf categories,
where ¢, is given by pre-composition with ¢. Then the claim follows immediately from the fact that P% is

computed pointwise, as discussed in

We turn to the claim regarding ¢*. For this, abbreviate m := 2i(p—1) and consider the following diagram

Id
¢*R/ ¢*COEV ¢*¢*¢*R/ ¢* ¢* ¢*R/ evd)* ¢*R/
¢*7:i(7a’)l Lﬁ*?i(aﬁw*?%/) Lb*dupi(aﬁ*?z’) lpi(wn/)
R [m] —2C s 356, ¢* R [m] ——— ¢*$.¢" R/ [m] —2— ¢*R[m]
Id

where coev and ev are the unit and counit of the adjunction (¢*, ¢.). We claim that it commutes:

e The left and right squares commute by the naturality of Pf.
e The upper and lower regions commute by the triangle identities.
e The middle square commutes by the claim for ¢,.

The claim for ¢* now follows by comparing the two outer circuits from ¢*R’ to $*R’[m] along the boundary
of the diagram. O

7.4. E-operations for syntomic cohomology. Let S be a qcgs scheme. The formalism of power oper-
ations of sheaves of F-algebras applies in particular to the syntomic cohomology F]Sgyn(o) s, giving maps

PL: Fzyn(n)s — F;yn(pn)g[%(p - 1)].

Now specialize this discussion to the setup of §4 with a perfectoid valuation ring & with generic fiber K
and special fiber k. From Corollary and Corollary we have identifications

F3(0)0 = Ly j F2(0) i and ™ (o), = i*F5™ () 6. (7.4.1)
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Corollary 7.4.1. Via the identifications in (7.4.1), the maps
PfE: F;y“(n)ﬁ — F;y“(pn)ﬁ[%(p —1)]

are the images of the corresponding maps for Fg‘Ot (n)k under the functor Letj.. Similarly, the maps
PL: FY™(n)r — F3™ (pn)i[2i(p — 1))

are the images of the corresponding map for F;y“(n)ﬁ under the functor i*.

Proof. Both the functors L¢ j, and i* are compositions of push-forward and pullback maps along morphisms
of sites. Hence, the results follow from [Proposition 7.3.1] O

As another application, we can now compute the power operations on the commutative F,-algebra
RTyn (X; Fp(x)) in terms of the “local operations” on the level of sheaves.

Proposition 7.4.2. Let S be a qcgs scheme, so that we have a graded Eo.-Fj-algebra F"(e)(S). The
resulting maps of Fp-spectra
Pg: FY(n)(S) — F (pn)(5)[2i(p — 1)]
agree with the maps induced from the morphism of sheaves of spectra
Pi: FY"(n)s — F™ (pn)s[2i(p — 1)]

by taking global sections over S.

Proof. This follows immediately from [Proposition 7.3.1] using the morphism of sites opposite to the inclusion
{S} — Smg. O

7.5. Comparison with unstable construction. The main advantage of the Tate-cohomology perspective
on power operations is that it is done entirely within the framework of sheaves of spectra and “linear” maps
between them. However, more classical constructions (e.g., [May70]) involve non-linear maps, and linearity
is proven a posteriori. For later computational purposes, it will be useful for us to reformulate the operations
Pf also in this language.

Definition 7.5.1. Let D be a presentably symmetric monoidal co-category. For M € D, we denote
DP(M) := (M‘X’p)hcp,
where C), acts on M®P by cyclically permuting the tensor factors.

Recall that part of the data of an E-algebra A is a p-fold multiplication map DP(A) ot g,
Definition 7.5.2. Let C be a presentably symmetric monoidal co-category. Given M € C, A € ComAlg(C),
and a map a: M — A in C, we denote by PP(a): DP(M) — A the composition

PP(a): DP(M) — DP(A) 2% 4.
We refer to PP(«) as the total p-th power of a.

When C as in is linear over F,, we can now give a definition for power operations. We
will rely on the theory of Picard spectra as explained, for example, in [Car23, §3|. In particular, to C we
can associate a spectrum called its Picard spectrum Pic(C). Recall that an object L € Pic(C) is called
strict if it extends to a map of spectra Z — Pic(C), or equivalently, to a symmetric monoidal exact functor
Perf®(S) — C from the category of graded finite spectra. In this case, the action of C}, on L®? is trivial, so
that DP(L) = L®? @ BC), (see for example [Car23, Proposition 3.15]).

Definition 7.5.3. Let C be an F-linear presentably symmetric monoidal co-category, and let L € Pic(C)
be strict. Let A € ComAlg(C). We define the map

PL: Map(L®’[—a], A) — Map(L®P"[—a — 2i(p — 1)], A) (7.5.1)
to be the composite

(—)omult

Map(L®b[—a], A) Lo, Map(Dp(L®b[—a]), DP(A)) Map(Dp(L‘g’b[—a])7 A)

& Map(L®*[—pa] ® BC,, A) 22 Map(LE[—a — 2i(p — 1)], A)
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where

j=pa—(a+2i(p—1))=(p—1)(a—2i) (7.5.2)
and t; is the generator of H;(BC);F,) pinned down at the beginning of which gives a map 1¢[j] —
1c ®r, BC), by the Fy-linearity of C.

See [May70] for properties of the P thus defined, including Cartan relation and Adem relations. In this
paper, we will only need the simple properties in the following Example.

Example 7.5.4. When a = 2i, we see from ([7.5.2]) and the definition that the induced map on cohomology
P : o Map(L®®[—a], A) — 7o Map(L®’[—pa], A)
is the pth power operation. Furthermore, if 2i > a so that (7.5.2) is negative, then P vanishes.

Currently, we have a collision of notation between P% from and the operations defined in
{721 However, we will see that they agree when both are defined. To relate the two constructions, let C
be a site and let D = Shv(C; Mod%rp(Sp)) be the oo-category of graded sheaves of Fp-module spectra over
C. Then a graded commutative F,-algebra A € ComAlg®"(Shv(C;Sp)) can be regarded as a commutative
algebra A € ComAlg(D). Moreover, there is a strict Picard object L € D such that Map(L®?, A) is the b-th
graded piece of the sections of A. Applying the construction P& above to mo Map; (L®%[—a], A) := H**(U; A)
for U € C, we obtain maps

PL: H**(U; A) — HoT2(e=Dpb(17; 4). (7.5.3)

Proposition 7.5.5. In the situation above, the maps (7.5.3)) above agree with the power operations defined
Proof. The proof when A = F,, and C is the site of sheaves over a point, with trivial grading, is given in

INS18, Proposition IV.1.16]. The argument in the more general case we are considering is essentially the
same. 0

8. COMPARING SYNTOMIC AND E., STEENROD OPERATIONS

Over the past two sections, we have defined two different “flavors” of Steenrod operations on HZ;}, (X) for
a scheme X/0: the E.-operations, and the syntomic Steenrod operations. These do not agree (in general),
as they have a different effect on the weights. Our goal in this section is to study their precise relationship.

In particular, we will see that they do agree in cases where their weights coincide.

8.1. Formulation of the comparison. Recall that we have fixed & = Z;7¢, with fraction field K = Q;*°
and residue field k. Let X be a scheme over &. Then we have defined two types of Steenrod operations on
HE* (X):

syn

e The E., Steenrod operations

Ph: HES (X) — HEF2= P (X),

syn

e The syntomic Steenrod operations

Pi . Ha,b (X) N Hg;]Qi(p—l),b+i(p—1)(X)'

syn* “syn

Choose a primitive pth root of unity ¢ € p,(€). Then we obtain a corresponding element 7 € HY; ), (&).
Although 7 depends on the choice of ¢, the element 77! € H%?~!(0) (often called v;) is independent of
the choice. All the formulas below refer to 7 only through its (p — 1)* power, hence are independent of the

choice of .

Theorem 8.1.1. Let X be any scheme over €. Let i € N and a,b € Z.

e Fori > b, we have

P! 7-(p—l)(i—b)pliE: Hgy‘;(x) N Hg;?i(p—l),bﬂ(p—l)(x).

syn —
e Forb > i we have

P]ZE — T(pfl)(bfi)Pi . Ha,b (X) N Ha+2i(p71),bp(X)'

syn* ~Tsyn syn
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The main content behind [Theorem 8.1.1is work of Bachmann—Hopkins [BH25], which proves the analogous
result for motivic cohomology of characteristic zero schemes. Our argument merely bootstraps their result.

For future calculations, the following special case of will be crucial.
Corollary 8.1.2. For i =10 and any scheme X/k, the maps

P HE (X) — HEGH D90 (X) (8.1.1)
and
Pi s HEE (X) — Hef2e=Dbre=bi(x) (8.1.2)

agree. If i <b, then (8.1.1)) vanishes. If i > b, then (8.1.2) vanishes.

Proof. Since X is over k, multiplication by 77! € Hg}’,ﬁ_l(ﬁ ) factors over multiplication by its image in
HO%P=1(k) = 0. |

syn

Remark 8.1.3. Analogous questions for mod ¢ motivic cohomology when ¢ # p, and k contains a primitive
fth root of unity, were considered by Brosnan-Joshua in [BJ15] and partially answered. Their “simplicial
operations” are what we call the Eo, Steenrod operations. Their methods are limited to ¢ # p, but in any
case the analogues of their results would not be enough for our purposes. Indeed, an important example for
us is that the operations

Pg: Hn (X) = HIR(X)

and

Plont i (X) = HGL(X)

agree for p = 2. If X is over F,, with p # 2, the result of [BJ15] for coeflicients over Z/2 says that these
agree after further composing with the map H3, (X;F2(2)) — HS, (X;F2(3)) given by multiplication by the
Bott element. In our situation of interest, where X is a smooth proper surface over k, we actually have that

Hg’ﬁl(X ) = 0, so the analogous statement would be vacuous.

A priori, the operations ngn are hard to compute, even in the range of degrees where the classical Steenrod

operations are trivial (e.g., on Hgyn where j < ). A consequence of |Theorem 8.1.1|is the computation of

P¢yn In several important cases.

Corollary 8.1.4. Let X be a scheme over O.
(1) The operation
Pl H2(X) — H2P0Pi(X) (8.1.3)

syn * “tsyn syn
is given by raising to the p-th power.
(2) Suppose X is over k. Then the operation P,

Proof. (1) It was pointed out in [Example 7.5.4] that
Pl H20H(X) — H2PLPY(X)

syn syn

vanishes on H%? (X) if 20 > a and i > b.

n syn

is given by raising to the pth power. That map agrees with (8.1.3) by |Corollary 8.1.2]
(2) If ¢ > b, then the vanishing follows from [Corollary 8.1.2| and the observation that the restriction of
7P=1 to HOP=1(k) vanishes. If i = b, then [Corollary 8.1.2[says that the operation agrees with

syn

Pl HEY (X) — HLF2P=Drb(x),

syn

which then vanishes since ¢ > a (as pointed out in [Example 7.5.4)).
|

Remark 8.1.5. For X/k, Annala-Elmanto have an alternate approach to Corollary [8.1.4in [AE25, Theorem
3.7(3) and Corollary 3.8], which does not require the comparison to E., operations. However, [Theorem 8.1.1
is still needed crucially for the application to Brauer groups.

Question 8.1.6. It would be interesting to further investigate the computability of the syntomic Steenrod
operations. For example, our results do not (immediately) answer the question: Does P{,, vanish on Hg}’f; (X)
if 20 > a and @ < b?
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8.2. Proof of [Theorem 8.1.1l We will prove essentially by reduction to the case of a
characteristic zero base, in which the analogous result for operations in motivic cohomology is proved in
[BH25]. To perform such a reduction, it is necessary to upgrade from statements about maps defined on
cohomology (as in to highly structured statements regarding maps of sheaves of spectra, so
that we can apply the natural functoriality of such sheaf categories associated with &k, &, and K. Fortunately,
all the maps under consideration have been constructed as maps of sheaves:

e The map Pj: HEY (X) — HE2P~D5P (XY §s obtained from the map of sheaves of spectra

Pio: FY(0) — F3Y (pb)[2(p — 1)1]

by evaluation at X and then taking afh cohomology groups.
e The map P!  : H%? (X) — Hs;f(p_l)z’b+(p_l)l(X) is obtained from the map of motivic spectra

syn * ~syn

Pl FS™ = FY™ ((p — Di)[2(p — 1)i]

syn *

by twisting by b, evaluating at X and then taking a*® cohomology groups. As an intermediate step,
the map P(,, of motivic spectra restricts to maps of Nisnevich sheaves of spectra that we abusively
denote again by

Pl O (b) = F™ (b+i(p — 1))[2i(p — 1)).

syn *

We will compare Py and Péyn in this incarnation: as maps of Nisnevich sheaves valued in Sp.

Proposition 8.2.1. Let i € N and a,b € Z. Then we have the following relations of morphisms in
Pnis(Spec 0;Sp):

e Fori > b, we have
Pl = 7P DO=0PL FYR(b) — FY (b +i(p — 1))[2i(p — 1))].
e For b > i, we have
PL & 7 D0-DPE L Fn(h) o R (pb)[2(p — 1)i.
In particular, if i = b then Py = PL_ .
Proof. By definition (cf. Remark [6.1.3)), the operation
Pl (F™)e = F((p — i)o[2(p — 1)d]

is obtained from Voevodsky’s power operation P : (F°) g — F2°*((p — 1)i) x[2(p — 1)i] by applying the

mot *
functor ¥. Restricting to sheaves of spectra, we deduce that

Pl F(b)o — F(b+ (p — 1)i)o[2(p — 1)d]
is obtained from the morphism

Pliot: Fp2 () — Fpt (b + (p — 1)i)k [2(p — 1)1]
by applying the functor Leiji: Pris(Smi;Sp) — Puis(Sme; Sp).  Similarly, the operation Pi for the
syntomic complexes over & is obtained from the operation P4 for the motivic cohomology complexes over K
by applying the functor Lg;j., thanks to It remains to show that the same-notated relations
as in the theorem hold between the E,.-operations of the motivic complexes over K and Voevodsky’s motivic
power operations, which is the result [BH25, Corollary 1.10] of Bachmann—Hopkins. O

Proof of [Theorem 8.1.1. In view of [Proposition 8.2.1} it remains to see that the operations Pl , and Py
on syntomic cohomology groups are obtained from the operations on the underlying Sp-valued Nisnevich

sheaves from |Proposition 8.2.1|7 via evaluation at X and passage to cohomology groups. For ngn this is
tautological, and for P} it is [Proposition 7.4.2 O
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Part 3. Spectral prismatization

Prismatization over k, developed by Drinfeld [Dri24] and Bhatt-Lurie [BL22], lifts syntomic cohomology to
quasicoherent sheaf theory on a stack (Spec k)5Y". In this Part, we carry out a generalization of this procedure
for spectral syntomic cohomology, which we correspondingly call spectral prismatization. In particular, in §9]
we define a category FGauge (k)8 of “(pre)spectral prismatic F-gauges” for Spec k, which is a major step
towards constructing Lurie’s envisioned prismatic stable homotopy category over k.

Then in we prismatize the syntomic Steenrod algebra and its dual, lifting them to objects of
FGauge (k). This gets used to prove the compatibility statement between Poincaré duality and syn-
tomic Steenrod operations, formulated as in the Introduction, which is necessary for the
eventual application to Brauer groups.

In [Bha22, §4], Bhatt—Lurie reinterpreted Poincaré duality for syntomic cohomology in terms of Serre
duality on the stack (Spec k)5Y. The first step for proving is to correspondingly lift the
compatibility statement to the stack (Spec k)™, where it becomes an assertion about the compatibility
of the prismatized syntomic Steenrod algebra and Serre duality. This compatibility is then explained by a
theory of “spectral Serre duality” for FGauge (k)£°, which we develop in

9. SPECTRAL PRISMATIC F-GAUGES

In §5 we defined the category of “syntomic spectra” MOdw(S;) (MSg). In this section, we will define certain
subcategories

FGauge (k)z, C Modggy»(MSy) and FGauge (k)§™ C Modyss)(MSy),

consisting of “geometric objects”. We will eventually see that FGauge (k)p, can be identified with the
category of “prismatic F-gauges” in the sense of Bhatt-Lurie, which justifies calling FGauge (k)§° the
category of “spectral prismatic F-gauges”.

The philosophical significance of FGauge (k)5 is that it approximately matches Lurie’s envisioned “pris-
matic stable homotopy category” over k. The practical significance, for our later applications, is that the
categories Modpsy» (MSy) and Modd,(gz)(MSk) are “too big” to support a reasonable version of Serre duality;
cutting down to the subcategories of (spectral) prismatic F-gauges will remedy this issue.

9.1. Generation of classical prismatic F-gauges. Let k be a finite field of characteristic p. Drinfeld and
Bhatt-Lurie have defined a formal stack (Spec k)" := kS¥® over Spf Z, (following the notation of [Bha22]
Chapter 4]). The derived category of quasicoherent sheaves D((Spec k)5™) is called the “(derived) category
of prismatic F-gauges over k”.

The key preparation for defining the desired spectral enhancement FGauge (k)£ is to develop an al-
ternative characterization of D((Spec k)¥"). This subsection proves a conjecture of Bhatt [Bha22, Remark
4.4.6], which is the main content behind this alternative characterization.

9.1.1. Geometry of (Spec k)>¥™. We will need to invoke some explicit aspects of the construction in [Bha22,
Definition 4.1.1], which we review in terms that apply for any perfect field k of characteristic p.

(1) First, the Nygaard filtered prismatization of Spec k is the formal stack
(Spec k)N — [ShW(k)[u, t]/ (tu — p)/Gm].

Here our convention is that t is the Rees parameter, so it has degree —1, and u has degree +1.

(2) There are two open embeddings jur, jar : (Spec k) 2 Spf W (k) = (Spec k) of the prismatization
(Spec k) into (Spec k)N. The Hodge-Tate embedding jur is given by the locus u # 0, and the de
Rham embedding jqgr is given by Frobenius onto the locus ¢ # 0.

Then (Spec k)S¥" is obtained by gluing jgr and jqr along the obvious isomorphism.
Let (Spec k)i?;n be the base change of (Spec k)™ to F,. While (Spec k)S¥" is a formal stack over Spf Z,,,

Syn
F

the description above makes clear that (Spec k) i is an algebraic stack over F,.
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9.1.2. Syntomification of schemes. More generally, if X is a scheme (or stack) over k, we can form its syn-
tomification X ;*Z " as in [Bha22, §4.1]. In fact, the construction X + XY is obtained via the “transmutation”

procedure as in [Bha22|, using the k-algebra stack Giykn , so that
X3U(R) = X(GZ"(R).
In particular, the construction X + XSY" is limit-preserving.
9.1.3. Prismatic F-gauges of schemes. For each smooth k-scheme f: X — Spec k, we have an object
HX = RfIY™(Oxsyn) € D((Spec k)™™)
discussed in [Bha22l §4.2]. When f is smooth and proper, this is a perfect complex. We abbreviate
' =HY@F, € D((Spec k)3

which is a perfect complex (equivalently, a dualizable object) if f is smooth and proper. These constructions
organize into functors

H): Smy — D((Spec k)>™)  and " Smy, — D((Spec k)5™). (9.1.1)

Theorem 9.1.1. The collection {ﬁx}, as X ranges over smooth projective varieties over Fp, compactly
generates D((Spec k)SY™).

Remark 9.1.2. The proof of[Theorem 9.1.1| will also show more generally that for any perfect field k/F,, the

category D((Spec k)SY") is compactly generated by {ﬂx} for smooth projective X/k, affirmatively answering
the question raised in [Bha22l Remark 4.4.6].

9.1.4. Preliminary observations. Now we begin some technical preparations for the proof of
Let ¢: [Spec k/G ] = (Spec k)>¥™ be the closed embedding of the special fiber of the “Hodge point”. Let
0 := 1:O[spec k/G,,] be the corresponding skyscraper sheaf.

Lemma 9.1.3. Let O be the structure sheaf of (Spec k)>™ and 6 as above. Then the category D((Spec k)SY™)
is generated under colimits by the objects {O[m]{n}, d[m|{n}}mnecz. Here {n} denotes the Breuil-Kisin twist
by n.

Proof. We note that since (Spec k)Y is a p-adic formal stack, D((Spec k)5Y") is generated by D((Spec k)%‘; ).

Therefore, it suffices to show that if 7 € D((Spec k)%yp ") is right-orthogonal to all shifts and Breuil-Kisin
twists of O and 6, then F = 0.

Suppose that
Hom(Spec k)Syn (5[771]{71}7 -7:) =0

for every m,n € Z. By adjunction, this implies that ¢'F = 0. Consider the commutative diagram

Spec k AN Spf W (k)[u, t]/(ut — p)

lp, lpr (9.1.2)

(Spec k)/G,, ——~—— (Spec k)5

The commutativity of the diagram implies that
"' pr'(F) = pr” H(F) = 0. (9.1.3)

Since ¢ is a regular embedding cut out by u = 0 and ¢ = 0, the functor ¢/* identifies up to shift with
the derived mod (u,t) reduction. More precisely, we have a natural isomorphism ¢ = //*[—2] (all sheaf
operations are derived). Then from we see that /* pr'(F) = 0. since pr is smooth, it differs from pr*
by a shift and invertible twist, so we deduce that

0 = i"* pr*(F) = pr’* *(F).
Since pr’ is faithfully flat, we conclude that *F = 0.
As we assumed that F is supported on the special fiber (Spec k)%b;n, this shows that F = j.F is pushed

forward from the open complement of ¢ on the special fiber. But this open complement is isomorphic to
Spec k, so if Fy is right-orthogonal to all shifts of the pullback of O, then it must be zero. O



55

Let (HX)x C D((Spec k)>™) be the full subcategory generated under colimits by objects H*X for smooth
projective X/k. To prove Theorem it therefore suffices to argue that 6 € (H*)x. Let k — £’ be a finite
extension. In turn, it suffices to build §’, the pushforward of the skyscraper sheaf along ¢': [Spec k¥'/G,,] —
(Spec )%y“ — (Spec k)5 since § is a summand of the pushforward of §’. We will do this with a very
explicit construction.

9.1.5. Supersingular elliptic curves. Let E be a supersingular elliptic curve over F, for ¢ = p?, such that
Frob, acts as multiplication by p. This implies that all endomorphisms of E are defined over F,, so that
Endp,(E) is a maximal order in a division algebra ramified exactly at p and co. Let D := End(E) ®z Z,
and @ € D be the uniformizer corresponding to Frob,.
For the rest of the section, we take k := F,. The claim in question for any other k" easily reduces to this
case, by the observations in
For the perfect complex HE € D((Spec k)5™), let H := H*(HF). We claim that H is a vector bundle on
(Spec k)5, As explained in the proof of [Bha22, Theorem 3.5.1|, this follows from the fact that
e E has p-torsionfree crystalline cohomology, and
e the Hodge—de Rham spectral sequence degenerates for E.

Note that HO(HEF) = O and H2(HF) = O{-1}, so that H = H1(HF) indeed lies in (H~X)x.
Lemma 9.1.4. The Nygaard filtration of H is given by Fil§(H) = H and Fil};(H) = wp™ *H for n > 1.

Proof. The statement F il?\/(H ) = H is tautological from the construction of the Nygaard filtration. Since E
has dimension 1, it is also immediate that Fil\/' (H) = p Filj,(H) for n > 1.

It only remains to see that Fil\(H) = wH. We always have H D Fil},(H) D pH, and both inclusions
are strict because Fil}v(H )/p Fﬂ?\/H is the Hodge filtration on the de Rham cohomology of E, which is
non-trivial. Since H'(E) is free of rank 1 over D, the only D-module lying strictly between H and pH is
wH, so this must be identified with Fily (H). O

9.1.6. The prismatic F-gauge M. Recall the Nygaard filtered prismatization of k,
(Spec k)N = [SpE(W(R)[u, 1]/ (tu — p) /a,,].

Here our convention is that ¢ is the Rees parameter, so that it has weight —1, and w has weight +1. There is
an étale covering (Spec k:)N — (Spec k)™ obtained by gluing the two open sections jur, jar: Spf W (k) =
(Spec k) = (Spec k)" along the Frobenius of W (k).

From the definition of (Spec k)", we see that quasicoherent sheaves on (Spec k)N are identified with
graded modules over the ring W (k)[u,t]/(tu — p), which are p-adically complete in a suitable sense; see
[Bha22l §3.3] for the precise formulation.

Notation 9.1.5. We will depict a graded module M, = &, M,, over W (k)[u,t]/(tu — p) as a diagram
deg . -1 0 1

A s
M, M_4 My My
t t t

Example 9.1.6. The W (k)[u,t]/(tu—p)-module H, associated to H|(spec k)~ has H; being the ith Nygaard
filtrant, with ¢ being the inclusion and u being multiplication by p. Hence in terms of H,
has the form

-1 0 1 2
u=p u=p uU=p u=p u=p
— 4 T~ Y
g t t

(9.1.4)

Let M := H/wH, considered as a coherent sheaf on (Spec k)5Y". By Lemma the Nygaard filtration
on whH is
wH n=0,

Fil\(wH) =
Wy (wH) {pr"_lH n>1.
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Hence the underlying graded module of M|(gpec k) is @, cz(H/wH) = @,z F;. We see from (9.1.4)
that as a graded W (k)[u,t]/(tu — p)-module, M|gpec k)~ is the direct sum of a class vg in degree 0 which is
annihilated by v and a class w; in degree 1 which is annihilated by ¢. In other words, in terms of Notation

M| (spec k)~ looks like

—1 0 1 2
/%\ w
H/w H/w wH/w?H pwH/pw?H
%N/ Sl
[
tvg Vo w1 UWq

(9.1.5)
where the maps v and ¢ vanish when not depicted in the diagram. The following Lemma articulates the
uniqueness of a prismatic F-gauge with this form.

Lemma 9.1.7. There is a unique isomorphism class of prismatic F-gauges whose pullback to (Spec k‘)N 18
isomorphic to M| (gpec k)~ -

Proof. Examining the explicit construction of (Spec k)" we see that the additional datum required to
descend M|(gpec kv from (Spec k)N to (Spec k)Y is that of a Frobenius-semilinear isomorphism between
the localizations with respect to w and ¢, which intertwines the u-action with the ¢t-action. By the form
of , such an isomorphism must restrict to an isomorphism between M, and M;, which are both 1-
dimensional F,-vector spaces, and be determined by this restriction. By rescaling one of the generators if
necessary, we can assume that this isomorphism carries the image of vy (in the localization with respect to
t) to the image of wy (in the localization with respect to u), which now uniquely specifies the isomorphism
class of the descent. O

9.1.7. Square of supersingular elliptic curve. Note that we have
HERE 2 HE @ g e pysvn HE € Perf((Spec k)5™).

Therefore, H @ (spec )svn H =1 H®? € Perf((Spec k)%¥") also lies in (Hx)x.
We analyze some related prismatic F-gauges. Note that by geometric Poincaré duality [Tan24b|, we have

End(gpec pysv (H) = H @ H{1}.
We have a natural map D ®z, Z; — Endgpec k)Syn(H). This induces a map of rank 4 vector bundles over
(Spec k)™,
D @z, O{=1} = End(spec ysvn (H) {1} = H @ (spec kysm H =2 H??
By Lemma as a graded module over W (k)[u, t]/(tu — p), H®?|(gpec y)n looks like
-1 0 1 2
H®? H®? (wH)®H p(wH)® H
+H® (wH) +p(H® wH)
+(wH ® wH)

with the action of ¢ being the obvious inclusions, and the action of u being multiplication by p. In particular,
we have a nesting of coherent sheaves on (Spec k)3

p(H ®(Spec k)Syn H) — D (X)ZJL7 O{_l} — (H ®(Spec k)Syn H) (916)

We can choose a W (k)-module basis of H|gpec xy~ such that
e  acts as (O 1), and
p 0

o D®gz,Z, = My(Z,) is the Eichler order of matrices with coefficients in Z, which are upper-triangular
modulo p.
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With this choice of basis, the maps in (9.1.6) look like (in terms of Notation [9.1.5))

deg 0 1 2

End(H){-1}

D ®z, O{-1}

P

u P 7 u
I A A I A
(9.1.7)
9.1.8. The prismatic F-gauge M'. There is a trace map
®2 5 0{-1} (9.1.8)

corresponding under geometric Poincaré duality to the trace map Endgpec gysvn (H) — O(spec k)syn- Let us
write (H®2), for the kernel of this map, which is a rank 3 vector bundle on (Spec k)S¥™.

The restriction of to D ®z, O{—1} is the trace map D ®z, Z, — Z, tensored (over Z,) with
O{—1}. Hence the kernel of this restriction is Dy ®z, O{—1} where Dy C D ®z, Z, is the subspace of trace
0 matrices.

Then consider the prismatic F-gauge

M := coker (p(H®2)0 — Do ®z, (’){—1}) € Coh((Spec k)S¥m).

From examining (9.1.7)), we see that the restriction M |(spec k)~ has the following description as a graded
module over Zg[u,t]/(tu — p):

0 1 2
2 2 3 2 2
F F? F? F F?

More precisely, M |(spec k)~ has 3 generators over Z,[u,t]/(tu — p), in degree 1:
(1) one annihilated by u (corresponding to the lower-left entry in (9.1.7))) which we call vf,
(2) one annihilated by ¢ (corresponding to the upper-right entry in (9.1.7)) which we call w}, and
(3) one not killed by any power of u or ¢ (corresponding to anti-diagonal entry in (9.1.7)) which we call
y1. This generator spans the line bundle O{—1} on the special fiber M|gpe. Y
P

Then the (¢,u)-power torsion subsheaf of M admits the following description: it is the unique coherent
sheaf on (Spec k)f,in (up to isomorphism) which when pulled back to (Spec k){}/p , is isomorphic to the
graded F[u,t]/(tu — p)-module with two generators v} and wj in degree 1, one annihilated by u and the
other anmhllated by t. The umqueness aspect here has the same meaning (and proof) as in Lemma

Let us denote by M’ C M this (t,u)-power torsion subsheaf. Then the quotient M /M " is some hne
bundle £ on the special fiber (Spec k:)%}:1 (Spec k) since it pulls back to a line bundle on the étale

cover (Spec k)i}f;’ . Thus we have an extension

0= M — M- L —0. (9.1.9)
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Moreover, the line bundle £ becomes isomorphic to O{—1} after restriction to (Spec k)i;\/p . Then L is
determined by the gluing isomorphism, which in terms of the given trivialization is multiplication by an
element A € k*. Since multiplying the trivialization by « multiplies the gluing isomorphism by ¢(a)a™!,
multiplying A by ¢(a)a~! has no effect on the isomorphism class of £. Hence, after making a finite base
change k — k' if necessary so that A can be written in the form ¢(a)a~!, we can trivialize £. Therefore,

after making such an extension, we find that £, and then by (9.1.9) also M’, lies in (H~)x.

9.1.9. Finding §. Recall the prismatic F-gauge M from Observe that there is a monomorphism of
prismatic F-gauges M — M’, which in the explicit presentations above is given by vy — tv] and wy — wj.
(This description of the map on (Spec k)* descends to (Spec k)S¥™ since it can be arranged to be compatible
with the gluing.) We claim that the cokernel M’/M is isomorphic to 6’{—1}. This can be checked after pulling
back to (Spec k)V. On this pullback, we see explicitly that (M'/M)|(spec k)~ is the graded Zg[u, t]/(tu —p)-
module which is a 1-dimensional F,-vector space in degree 1 (generated by the image of v} ), annihilated by
both t and u. This verifies the claim, and completes the proof of Theorem [9.1.1 (]

9.1.10. Shortcut for p = 2. If p = 2, then we remark that there is a more direct way to build ¢ from (9.1.9),
without having to pass to a finite extension.

We equip End(H) with the following filtration. Observe that we have the tautological map O(gpec k)sym —
End(H) given by the identity element, and the trace map End(H) — O(spec k)syn- These maps compose to
multiplication by rank H = 2, which vanishes on the special fiber. Thus we obtain a filtration on End(H)/p,
which translation to a filtration Fy(H®?/p), with

F R B Fy
[l I 1 n
0 —— O{-1}/p — ker(H®?/p — O{~1}/p) —— (H*?/p)

The pullback of this filtration to D ®z, O{—1}/p has Fi(D ®z, O{—1}/p) = O{—1}/p and F>(D ®z,
O{-1}/p) = Do ® O{—1}/p. Composing its inclusion into Dy ®z, O{—1}/p with the projection modulo the
image of p(H®?)y, we obtain a map

O{-1}/p — coker (p(H®2)0 — Do ®z, (’){—1}) =M

which splits the filtration (9.1.9). Hence it shows that £ = O{—1}/p in the notation there, and we may
proceed as in §9.1.9 to conclude that § € (H™)x.

9.2. The category of spectral prismatic F'-gauges. Recall that if X € Smy, then there is an associated
object XX € MS, which we think of as the “motive of X” (cf. [Definition 3.2.6)).

Definition 9.2.1. We define the co-category
FGauge (k)z, € Mody(zmor)(MSy) = Modgzz» (MSy)

to be the full subcategory generated under colimits, twists, and shifts from objects of the form ¥° X @ Z;'"
where X is smooth and projective over k.
We define the oco-category of mod p prismatic F-gauges over k

FGauge (k)]Fp - Modw(Fgoc)(MSk) = MOdF;yn(MSk)

similarly, with F)™ in place of Z".

~

Remark 9.2.2. We will see later (in|Proposition 9.3.7) that there are natural equivalences FGauge (k)z, =
D((Spec k)*™) and FGauge (k)r, = D((Spec k)gzn), justifying the names of our categories.

In particular, FGauge (k), is a compactly generated (compactness of X @ F3™ holding by
tion 3.2.11), symmetric monoidal presentable subcategory of Modpsy» (MSg).
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9.2.1. The spectral enhancement. We will now define an enlargement of FGauge (k)r,, whose relationship
to FGauge (k)r, is analogous to the relationship between the p-complete stable homotopy category Sp and
the derived category of Fj,-modules D(F),).

Definition 9.2.3. We define FGauge (k)£ to be the fibered product of oo-categories
FGauge (k)g™ := Modyss)(MSk) Xnod jovn (MS) FGauge (k)r,.

In other words, FGauge (k)8 is the full subcategory of Modw(s. (MSy) spanned by all objects whose image
under the (colimit-preserving, symmetric monoidal) functor

Modw(g;)(MSk) — MOdw(lFr;mot)(MSk) = MOdF;yn(MSk)
belongs to FGauge (k)p

-
Remark 9.2.4 (Relation to prismatic stable homotopy theory). Lurie has conjectured the existence of a
“prismatic stable homotopy category” over a base scheme, whose relationship to prismatic F-gauges should be
analogous to the relationship between the stable homotopy category and the derived category of Z-modules.
One motivation for this hypothetical category is to capture algebraic invariants studied in [BMS19] such as
THH, TC, etc., which are not Z-linear.

For the base scheme Spec k, this category can be constructed unconditionally (although it is not yet in
the literature); let us denote it FGauge (k)s. It is closely related to FGauge (k)£ but not quite the same:
we expect that FGauge (k)s is the right-completion of FGauge (k)2 with respect to a certain “prismatic
t-structure”. In particular, there is a functor FGauge (k)§'® — FGauge (k)s which induces an equivalence
on the subcategories of eventually connective objects for the prismatic t-structure. It turns out that in
this paper, we will only deal with eventually connective objects, so it suffices for our purposes to work
in FGauge (k)§°. Furthermore, the definition of the prismatic t-structure, and the proof of the desired
properties of FGauge (k)s, involve considerable technicalities; since this paper already seems technical
enough, we feel it appropriate to defer the study of FGauge (k)s to a future work.

9.2.2. Modules over syntomic cohomology. Next we will show that the syntomic cohomology object F;"™
admits a natural structure of a commutative algebra in FGauge (k)£", such that Modgsyn (FGauge (k)§™) =
FGauge (k)r,. In geometric terms, this implies that the canonical forgetful functor FGauge (k)r, —

FGauge (k)£ behaves like a pushforward along an affine morphism of stacks.

Proposition 9.2.5. The symmetric monoidal adjunction
(-) B(sy) ﬂ}enh(FglOt): Modd,(gz)(MSk) = MOd,¢,cnh(F;not)(MSk) : forget

restricts to an adjunction

b 0 ke

" : FGauge (k)L = FGauge (k)r
The functor v, is colimit-preserving, conservative, and linear over FGauge (k)§'°; in particular, we have a
canonical projection formula

(M@ V'N) =1, (M)®N  for all M € FGauge (k)r,, N € FGauge (k).

Proof. The functor (—) @y ss) Y (Fet) carries FGauge (k)5™ into FGauge (k)g, by definition. To show

that its right adjoint carries FGauge (k)r, to FGauge (k)§™, by the definition of FGauge (k)§™ it would
suffice to show that the composition

Modgsys (MSy,) “2% Mod(ss) (MSt) — Modgsy (MSy,)

carries any M € FGauge (k)r, into FGauge (k)g,. By [Proposition 5.3.4, we have

M ®¢(§;) q/jenh(F;not) M ®¢th(]}‘m°t) (wenh(]Fmot) ®1ﬂ(§’ ,(/}enh Fmot ) @ M[pa Qa
ac S
(where .7, pa, qo are as defined in §5.3.2)) which is a direct sum of shifts and twists of M. Since FGauge (k),
is closed under shifts, twists, and infinite direct sums in Modwcnh(ﬁrgot) (MSy,), we see that M ®,, (S;,)dJenh(Fg‘Ot) c
FGauge (k)r,, as desired.
The assertions that ¢, is conservative, colimit-preserving, and linear over FGauge (k)8 now follow from
the similar properties of the forgetful functor Modgsy» (MSy) — Modw(gz)(MSk). These properties hold for
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any forgetful functor from modules over an algebra in an arbitrary presentably symmetric monoidal category,

which applies here because of O

Since ¢, is lax symmetric monoidal, it automatically factors as

enh

FGauge (k)r, SN Mod, gz (FGauge (k)5™)

T o (9.2.1)

FGauge (k)8

Corollary 9.2.6. The functor 1™ in (9.2.1)) is an equivalence.
Proof. This follows from the colimit-preservation, conservativity, and linearity of ¢, established in

tion 9.2.5 see for example [BCSY24, Proposition 2.5]. O
9.2.3. Compatibility with the syntomic Steenrod algebra. Since the fully faithful embedding

FGauge (k)g™ < Modyss)(MSk) (9.2.2)
carries L. [F™ to wenh(FgIOt), the endomorphism algebra Ext;gauge ()" (F") identifies with the syntomic

Steenrod algebra introduced previous in §6}
Corollary 9.2.7. The fully faithful embedding (9.2.2) induces an isomorphism

EXt i auge (e (1B ™) = AL
9.3. Comparing FGauge (k)r, with prismatic -gauges. We will now compare the categories FGauge (k)z,
and FGauge (k)r, with the derived categories of prismatic F-gauges arising in the work of Bhatt-Lurie
[Bha22].

9.3.1. The classical syntomification. Recall the syntomification (Spec k)5 from whose base change to
F, is (Spec k:)lsrypn

Definition 9.3.1. To keep notation from becoming too unwieldy, we shall henceforth abbreviate
o Syn o Syn
S := (Spec k)Fp and D(S) := D((Spec k)FP ).

9.3.2. Motivic spectra valued in prismatic F-gauges. The first step in relating FGauge (k)r, C Modgszy» (MSy)
and D(S) is to construct a comparison functor between them. The idea is that the functor should be an
enhanced version of X — RI'sy,(X;F,), valued in the category D(S) rather than D(F)).

Recall that we have constructed the commutative algebra F)" € ComAlg(MSy,) using the formalism of
oriented graded algebra from §3.5] We need a generalization of this formalism with coefficients in a general
target category.

Variant 9.3.2. Let D be a p-complete presentably symmetric monoidal stable co-category, let S be a qcgs
scheme, and let

Cs(D) := Pnis,ebu(Smg; D) = Cs @ D

be the category of D-valued Nisnevich sheaves on Smg satisfying elementary blowup excision.

Furthermore, let MSg(D) := MSg ®D be the category of D-valued motivic spectra over S.

We can define the category ComAlgP*"(Cs(D)) as the category of N-graded commutative algebras E in
Cs(D) together with a map X*°P! @ 1p — E;. As in the case where D = Sp, such data determines maps
E; = Hom(X®°P! @ 1p, E;11) and we let ComAlg® (Cs(D)) C ComAlgP'(Cs(D)) be the full subcategory
spanned by the E for which these maps are isomorphisms. Then, using similar arguments to the ones in
§3.5] there is a canonical functor

Vi : ComAlg® (Cs(D)) — ComAlg(MSs (D)) (9.3.1)

turning a D-valued oriented graded algebra into a commutative algebra in MSg(D).
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9.3.3. Lifting syntomic cohomology to an oriented graded algebra. We will lift syntomic cohomology to an
object of ComAlg® (C(D(S))).
Recall that for each smooth proper f: X — Spec k, there is a perfect complex
HX == RfSY(Oysyn) € Perf((Spec k)S¥™)
and its mod p reduction
HY =X ®z, F) € Perf(S).
The assignment X +— X5 gives a functor

s
(=)™ SmpP — Stacksz’é’pec kySvns

which is symmetric monoidal for the op-Cartesian structure on source and target (this amounts to the fact
that the construction X s X preserves limits, as discussed in §9.1.2). The assignment X — H(X)
therefore induces a lax symmetric monoidal functor

H: Sm)? — D(S)

which then promotes uniquely to a functor Sm;” — ComAlg(D(S)), which we also denote H. This functor
satisfies Nisnevich descent and elementary blowup excision, hence gives an object of ComAlg(Cy(D(S))).

Let Og{1} be the Breuil-Kisin line bundle on S (cf. [Bha22]). Asin it induces a graded commutative
algebra

Os{e}[2¢] := (Os{n}[2n])nen € ComAlg(C(D(S))™),
and by tensoring this with H we obtain the graded algebra
F{e}[20] := H @ Os{e}[20] € ComAlg(C(D(S))N).

Finally, in order to obtain a Pl-pre-orientation of H{e}[2e], note that the first Chern class ¢}’ provides
a map

j— 1 j— j—

H: > HeH{-1}-2]
which is an isomorphism [Bha22l Remark 4.3.6]. Hence, we obtain a canonical lift of the pre-orientation of
syntomic cohomology, yielding a promotion of 7{e}[2e] to an object of ComAlg® (Cx(D(S))N).

9.3.4. Lifting syntomic cohomology to a D(S)-valued motivic spectrum. We can now apply the D(S)-valued

version ([9.3.1)) of the functor v, to H{e}[2e] € ComAlg® (Cx(D(S))N), to obtain a commutative algebra
Hy, := v, H{e}[20] € ComAlg(MS(D(S))),

which lifts (F™); to an object of ComAlg(MSk(D(S))). It represents the functor 7, in the sense that the

mapping spectrum Hom(—, Hy) naturally promotes to a D(S)-valued functor satisfying

Hom(SFX,Hy) 2 H " € D(S) for all X € Smy,.

9.3.5. The comparison functor. As a general feature of p-complete symmetric monoidal stable co-categories,
we have a symmetric monoidal adjunction Sp < MSy, where the left adjoint is the “constant spectrum”. The
right adjoint is colimit-preserving by [Proposition 3.2.10f and [Proposition 3.2.11} Hence we may view this
adjunction as an adjunction in the 2-category of presentable co-categories. Tensoring with D(S), we deduce
that there is a symmetric monoidal adjunction

constant: D(S) S MS(D(S)): T (9.3.2)

in which the right adjoint I': MSg(D(S)) — D(S) is colimit-preserving and lax symmetric monoidal.
The canonical functor Sp — D(S) induces a functor

MS}, = MSy (Sp) — MS,(D(S)). (9.3.3)

The image of F;"" under this functor admits a canonical commutative algebra map to Hy, adjoint to the

tautological isomorphism to F3™ from the image of Hj, under the right adjoint of (9.3.3). This induces a
functor

(—) ®]F;yn Ek: MOdF;yn (MSk) — Modﬁk (MS}C('D(S))) (934)
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Definition 9.3.3. We define the functor
T: Modpsy= (MS) — D(S)
to be the composition
Modgsy (MSy) D, Modg;, (MSy.(D(S))) <+ D(S),
where the second functor is the restriction to Hg-modules of the right adjoint I' from (9.3.2)).
Remark 9.3.4. A similar discussion with Z, in place of F), leads to a functor

Y: Modgzn (MSy) — D((Spec k)>™). (9.3.5)

By construction, T is a composition of colimit-preserving lax symmetric monoidal functors, hence is itself
colimit-preserving and lax symmetric monoidal. We will show that T restricts to a symmetric monoidal
equivalence FGauge (k)r, = D(S).

9.3.6. Consequences of Atiyah duality. Below, for a dualizable object ¢ in a symmetric monoidal category C
we denote by ¢V its dual.

Theorem 9.3.5 (Atiyah duality for motivic spectra, [AHI24]). Let S be a gcgs scheme, and let X be a
smooth and projective S-scheme of relative dimension n over S. Then ¥°X is dualizable in MSg, with dual
Y X(—Tx), the motivic Thom spectrum of the negative tangent bundle on X. Furthermore, we have

Hom(ET X, (F")s) = (B X @ (F")s)" = XX @ (F3™)s[—2n](—n).
Proof. The first part is the Atiyah duality isomorphism of [AHI24, Theorem 1.1]. The last assertion follows
from the Thom isomorphism associated with the Pic-orientation of F3)™(e)[2e], cf. [AHI25, §6]. O
Remark 9.3.6. For M dualizable in Modgsy» (MSg), the value of T on the dual MY is given by
T(Mv) = F(Mv ®]F;yn ﬁk) = F(/Hom]F;yn (M,Ek» S D(S)
In particular, if X € Smy, with X3°X dualizable in MS;, (which is satisfied when X is smooth and projective,
by [Theorem 9.3.5) then (X3°X) ® F3™ is dualizable in Modgsys (MSy), and we have
T((ETX @ FY™)Y) =" € D(S). (9.3.6)
We now deduce that the restriction of T to FGauge (k)r, is fully faithful.

Proposition 9.3.7. The functor T (from|Definition 9.5.5) induces a symmetric monoidal equivalence
FGauge (k)r, = D(S) = QCoh((Spec k)%in)

and its Zy-variant (from|Remark 9.8.4) induces a symmetric monoidal equivalence
FGauge (k)z, = QCoh((Spec k)*™)

Proof. The arguments for the two cases are completely analogous, so we will just write the first one.

The category FGauge (k)r, is, by definition, generated under colimits by Tate twists of objects of the form
X @ Fp" for X smooth and projective. Then by the image of FGauge (k)r, generates
D(S) under colimits, hence Y is essentially surjective. It remains to establish that the restriction of the
functor T: Modpsy» (MSg) — D(S) to the full subcategory FGauge (k), is symmetric monoidal and fully
faithful.

First we show that T is symmetric monoidal. Since T preserves colimits and sends Tate twists to Breuil-
Kisin twists, in order to check that its lax symmetric monoidal structure is actually symmetric monoidal,
it suffices to check that the relevant map is an isomorphism on generators. Noting that by
FGauge (k)r, is generated by Tate twists of objects of the form (¥3°X ® F5™)Y, what we want is to check
that the map

T(EPX @FY)Y) @ T(EFY @ FY™)Y) = Y(ETX @ ™Y @ (STY @ FY™)Y) (9.3.7)

p

. . . . . . o X Y
is an isomorphism for all smooth projective schemes X,Y over k. The source identifies with H~ ® ‘H by
(9.3.6)). Using (9.3.6) again — in addition to the symmetric monoidality of each operation ¥3°, tensoring with
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F¥", and formation of the dual (of a dualizable object) — the target identifies with H(X x Y). Under these
1dent1ﬁcat10ns identifies with the Kiinneth isomorphism for D(S)-valued syntomic cohomology

O 2" oA
for smooth projective X,Y.

Next we show that T is fully faithful. Since Y is colimit-preserving and symmetric monoidal, and since our
generators for FGauge (k)r, are compact, dualizable, and closed under the symmetric monoidal operation,
it suffices to check that T induces an isomorphism on the Hom spaces from a generator to the unit. By the
further compatibility of T with Tate twists, we reduce to checking that the map

RHom((S°X ® F™), FS™) — RHom(Y(S2X @ FY™), T(FY™)) (9.3.8)

is an isomorphism for all smooth projective X/k. The source identifies with the syntomic cohomology
Ry (X; Fp) since 7Y™ is a motivic spectrum representing syntomic cohomology, and the target identifies
with the global sections RI'(S ;ﬁx)7 which again identifies with RIy,(X;F,) since the functor H is a lift
of mod p syntomic cohomology to D(S). Moreover, these identifications carry (9.3.8]) to the identity map,
by construction. O

9.4. Spectral prismatic F-gauges of schemes. An important desideratum for the category FGauge (k)§°

is the existence of a functor X — #%: Smj — FGauge (k)2 that “lifts” the functor X +— H* from

in the sense of a commutative diagram

Sm}” 20, FGauge (k)2

\ l (9.4.1)

FGauge (k)z,

We will construct this commutative diagram (and in fact, a more general one encompassing qcqs schemes
over k).

9.4.1. Construction of the functor #(~). Recall that FGauge (k)£ was defined as a full subcategory of
Mod,jenn (Smot)(MSk). Let

Rs: Mod yenn (gmory(MSy) — FGauge (k)§*™ (9.4.2)
be the right adjoint to the tautological inclusion. Similarly, let
Rp,: Modgsy»(MSy) — FGauge (k)r, and 7Rgz,: Modzs»(MSk) — FGauge (k)z, (9.4.3)

be the right adjoints to the tautological inclusions.
Recall that the construction of the equivalence FGauge (k)z, = QCoh((Spec k)5¥™) in was arranged
to intertwine the functor X — H*X with the composite functor

p Homus, (55 ()25

R
Sm¢ Modgsy» (MSy) —2» FGauge (k)z,. (9.4.4)
This motivates the following definition.
Definition 9.4.1. We define the functor (=): Sm® — D(.#) to be the composite functor

Homus, (5 (—),pmk (™ot
) e 2o CE O N0 o gy (MSy) 5 FGauge (k)2 = D(#).  (9.4.5)

Note that .#(~) is lax symmetric monoidal, being a composition of two lax symmetric monoidal functors.
Later in Corollary [0.4.8] we will see that it is even symmetric monoidal.

Example 9.4.2. If X is smooth and projective over k, then 3%°X is dualizable by Theorem and both
SPX @y (S™0) and its dual in Mod genn gmor) (MSy,) belong to FGauge (k)£™. Therefore, in this case we
have

%X o~ (Zj_OX)V ® wenh(Smot)'
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9.4.2. 1In order to show that the functor (7 fits into a commutative diagram (9.4.1)), we will show that
each of the constituents in the definition of /(=) is compatible with base change to Zy", in a suitable sense.
The first part is handled by the following Proposition.

Proposition 9.4.3. Let X be a smooth scheme over k. Then the canonical map
Homys, (T X, penb(Smoty) @yenn (gmoty L™ — Homus, (XX, Z)™) € Modzsyn (MSk)
is an isomorphism.

Proof. Since our categories are p-complete, we can check that the map is an isomorphism after reducing mod
p, where it becomes the natural map

Homs, (57X, " (S™)) @ yenn gmory F™ — Homus, (ST X, F™) € Modgys (MSy). (9.4.6)
For [n] € A, abbreviate A, := 1((F2°")®("+1)) "and recall that by Definition (cf. [Definition 5.1.1)
MOdwcnh(Smot)(MSk) = [l%mA MOdAn (MSk) (947)
nje

Accordingly, the functor XX @ (—): Modyenn gmor) (MSg) — Mod jenn(gmory, whose right adjoint is (9.4.6)),
can be presented as the limit of the vertical functors in the following diagram:

MOdAU(MSk) == Mod4, (MS;) == Moda,(MS;) E& - -

=
lEfX@(f) lz‘,j_"X®(f) lEfX@(—) (9.4.8)
MOdAO(MSk) =S| MOdAl(MSk) = MOdA2(MSk) % cee
In these terms, our goal is to compare the right adjoint of the limit of the vertical functors and the right
adjoint of the leftmost vertical functor. More generally, we will show that the right adjoint of the limit
is obtained from the right adjoints of the vertical functors in the diagram by passage to the limit (and,

in particular, that they assemble to a natural transformation of diagrams). To show this, by [ACS19,
Proposition 2.1.7], it would suffice to show that for each n, the Beck-Chevalley map

/HO’InMSk (Ei_oX, An) ®w(Smot) Fzyn — HomMSk (ZfX, An+1)
induced from the horizontal morphisms in the diagram is an isomorphism. This map can be rewritten as
7‘[0’/7?,1\/151c (EioX, An) ®a, An+1 — HomMsk (ZfX, An+1). (949)
Using [Proposition 5.3.3) we can identify (9.4.9) with the assembly map
@ HomMsk (ETX, An)[pa](Qa) — 7'[O'WLMSk (EfX7 @ An[pa](qa))'

acs a€S

It remains to show that the functor Homuysg, (XX, —) preserves colimits. Indeed, note that this functor
factors as

MSk f—) MSx f—*> MSk
for f: X — Spec k the structure morphism. Now, f* preserves colimits because it is a left adjoint, and f,
preserve colimits by [Proposition 3.3.1}, so we are done. O

9.4.3. Next we will establish compatibility of the right adjoints (9.4.2) and (9.4.3) with base change. We

have a commutative diagram

FGauge (k)™ < Mod yenh (gmor)(MSy)
(—)@weuh(smot)zy"l l(—)@wenh@mot)zzy"
FGauge (k)z, ——— Modgzs» (MSy)
which induces a Beck—Chevalley natural transformation
Rs(M) @yenn (gmory L™ — Rz, (M @qenn(gmory Z)™) (9.4.10)
of functors Mod enn (gmor) (MSg) — FGauge (k)z,.

Proposition 9.4.4. The natural transformation (9.4.10) is an isomorphism.
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Proof. Since our categories are p-complete, we can check that the map is an isomorphism after reducing mod
p, where it becomes the analogous Beck—Chevalley map

Rg(M) ®,¢,enh(smot) F;yn — R]Fp (M ®,¢,enh(gmot) F;yn). (9411)

As in the proof of [Proposition 9.4.3 abbreviate A,, := ¢((F2°")®("+1)) for each [n] € A. Define
FGauge (k)a, := Moda, (FGauge (k)§°).

Then it follows immediately from the definition of FGauge (k)§™ that
FGauge (k)8 = lim FGauge (k)a
[n]eA

n

and the functor FGauge (k)g'® — Mod enn gmot) (MSy) is the limit of the map of simplicial diagrams (where
the vertical functors are colimit-preserving)

FGauge (k)rp, == FGauge (k)4, = FGauge (k)a1, = -

j j j J (9.4.12)

MOdF;yn (MSy) == Mod 4, (MS;) == Mod,4,(MS;) €= -

=1

In this situation, as in the proof of [Proposition 9.4.3] in order to show that is an isomorphism,
it suffices by [ACSI19, Proposition 2.1.7] to show that the levelwise Beck—Chevalley transformation is an
isomorphism for each [n] € A. Using that (—) ®@yenn(gmory F™ = (=) ®a, Anq1 on A,-modules (as in the
proof of [Proposition 9.4.3)), we can write the map in question as

Ra, (Mn) @4, Ant1 = Ra,,,(My ®a, Ani), (9.4.13)
where M,, := M ® A,, € Mod 4, (MS). Note that since A,, is an ;Y -algebra, we also have the presentation
FGauge (k)a, = Moda, (FGauge (k)r,).

By definition of FGauge (k)r,, this implies that FGauge (k)a,., is generated under colimits and shifts by
the objects of the form XX ® A, for projective X € Smy, so it suffices to show that (9.4.13)) is carried
to an isomorphism by Hompy, ., (X°X ® A,41,—) for all such X. Here we abbreviate

Homy, ,(M,N) := HomModAnH(Msk)(M, N).
(If M, N lie in FGauge (k)a,,, then we use the same notation Hompy, (M, N); since the embedding

FGauge (k)a,., = Moda,,, (MSy) is fully faithful, there is never risk of confusion.)
In other words, we want to check that for all projective X € Smy, the map

HomAn+1 (Eii.-oX Y ATL+1’ RAn (Mn) R4, An-‘rl) — HomAn+1 (ZfX ® ATL+17 RAn+1 (Mn R4, An+1)) (9414)

is an isomorphism. Using [Proposition 5.3.3|to identify (=) ®4, Ant1 = P e s (—)[Pal(da), Wwe may rewrite
the LHS as

Homg, ,(EFX ® Apy1,Ra, (M) ®a, Ant1) = Homga, (57X ® Ap, Ra, (M) ®a, Anyi)

= Homy, (37X @ Au, @ Ra, (M) pal(aa))
aE S

(é) @ Homy, (XX ® Ap, Ra, (Mp)[pal(qa))

acS
= @ Homy, (XX ® An, My [pa)(ga))
aES

(*%*) Homp,, (ETX ® Anp, @ Mn[pa](qa))'

aeS

The only non-formal steps are (x) and (xx), where we commuted the formation of Hom with an infinite
direct sum. The explanation is the same for both, so we will focus on (%). To justify this, note that there
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is a natural map, and to check that it is an isomorphism we may reduce mod p, because our category is
p-complete. This reduction identifies with the assembly map

P Homa, (ST X @ An, Ra, (M) pal(0a)) €2 Fp > Homa, (SFX @7 A, @) Ra, (Mn)[pal (a0) ) @2 F.
ac S aed

Up to a shift, tensoring the Hom with F), is equivalent to replacing ¥°X ® A,, with ¥°X/p® A,,. But this
object is compact (indeed, ¥°X/p is already compact in MSy), so the map

€D Homa, (SZX/p® An, Rat, (M) [pa) (4)) = Homa, (S3X/p 97 An, @) Ra, (M) pa](40)

acs acs
is an isomorphism. Similarly, for the RHS of (9.4.14) we have
I‘IOIIlAn_*_1 (EfX X An+1, RAn+1 (Mn ®An An+1)) = I‘IOInAn_*_1 (EfX (024] An+1, Mn ®An An+1)
= Homy, (ETX @ Ap, My, @4, Apy1)

=~ Homy, (25’:){ ® Ay, @Mn[pa](qa))-

Moreover, these identifications carry to the identity map, as desired. O
Corollary 9.4.5. For all X € Smy, the natural map o* X — HX € D((Spec k)>™) is an isomorphism.
Proof. We have

AKX = T @ oo gmory A = L5 @ypenn gmor) R(Hom (P X, " (S™Y))

1)
& Ry, (Z™ @penn (gmory Hom (ST X, ™ (S™Y))

)
~ Ry, (Hom(ST X, Z9™)) = 1Y

where step (1) is [Proposition 9.4.4| and step (2) is [Proposition 9.4.3 O

Remark 9.4.6. The formulas (9.4.4)) for H(~) and (9.4.5) for ##(~) make sense for any qcqs scheme X/k, and
carry cosifted limits to cosifted limits. Therefore, the same formulas define functors from the category Sch;”
of qcgs schemes over k, which are Kan-extended from Sm}”. Thus we obtain more generally a commutatlve
triangle

SchyP EAmA FGauge (k)%™

\ l (9.4.15)

FGauge (k)z,

Corollary 9.4.7. Let X be smooth and proper over k. Then s~ is dualizable in FGauge (k)&™.

Proof. Since FGauge (k)5 = limp,jca FGauge (k)a, we can check the dualizability of X by base-
changing to each of the A,,’s. Thus it would suffice to show that J#% ® A,, is dualizable in FGauge (k)a,
for all [n] € A.

Since X @ A,, = X @ Ay @a, An, it would suffice to show that #X @ Ag = #X ® Y™ is dualizable

in FGauge (k)r,. Thanks to|Corollary 9.4.5) the equivalence FGauge (k)r, = D(S) intertwines 7~ @ F3¥™

with " € D(S). The latter object is dualizable by the syntomic Poincare duality of [Bha22, Theorem
45.3]. 0

One motivation for Bhatt-Lurie to construct (Spec k)SY" was to “salvage” the Kiinneth formula, in the
sense that #(~) is symmetric monoidal. This statement is refined by the symmetric monoidality of #(~),
which we now prove.

Corollary 9.4.8. The functor #(~): Sm}” — FGauge (k)8 is symmetric monoidal. In particular, for
every X,Y € Smy we have
HX @ Y s XY (9.4.16)
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Proof. We have already equipped .#(~) with a lax symmetric monoidal structure, so it suffices to show
that the comparison map is an isomorphism. Since ¢*: D(.#) — D((Spec k)5¥") is conservative and
symmetric monoidal, it suffices to show that ¢*.#(~) is symmetric monoidal. Now Corollary identifies
this functor with #(7): Sm® — D((Spec k)S¥*), which is symmetric monoidal. O

10. PRISMATIZATION OF SYNTOMIC STEENROD OPERATIONS

Prismatization lifts the syntomic cohomology of X to a prismatic F-gauge H~ € FGauge (k)r,. In this
section, we will prismatize the syntomic Steenrod operations. Concretely, this means lifting the syntomic
pre

Steenrod algebra A%} to an algebra o4y, € FGauge (k)g*, and also lifting the action of A%} on syntomic

. =X
cohomology to an action of 2y, on H .

10.1. The spectral prismatization. We continue to abbreviate S := (Spec k)i?;n We constructed in
Proposition a symmetric monoidal equivalence D(S) = FGauge (k)g, of stable co-categories.

We introduce the abbreviation D(.¥’) := FGauge (k)§'°. The notation suggests that D(~”) should be
viewed as the category of quasicoherent sheaves on a spectral stack & E We will not (in this paper)
invoke the geometricity of the stack .7, so this is mainly a notational device which lends geometric intuition
and notation to various functors that we will work with, e.g., the natural symmetric monoidal functor
*: D(S) = D(S) from [Proposition 9.2.5[should be imagined as pullback along a map ¢: S — ..

Thus we have identifications

D() = FGauge (k)§'° and D(S)=FGauge (k)r (10.1.1)
by tautology in the first instance, and [Proposition 9.3.7] in the second. We transport the functors from
[Proposition 9.2.5| to adjoint functors *: D(.¥) S: D(S): L.

Recall from |Corollary 9.2.6|that t.: D(S) — D(¥) is the forgetful functor from a module category over

the commutative algebra e (IF;“Ot). In particular, it preserves all limits and colimits, and it is linear over
D(.). Part of |[Proposition 9.2.5| gives the projection formula

W(FRUY) 2 (1, F)®%9 for all F € D(S) and & € D(¥). (10.1.2)

We will interpret the (dual) syntomic Steenrod algebra in terms of quasicoherent sheaves on the stacks S, .7.

P

10.2. Internal Hom. The oco-category Modw(gz)(MSk) is presentably symmetric monoidal, being a limit
of such categories along symmetric monoidal colimit-preserving functors. The full subcategory D(.¥) C
Mod¢(S;)(MSk) is a symmetric monoidal subcategory closed under colimits, hence itself presentably sym-
metric monoidal. It follows from the Adjoint Functor Theorem [Lur09, Corollary 5.5.2.9] that it is closed
symmetric monoidal, i.e., admits internal Hom objects such that Hom(X, —) is right adjoint to X ® (—).

Definition 10.2.1. We denote the internal Hom functor of FGauge (k)8 =: D() by Hom »(—,—) and
the one of FGauge (k)r, = D(S) by Homs(—, —).

10.3. Prismatization of the syntomic Steenrod algebra. We write Os € D(S) and Oy € D(¥)
for the units of these symmetric monoidal categories. In terms of (10.1.1), we have Os « we“h(Fg“’t) €
FGauge (k)g, and Oy < ¢(S™°") € FGauge (k).

Definition 10.3.1 (Prismatized syntomic Steenrod algebra). Let
oyn = Hom#(1,0s,1,O0s),
a priori considered as an associative algebra over 1.Og in Alg(D()).
Notation 10.3.2. Note that
RI(S; —) := RHomps)(Os, —) = RHompGauge (k) (" (Fp"), )
as a functor D(S) — D(F,). Motivated by this, we formally define
RI(.#; —) := RHomp () (O, —) = RHompgayge (mypee (™" (8™, —)

25A¢ this time, we are only willing to assert this for the “true” category FGauge (k)s, cf. Remark Again, it makes
little difference for our purposes in this paper, because we are interested in eventually connective objects.
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as a functor D(¥) — Sp. When this functor is evaluated on sheaves pushed forward from D(S) via t., we
may regard it as factoring through D(F,) — Sp.

We define H*(S; —) := H*(RI'(S; —)) and H*(.%; —) analogously. For F € D(S) and b € Z, we write
H**(S; F) := H(S; F{b}) and

H(8; F) == P H(S; F{b}) and  H**(S;F) := PH"*(S; F).
beZ a€Z
Note that if F € Perf(S), then it follows from [Bha22] Proposition 4.4.3] that H*(S; F{b}) = 0 for all but

finitely many b € Z.
We analogously define H**(; %) for &% € D(Y).

From (10.1.1) and [Corollary 9.2.7] we obtain an identification
A =BV o)

of bigraded associative algebras over H;* (k) = H**(S;Os) (later to be upgraded to an identification of

syn
bigraded cocommutative Hopf algebras). Thus we view %,y as the prismatization of the syntomic Steenrod
algebra.

10.4. Prismatization of the dual syntomic Steenrod algebra. We translate some of the discussion
from §6.3] into the prismatized language.

Proposition 10.4.1. The symmetric monoidal equivalence (10.1.1)) carries wenh(]F;“Ot(X)Fg‘Ot) € FGauge (k)£
to 1,05 ®p, 1+:0s € D(Y).

Proof. By construction, (10.1.1]) sends sends
wenh(]F]r?not) — L*OS
wenh(Smot) — Oy
Hence Proposition translates into the desired statement. ([l

From Proposition [10.4.1] and (6.2.5)), we obtain a splitting

t+0s ®o,, 1+0s = @ 1+0s &y € D(S). (10.4.1)
aE S

where £, has cohomological degree —p, and twist ¢,, so that Ogs &, = Os[pal{qa}-

Definition 10.4.2 (Prismatized dual syntomic Steenrod algebra). Under our identifications, the object
/%" from |Definition 6.3.1) may be viewed as

A = 1"1,05.
This is a commutative Hopf algebraF_q over Og in D(S), with a natural isomorphism
L™ 21,05 ®0,, 1:05 = @) 1.0s La.
aed

Note that by adjunction,
tsHoms (", 0s) 2 Hom o (140, 1+0s) = Hsyn, (10.4.2)

a priori as t,Og-modules, and then as associative ¢,Og-algebras. More colloquially, the Og-dual of &7s¥"
is “yn. Using this, we transfer the commutative Hopf algebra structure on &/*" to the dual structure on
'fQ{syn-

Although the global sections functors (cf. [Notation 10.3.2) are not symmetric monoidal, they are com-
patible with tensor products specifically on %y, and &7*", as articulated below.

26Using Lemma 6.3.2|to see that the a priori Hopf algebroid structure refines to a Hopf algebra structure.
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Lemma 10.4.3. (1) The cup product
HY*(S, ™) @pzyn oy HH(S, ™) — HY (S, 7" @0 /™) (10.4.3)

is an tsomorphism.
(2) The cup product

HY(S, ogn) gz o) B (S Hoyn) = B (S, Hoyn @105 Hayn) (10.4.4)
is an isomorphism.

Proof. (1) Using (10.4.1)), we have
Ly (dsyn ®Os JZ{syn) ~ L*%syn ®L*Os L*%syn

= (@ 1.0s ga> ®..0s (@ 1.0s ga,>
acS a'es
> B 1.0sbubar
o, €S

Hence we have
H*,*(S’ %Syn ®OS ﬂsyn) g H*,*((y7 L*%syn ®L*OS L*%syn)
= H (S P 105 abar).

a,a’ €S
Therefore, with respect to the identifications

H"* (51405 &) 2 HLY (k)€ and HY* (51,05 &) X HEE (k) Eor

syn syn

the map | 10.4.3] readﬂ

H*’*(Sa 'Qisyn) ®H:};;‘l(k) H*’*(S7 %Syn) = @ Hsyn fa ®H:yf,(k) @ Hsyn 50/

agS a'eS
- @ HE (B) Ealar = HYH(S, /™" @05 A7),
a0’ €S

which is visibly an isomorphism.
(2) Follows from a similar argument.

From (10.1.1)) and [Lemma 10.4.3} we obtain an identification

AVD = HH (S ™).

of bigraded commutative Hopf algebras over H;} (k) = H**(S). Thus we view &/*¥" as the prismatization
of the dual syntomic Steenrod algebra.

10.5. Prismatization of Steenrod actions. We already know that A%} acts on the syntomic cohomology

groups of a variety with coefficients in ;" (e). We now explore more refined structure that can be articulated
on the prismatization.

27using that only finitely many twists contribute, or alternatively that cohomology commutes with direct sums in general

on S.



70 SHACHAR CARMELI AND TONY FENG
10.5.1. Action on sheaves pulled back via v*. We will construct a tautological action of AZ} on the syntomic
cohomology of any sheaf 7 € D(S) of the form *.# for # € D(). In fact, this arises from the more refined
structure of an action of @y, on F in D(S). Informally speaking, the slogan is that “eZy, naturally acts on
a shift that admits a spectral lift”. This is a special case of the structural pattern discussed in [Fen20bl §4.2].

Let # € D(.¥) and F :=*% € D(S). Then we may write

wWF Z 1,57 =2 F Qo t.0s € D(.Y),
from which we obtain an action (in the sense of groupoids) of %y, on ¢, F. Taking cohomology, we get a
(bigraded) action of A%} on
H** (0. F) 2 H(S; F).

By construction, this recovers the action defined earlier in

10.5.2. Action on (symmetric monoidal) duals of pullbacks. Recall the notion of dualizable object in a sym-
metric monoidal category C. For a dualizable object ¢ € C, the dual will be denoted ¢".

Let &% € D(¥) and F := *% € D(S). Then

Homs(F,Os) = Homs(t* F,0s) = Hom o (F,1.0s) (10.5.1)

also has a tautological action of %y, (through its action on the target).

If .7 is dualizable in D(.), then F is dualizable in QCoh(S) (since it is the image of a dualizable object
under a symmetric monoidal functor) and we have

FV = Homs(F,Og) = Homy(f, 1+0g) = FV ®o, t+Os.

This isomorphism is equivariant for the #/yn-actions, which for the left term was defined via (10.5.1f), and
for the right term is induced by the action on ¢,Os. Taking global sections, we obtain an action of ASY on
RI(S; FY) for any such F.
10.6. Coproduct. The product on the commutative Hopf algebra o7*¥* is dual to a coproduct
Hgyn — Hgyn D1, 05 Doyn- (10.6.1)

After applying H**(—) to (10.6.1)), and using [Lemma 10.4.3, we obtain the coproduct on A%}, which is
identified explicitly by the Cartan formula of Proposition [6.4.1]

In particular, the coproduct ALL — ALY @uzxry Agh equips the category of Afj-modules with a

syn syn

monoidal structure (—) @y () (—). Similarly, the coproduct AL} — ALY ®r, ALY equips the category of

syn syn

*, %
syn

Ay -modules with a monoidal structure (—) ®r, (—)-
For F,G € D(S), we have a cup product map

H**(8; F) @prspx () B (8 G) = H* (85 F ®0, G). (10.6.2)

syn

Suppose F = 1*F and G = 1*¥ for #,9 € D(.¥). Then the source has a canonical A%*-action induced by

syn
the action on each factor (§10.5.1) and the coproduct, while the target has a canonical A:}’,";l—action via the
presentation F ®ps G = 1" (F ®o,, 9).

Lemma 10.6.1. Let .Z#,9 € D(¥) and F := *F,G := *9 € D(S). Then the cup product (10.6.2)) is
Ay -equivariant with the natural actions described above.

Proof. We have two actions (in the sense of groupoids) of @y on ¢, (F ®p¢ G): one is the tautological action
coming from the isomorphisms
1(F ®0g G) 2 1:"(F R, 9Y) 2 (F ®0o, 9) R0, t:Os
and the other coming from the coproduct ([10.6.1) composed with the natural action of yn ®,,05 Peyn ON
1x(F®G) 2 1, F ®,,05 txG obtained by tensoring the tautological actions. We claim that these two actions
are canonically identified; then the Lemma will follow immediately.
Writing
LF @05 4G = (F R0, 140s) @05 (94 R0, 1+0s)
=7 Ko, (txOs ®.,0s 1+0s) Ko 4

we see that the claim follows from the statement that the two actions of &y, = Hom.»(1.Os,t.Os) on
(1x0s ®,,04 t+Os) coincide: one via the identification (..O0s ®,,05 t+O0s) = 1+Os, and the other by the
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coproduct composed with the tensor product of the natural actions. This last statements amount to the
tautological compatibility of the coproduct with the unit. O

Remark 10.6.2. There is also an analogous compatibility for the cup product
HY (8 FY) @pzyn o) H(8:6Y) = HY (S FY @05 GY)

where F = *% and G = *¥, so that there are Steenrod actions by §10.5.2l We will only invoke the
compatibility for .% and ¢ which are dualizable, in which case it follows from [Lemma 10.6.1] so we omit the

proof of the more general statement.

11. SPECTRAL SERRE DUALITY AND STEENROD EQUIVARIANCE

11.1. Steenrod equivariance for arithmetic duality. The goal of this section is to prove the compati-
bility statement from §T.4] We will reformulate it slightly, keeping the notation there. Let X be a smooth,
proper, geometrically connected variety over a characteristic p finite field k. We dualize the cup product

Hn (X) @p, HGL(X) — HGL (X % X)

syn syn
over F,, and apply Poincaré duality to obtain a commutative diagram
Hiw (X)Y ®F, H;‘;;(X)V —— HE (X % X))V

syn syn
Poincaréll Poincaréil ( 11.1. 1)
Hz (X) @, High (X) +—— HEa(X xp, X)

syn syn syn

The top horizontal arrow preserves the bi-grading; the other maps do not, but we record that ¢ increases
the bidegree by +(1,0).

In the bottom row of , both the source and target have natural actions of A7, the target by the
coproduct (recall §10.6).

Theorem 11.1.1. The map ¢, from (11.1.1) is equivariant with respect to the action of AL*

syn*
The proof of Theorem will occupy the rest of the section. It will be long, so let us give a high-level
overview. Throughout this section, we continue to use the notation S := (Spec k)ii)n, and
52 D(S) 2 D(S): e
as in {10
(1) Firstly, in 11 we localize|Theorem 11.1.1jonto S: we formulate a “prismatization of ¢.” as a map ¢
of sheaves on S, whose compatibility with the prismatized Steenrod action recovers
upon taking global sections.
(2) The main input to defining ¢ is Serre duality on S. Since %y, is defined in terms of endomorphisms
of § over ., the desired compatibility will ultimately come from the fact that Serre duality itself
lifts to 7.
(3) In §11.3] we formulate and prove a form of coherent duality for D(.%) that we call spectral Serre
duality. The key idea is that this should implement Brown—Comenetz duality on spectral syntomic
cohomology.

(4) Finally, in §11.4] and §11.5| we study the interaction between spectral Serre duality and #y,, and
prove the prismatized version of Theorem [TT.1.1]

11.2. Prismatization of ¢. The map
pu HGL (X X X) — HGL(X) @r, Hn (X) (11.2.1)

syn syn
was constructed above in using Poincaré duality for syntomic cohomology. However, it admits
another description in terms of prismatization, which uses a more elemental ingredient to Poincaré duality.
Indeed, in the work of Bhatt-Lurie [BL22|, Poincaré duality for syntomic cohomology is reproven as a
combination of “geometric Poincaré duality” for prismatic F-gauges (due to Longke Tang [Tan24b]), and
Serre duality on (Spec k)5, We shall see that we can construct ¢ only from the latter Serre duality.
Let F,G € Perf(S), the oo-category of perfect complexes on §. We will construct a map

¢ :RI(S; F®os G) = RI(S; F) ®r, RI'(S;G)[1]. (11.2.2)
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and then show that H*(p ) recovers ¢, in a suitable special case.

11.2.1. Serre duality on S. We remind that (—)" denotes the formation of symmetric monoidal duals, which
can be calculated by inner hom to the unit. The duality results of [Bha22l §4.5] can be interpreted as follows.
The stack S enjoys a form of Serre duality:

RI(S;K)Y = RI(S; DsK) € D(F,), (11.2.3)
where DK := Hom(K,ws) is the internal Hom into the dualizing sheaf ws, and furthermore there is an
isomorphism

ws = 05[1]. (11.2.4)

The isomorphisms ((11.2.3)) and (11.2.4]) come from [Bha22, Theorem 4.5.2], which says that we have natural
isomorphisms of functors Perf(S) — D(F),),

Serre: RT(S; (—))" RT(S; Ds(~)) RT(S; (=) "[1]) (11.2.5)

whose composite we call Serre.

11.2.2. Construction of ¢ . Let F,G € Perf(S). We have a natural isomorphism in Perf(S),
FY ®0s G = Homs(F,O0s) ®os Homs(G,0s) = Homs(F ®os G,0s) = (F ®0s G)". (11.2.6)

Applying the lax symmetric monoidal functor RI': Perf(S) — D(F,) to (11.2.6) and composing with the
cup product gives a map

RI(S; FY) @r, RI(S;GY) = RI(S; FY @05 G7) 2 RI(S; (F ®0s G)Y). (11.2.7)

Taking F,-linear duals and using that RI'(S; —) takes dualizable objects to dualizable objects [Bha22l Propo-
sition 4.5.1], we obtain a sequence of maps

RI(S: (F 90, 6)")¢ 2L (RI(S: FY) @r, RI(S;6))”

|

Serre | RF(S,]'-V)V ®Fp RF(Syg\/)\/ (1128)
Serrell
RI(S; F ®os G)[1] ------ » RI(S; F)[1] ®F, RI(S;G)[1]

Note the resemblance between this construction and (11.1.1). Shifting the dashed map by —1 gives the
desired map

¢ :RI(S;F @0, G) — RI(S; F) @, RI(S; 6)[1]. (11.2.9)

In particular, upon taking cohomology we obtain a map
@, H*(S; F ®0s G) — H**(S; F) @, H*(S;G)[1]. (11.2.10)

11.2.3. Comparison with .. Recall that for smooth and proper f: X — Si ec k, we have a perfect complex

HX = Rffyn(oxsyn)7 whose mod p reduction is ﬁX € Perf(S) In §9.4) we lifted this construction to
X € D(Y), and equipped it with a natural isomorphism ¢* 7% = HX.

Taking F =G := WX in (11.2.10), and using the Kiinneth isomorphism gx ® ﬂx = ﬁXXkX, we obtain
a map
ox s HGn (X xp X) — HGL(X) @F, Hi (X)[1]. (11.2.11)

Lemma 11.2.1. Let X be a smooth, proper, geometrically connected variety over k of dimension d. Then

the map ¢ from (11.2.11)) agrees with the map ¢, from (11.1.1).

28More generally, this formula defines HX for any quasicompact smooth scheme f: X — Spec k, and if X is proper then
HX is perfect, as explained in [Bha22] Remark 4.2.3].
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Proof. As explained in [Bha22} §4.5], the Poincaré duality isomorphism HZ;, (X)Y =
Hg;fn+ 1=#d=*(X) is a combination of the Serre duality isomorphism
Serre: H**(S; (ﬂX)V[l]) -y H*’*(S;ﬁx)v € Perf(F,)
and the “geometric Poincare duality” isomorphism [Tan24b]
PDy: H [2d){d} = (H )" € Perf(S).

Moreover, the geometric Poincare duality isomorphism is compatible with products, in the sense that the
diagram

ﬁXXkX/[Qd + Qd/]{d + d/} %ﬁX[Qd]{d} ®ﬂX/[2d/}{dl}
zlPDXXX’ Z‘LPDX@)PDX,
X c e W) e )Y

commutes Y
Consider the following diagram of cohomology groups of sheaves on &, which we omit from the notation
for ease of reading:

H*,*(ﬁx)\/ ®Fp H*,*(gx)\/ — H*,*(ﬁx ®Fp ﬁx)\/ ~ Hn*(ﬁxxk‘x

1a. Kiinneth

IlSerre’ 1 3lSerre’ 1 ZTScrrc
H ((H)Y[1]) @, B ((H)Y[1]) +—— (7)Y @, (H)V[1) g B ((H )V (1)

P
2TPDX®PDX PDX)(XTZ

)\/

ZlPDx®PDx
H** (7)) @p, B (K )[Ad + 2] +—— Ho* (0 @p, 7 [4d+ 1)) g~ B> (7 [4d + 1))
e.

We claim that each square in the diagram commutes. Indeed:

e The upper left square commutes by definition of ¢, .
e The upper right square commutes by naturality of Serre duality.
e The lower left square commutes by naturality of ¢, .
e The lower right square commutes by the aforementioned compatibility of Poincaré duality with
products.
Hence the entire diagram commutes.
Now, the map ¢, from is the composite map in the bottom row of the diagram, while the map

¢y (11.2.11) is the composition of the other three faces of the outer square, so they agree. O

11.3. Spectral Serre duality. We will establish an incarnation of Serre duality on . that “lifts” Serre
duality on S in an appropriate sense.

Following classical coherent duality, we might try to start by defining a dualizing sheaf on . as a right
adjoint to the global sections functor. Unfortunately, in FGauge (k)5™ the unit ¢°?(S™°) = (S3) is not
p-completely compactm As a result, the global sections functor D(.) — Sp is not colimit-preserving, hence
cannot have a right adjoint.

11.3.1. Compatibility of Ind-completion and adjunctions. There is a general categorical fix for this situation:
passing to Ind-completionﬂ Indeed, if F': C — D is an exact functor between stable co-categories, the functor
Ind(F): Ind(C) — Ind(D) (that we will usually denote simply by F) admits a right adjoint F¥: Ind(D) —
Ind(C).

We will need to see that passing to Ind-completion does not ruin the good properties enjoyed by the
functors between FGauge (k)gyn, FGauge (k)£™, and Sp that we have been considering. We now collect

the facts about the construction Ind(—) that will ensure this.

2glnspecting the construction of Poincaré duality in [Tan24b|, this is a consequence of the additivity property for Thom
classes in [Tan24bl, Theorem 4.2].

30The unit of FGauge (k)s is p-completely compact.

31Applying Ind to big categories causes set-theoretic issues. These can be easily fixed using a choice of big cardinal k and
applying C — Ind(C*) instead of Ind(C); we leave it for the reader to carry this modification.
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Proposition 11.3.1. Let F': C — D be an exact functor of co-categories with finite colimits, which admits
an ezact right adjoint G: D — CE Then Ind(G) is canonically right adjoint to Ind(F).

Proof. The functor Ind is a functor of (0o, 2)-categories from the category of categories with finite colimits
and exact functors between them to the category of presentable categories. Therefore, it carries adjunctions
to adjunctions. O

Proposition 11.3.2. Let C be a symmetric monoidal co-category with biexact tensor product. Then:
o The fully faithful embedding i: C — Ind(C) is symmetric monoidal; in particular,

ilc®d) 2i(c)®i(d) € Ind(C) forallc,d €C.

e IfC is closed symmetric monoidal, so that we have an internal Hom-functor Homc, then i is closed;
in particular,

i(Home(c,c')) = Homua(e) (i(c),i(c')) € Ind(C) for all ¢,c’ € C.

Proof. The first point follows immediately from the construction of the symmetric monoidal structure on
the functor Ind. The second point follows from the first using the compatibility of Ind with the formation of
right adjoints (Proposition [I1.3.1). To spell this out: for every ¢ € C the functor Home(c, —) is right adjoint
to ¢ ® (—). Hence the ind-completion of Home(c, —) is right adjoint to the ind-completion of the functor
c® (—), ie., to i(c) ® (—). We deduce that Hominq(c)(i(c), —) = i(Home(c, —)). Restricting this to the
essential image of ¢, we obtain the result. (Il

11.3.2. Compatibility of Ind-completion and projection formula. Given an exact, symmetric monoidal functor
f*: D — C with lax symmetric monoidal right adjoint f.: C — D, we have a natural projection map

(fic)@d— fulc® f*d), ceC,deD

If this map is an isomorphism, so that f, is D-linear, let us say that the adjunction f* - f, satisfies the
projection formula.

Proposition 11.3.3. Let f* 4 f, be a symmetric monoidal adjunction as above. If it satisfies the projection
formula, then so does Ind(f*) - Ind(f.).

Proof. The functors
(¢,d) = Ind(fy)(c®Ind(f*)d) and (c,d)— (Ind(f.)c)®d (11.3.1)

both preserve filtered colimits in the ¢ and the d variables separately. Hence, to check that a natural
transformation between them is an isomorphism, it suffices to check that it is an isomorphism at ¢,d in
the essential images of the embeddings ¢ — Ind(C) and D — Ind(D), respectively. For such objects, both
functors in land in D C Ind(D) and the projection map between them coincides with the projection
map of the non-Ind-completed adjunction f* - f,, which we assumed to be an isomorphism. O

Finally, assume that C and D are closed symmetric monoidal and that the functor f, itself has a right
adjoint f'. Then, if f* - f, satisfies the projection formula, we can pass to the right adjoints to obtain an
isomorphism

Homp(frc,d) =2 fHome(c, f!d)

Corollary 11.3.4. Let f*: C — D be an exact, symmetric monoidal functor between stable closed symmetric
monoidal co-categories which admits a right adjoint f,. Assume that f. admits a further right adjoint f'
and that the adjunction f* 4 f, satisfies the projection formula. Then all these properties remains true after
Ind-completion. Namely, the functor Ind(f*) admits Ind(f.) as a right adjoint, which admits Ind(f') as a
further right adjoint. The adjunction Ind(f*) 4 Ind(f.) satisfies the projection formula and hence we have

Homlnd('D) (Ind(f*)X7 Y) = Ind(f*)HomInd(C) (Xa Ind(f')Y)
Convention 11.3.5. To avoid cumbersome notation, from now on we shall denote the ind-completion of a
functor F: C — D simply by F: Ind(C) — Ind(D). The compatibilities established above imply that this

abuse of notation does not affect the validity of assertions involving F. In particular, we shall denote by
Home(—, —) the internal hom of Ind(C) when C is closed symmetric monoidal.

321f C and D are stable, which will be the case when we apply this result, then the adjoint is automatically exact if it exists.



75

11.3.3. Brown-Comenetz duality. Brown—Comenetz [BCT76| introduced the Brown—Comenetz spectrum, which
represents the generalized cohomology theory associating to a spectrum E the Pontrjagin dual of its homo-

topy groups,
I*(E) = Homgz(m_.(F),Q/Z).
Let I € Sp be the p-completion of the Brown-Comenetz spectrum. Thus, if E is a spectrum of bounded
p-power torsion (meaning that p: E — E factors over the zero map for sufficiently large N), then the
mapping spectrum Homg, (E,I) has homotopy group

miHoms, (E,I) 2 Hom(n_;E, Q/Z).

Thus (at least for spectra of bounded p-torsion) the functor £ — Homg,(E,I) =: IE is a generalization of
Pontrjagin duality to spectra. For example, there is a natural isomorphism

IF, = F,, (11.3.2)

11.3.4. Spectral dualizing sheaf. Let C be a p-complete presentably symmetric monoidal stable co-category
(in particular, a module over Sp in presentable categories). Let (m¢)*: Sp — C be the unit functor and

(m¢)s its right adjoint. |Corollary 11.3.4] implies that after Ind-completion, we have a further right adjoint
7 Ind(Sp) — Ind(C).

Definition 11.3.6. We define the dualizing object of C to be the ind-object we = 7T!CI € Ind(C), and the
corresponding Serre duality functor to be

DC = Homlnd(C)(_a WC): Il’ld(C) — Ind(c)op'

Remark 11.3.7. This definition gives a reasonable notion of dualizing object only in a “sufficiently p-torsion”
setup (which is the only situation in which we will apply it).

More generally, if f*: C — D is a colimit-preserving symmetric monoidal functor, then by the same
procedure we produce a functor f': Ind(C) — Ind(D).

Example 11.3.8. Let D(F,) be the derived co-category of F,-vector spaces, and let ¢: D(F,) — Sp be the
forgetful functor, whose left adjoint is given by tensoring with F, over S. Then ¢' = Homsg,(F,, —). Since

Homsp (Fp,I) 2 F by (11.3.2)), we deduce that wg, := P'I=F,.
More generally, if C is a stable presentably symmetric monoidal category which is linear over F,,, then the

global sections (i.e., RHom from the unit object) functor C — Sp factors as C = D(F,) 2, Sp, so that
we = mpl = (') wp, = (7')'F,.

In particular, if C = QCoh(X) for a scheme X/F,,, then we = wx is the usual dualizing (ind-)sheaf in the
theory of coherent duality.

11.3.5. Spectral Serre duality. Applying the discussion of §11.3.4 to C := D(), we can now define an
ind-object

wy € Ind(D(Y)),
and a corresponding duality functor

Dy : Ind(D(#)) — Ind(D(.#))°P.

Similarly, we have the dualizing object ws = t'ws € Ind(D(S)) and a corresponding Serre duality functor
Ds. In fact, since the unit of D(S) = FGauge (k)r, is p-completely compact, the global sections functor
already has a right adjoint. Therefore, the object ws belongs to D(S) C Ind(D(S)), hence the functor Dg
sends ind-constant objects to ind-constant objects by [Proposition 11.3.2] We abuse notation and denote the

resulting functor D(S) — D(S)°P again by Ds.

Proposition 11.3.9. There is a canonical isomorphism
t:Ds Z Dy, Ind(D(S)) — Ind(D(¥))°P. (11.3.3)
In particular, the functor D carries the essential image of t.: D(S) — D() into D(.¥) C Ind(D(.¥)).
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Proof. The adjunction ¢* - ¢+, between the presentably symmetric monoidal stable co-categories D(S) and
D(.&) satisfies the projection formula by [Proposition 9.2.5 By [Proposition 11.3.3] the induced adjunction
between the ind-completions also satisfies the projection formula. Again by [Proposition 9.2.5] ¢, preserves
colimits hence admits a right adjoint ' [Lur09, Corollary 5.5.2.9], so we have a canonical isomorphism of the
form

teHoms(F,1'9) = Homo (1.F,9)

for all 7 € Ind(D(S)) and ¢ € Ind(D(.¥)). The natural isomorphism ((11.3.3) follows by taking ¢4 = wy €
Ind(D()). The “in particular” part follows because ¢, and Dg carry ind-constant objects to ind-constant
objects: for ¢, this is clear, and for Dg it follows from [Proposition 11.3.2] O

~

11.3.6. Duality involution on the prismatized Steenrod algebra. Combining the identification ws = Ogl[1]

from (|11.2.4)) with (11.3.3) yields isomorphisms
1+0s[1] 2 1.Ds(ws) Z Do (1.O0s). (11.3.4)
From this we get a sequence of isomorphisms

JZfsyn = Homy(L*OS, L*Os) 1) Homy(DyL*Os,DyL*OS)Op

= Hom .z (1xO0s1], 1. Os[1])°P = Hom 7 (1. Os, 1x0s)P = N (11.3.5)
Definition 11.3.10 (The involution o). We let o: oy, — g5 be the composition of the maps in (11.3.5).
Noting that o is an involution, we also write o: G} — yy for the opposite map.
We also define o: ALy — (A5 and o: (A%5))°P — A%, for the corresponding maps on cohomology
groups. These in turn induce o: A%} — (A1) and o (AL})°P — ALL.

The algebra o7y, has a tautological action on ¢.Os, while ZJP has a tautological action on the func-
tor Hom .o (1+.Os,—). By construction, ¢ is characterized by the following property: the composition of
isomorphisms

1(0s[1]) 2 taws = il wy =2 Hom o (1,05, ws) (11.3.6)

is o-semilinear when equipped with the tautological &yy-actions on the left and right just discussed, i.e.,
(11.3.6)) promotes to an isomorphism
0" 1. (Os[1]) 2 Hom o (t.0s, w.) (11.3.7)

of &SP -modules in D(.¥).

syn

11.3.7. Serre duality and Steenrod action. We will see that, informally speaking, “the involution ¢ intertwines
the syntomic Steenrod action with Serre duality”. Using we have an identification

ws = V'] 2wy € D(S). (11.3.8)

Definition 11.3.11 (Steenrod action on Serre dual). Let % € D(¥) and F = *%# € D(S). Then by
adjunction, the projection formula, and the identification ((11.3.8)), we have a chain of isomorphisms

1:Ds(F) = t,Homs (F, ' wy) = Homy (1. F,wy) = Homo (F R0, 1:.0s,w.s), (11.3.9)

in which all objects a priori belong to Ind(D(%)), but are in fact contained in the full subcategory D(¥)
(by [Proposition 11.3.9 and the discussion preceding it). The tautological .<Zyn-action on ¢,Os induces
a tautological @/ P -action on Hom o (F Ro, 1+0s,ws). We then equip 1.Ds(F) with the ZJh-action

induced by transport along (11.3.9)).

Now suppose that .# € Perf(.#) and F := *.# € Perf(S). Since .Z is dualizable and ¢* is symmetric
monoidal, F is dualizable and there is a natural isomorphism +*(.Z# ") = FV equipping ¢,F ¥ [1] with a natural
gym-action (cf. §10.5.1). On the other hand, the identification of the dualizing sheaf on S in (11.2.4) supplies

an isomorphism
Ds(F) = FV[1] (11.3.10)
which equips 1,Ds(F) = ¢, FY[1] with a natural &P -action by Definition [11.3.11] We will relate these two

syn
actions.
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Proposition 11.3.12. Let % € Perf(¥) and F := *F € Perf(S). Equipping each side of (11.3.10) with
the tautological ,Qfs(yof)-action described above, it promotes to an iy -equivariant isomorphism

"1, Ds(F) =2 1, F'[1] € D(¥). (11.3.11)
Proof. By tensor-Hom adjunction, we have identifications
t:Ds(F) ’Homy(ﬁ ® 1:0s,wy) —— Hom o (F, Hom#(1.O0s,w.s))
We also rewrite

L F Y [1] 2 Hom o (F, 1. Os[1]).

In both cases, the algebra .2y, acts via its action on the target of the mapping objects, so the 2syn-
equivariance of ([11.3.11)) reduces to the .2y n-equivariance of the isomorphism

01, 05[1] 2 Hom o (1. Os,ws),
which holds by the definition of o, as discussed around (|11.3.7]). d

Corollary 11.3.13. Let & € Perf () and F = *F € D(S). Then the identification
H™(8;Ds(F)) = H™"(S; FV[1)),
coming from , promotes to a (A%} )°P-equivariant isomorphism
o"H** (85 Ds(F)) = H™*(S; FY[1]).
Proof. Apply Proposition to F#{i} for i € Z, then take global sections and then direct sum over all
i. ]

11.4. o-equivariance of the coproduct. We will need the following compatibility of the duality involution
o with the coproduct A: ALY — ALY ®@r, AL

syn syn syn*

Proposition 11.4.1. The anti-involution o: A5y — (A5y)°P preserves the subalgebra ALy, and defines a

syn syn’
map of Hopf algebras ALy — (ALn)°P. In particular, the diagram
*, % A *, % *, %
Asi/n e Asyn ®Fp Asifn

! e

(A*,* )op Agt)p) (A*’* )op ®Fp (A*,* )Op

syn syn syn
commutes.

11.4.1. Initial reformulations. The dual syntomic Steenrod algebra A3} is a commutative Hopf algebra over
H;% (k). Hence it has an antipode s: AYY — (AYY)P, which corresponds geometrically to inversion on the
corresponding group scheme. Write s*: A%Y — (A%})°P for the (opposite) map induced by duality over

syn

HZk (k) of s. The antipode s is a Hopf HZ:¥ (k)-algebra homomorphism, so its dual s* is a Hopf HX* (k)-

syn syn syn
algebra homomorphism; in particular, it is compatible with A, while we want to prove that ¢ is compatible

with A. So in order to prove Proposition [11.4.1] it suffices to identify

5% = o AN o (AP (11.4.1)

syn syn
11.4.2. Relating o to the swap map. Recall that o comes from the composition
gyn = Hom #(1xOs, 1, Os) = Hom.g (DrtxO0s, D51, 0g)°P
= Hom #(1.0s[1], 1. O5[1])°P = Hom #(14O0s, 1:0s)F = N
On the other hand, from let 17 be the composite of the isomorphisms of ¢,Og-modules below,

(11.3.4)
n: 'Homy(L*OS, L*Os) = Homy(L*OS, L*Os[l})[* ] = ’Homy(L*OS,]D)yL*OS)[fl]

=Hom g (1.0s, Hom o (1.O0s,wx))[—1] 2 Hom»(t.0s R0, t:Os,ws)[—1].
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Lemma 11.4.2. Let sw € End,, o (¢:0s ®0., t.0s) be the map swapping the two tensor factors. Then the
square

Hom »(1.0s,1+0s) z Hom (1035, 1+O0s)°P (11.4.2)

Hom (.05 @0, t:0s,w)[—1] L’Homy(a*(?g ®0, t+0s,w)[—1]

commutes.

Proof. We begin with generalities. For #,¥ € D(), we have by Hom-tensor adjunction natural isomor-
phisms

Homo(F Qo, b, wy) = Homg(F, Homs (¥, wy)) = Homs (F,Do9).
Moreover, the composite identification fits into a commutative diagram

~

Homo(F Y, ws) Hom o (F,Do9) (11.4.3)
ziDy
sw* Hom.y (D% Y, Dy F)

zlny

Hom.o (9, Dy F)

~

Homy(%@)y,wy)

Apply this to .% := 1,Os and 4 := 1,ws, and embed it as the middle rectangle in the following large diagram.
(We abbreviate D := Dy and ® for ®¢,, for ease of notation.)

Hom. o (.05 @ 1.O0s,we)[—1 om g (1x0s @ taws,wy) — Homz(1+O0s,Diws) —— Hom s (1.0s,1.O0s)
J}D D

sw* sw* Hom o (D?1.ws, D, Os) = Hom o (DiOs,Di.Os

JZ ! 4

Hom o (.05 @ 1.0s,we)[—1 om gz (Lsws ® 1:O0s,wy) — Hom g (tws, DiOs) ——— Hom z(t.ws, Liws)

1

n ! Hom.o(1.Os, 1+0s)

We claim that the entire diagram commutes.

The middle diagram commutes, as a special case of .

The left square commutes by naturality of sw*.

The right upper rectangle commutes by the naturality of Dgs.

The right lower rectangle by the “exchange law” (alias “interchange law”).
All the boundary curved triangles commute by the definitions of 77 and o.

This establishes the claim. In particular, the outer diagram commutes. But this outer diagram is, up to
inverse, the diagram (|11.4.2) which we wanted to show was commutative, so we are done.
|
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11.4.3. Relating s to the swap map. By Serre duality, we have
(AP =H" (S5 %)Y = Ext ' (1,05 Q0 1:0s,w.s). (11.4.4)

(We remind that (—)Y means dual over F,, here.) By definition, the swap map induces the antipode of the
Hopf 1. Og-algebroid 1,7 = 1,05 Qo 1+:0s € D(&). Applying H**(; —) then shows that it induces
also the antipode of the Hopf H;} (k)-algebra AZY. Hence (11.4.4) carries the swap map sw* on the RHS
to the dual of the antipode of A} on the left side.

Note that Hi;; (k)Y = HEy (k)[1]. Hence we have (using (6.3.5)) in the first step)

syn
Agn = Homygg: ) (AT HG (R)) = Homp, (AZY, HG L (K))
= (AT @r, HiL (k) = (AD)Y @r, HGL(R) Y [-1] = (A))Y[-1]. (11.4.5)

This is related to the earlier identifications in the following way.

Lemma 11.4.3. The composition of (11.4.4) with n~' is the composite identification (AZY)Y[—1] = A%
from (11.4.5)).

Proof. This is immediate upon comparing the definitions. ([l

11.4.4. Completion of the proof. The proof of (11.4.1)), hence also of Proposition [11.4.1} will be completed
by the following Proposition. O

Proposition 11.4.4. The isomorphism
Homyg- 1y (AZY, Hgn (R)) = AG (11.4.6)

intertwines the anti-involution s* on the left side with the anti-involution o on the right side.

Proof. Applying [Lemma 11.4.3|identifies the isomorphism ([11.4.6)) with the composite isomorphism

n 1 4 *,k

Aiy* ! Ex ty L*OS R0, L*OS,UJy) *> Asyn

As discussed above, the first isomorphism carries s*, the dual of the antipode on A%}, to sw* on the middle
term. Then by the second isomorphism carries sw* to o.

O

11.5. Proof of Theorem [11.1.1} In this subsection, we will (finally!) combine the preceding ingredients
to prove Theorem [11.1.1
Let .F € Perf() and F := *%. From now on, we adopt the following conventions.

o We regard ¢, F = 1.*F as an gym-module via the construction from §10.5.1] This induces an
A -module structure on H**(S; F).

syn

e We regard 1.Ds(F) as an &/3h-module via [Definition 11.3.11} which induces an (A%} )°P-module

syn syn
structure on H**(S; 1, Dg(F)).
e If M is an A% -module, then we regard M" := Homp, (M, F),) as an (A%},)°P-module via the action
on the source.

o If M, N are Al -modules, then we regard M ®p, N as an A}-module by restriction along the

syn syn
coproduct A: ALY — A;ky*;1 ®r, Aiy, as in §10.6

Proposition 11.5.1. The Serre duality isomorphism H**(S; F)Y = H**(S; Ds(F)) is (Al )P -equivariant,
with respect to the actions defined above.

Proof. We have commutative triangleﬁ
S) —— D(¥) D(S) +—— D(¥)
Iy d *
S o S e
Sp Sp

33The functor T, : D(S) — Sp factors over D(F}), but we are forgetting that structure here.
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Recall that I is the Brown—Comenetz spectrum. In these terms, the Serre duality isomorphism assumes the
form

RI(S; F)Y 2 RI(Y; 1 F)Y = RHomgp (m7sti* F, 1) = RHom g (1417, 71'(!7]:)
= RHom o (t.t" F,wy) = RHoms ("% ,ws) = RI'(S; Ds(F)).

Chasing through these identifications, we see that the (A%} )°P-action on H**(S; F)Y is obtained by passing
to cohomology groups from action of @ P on Hom s (1.* F ,wy) = t,Homs (1" F,ws) via the tautological
Heyn-action of 1..*F. According to [Proposition 11.3.12} this is identified with the tautological @} -action
on Dg(F), as desired.

O

The following Lemma is elementary, but we record it for convenience.
Lemma 11.5.2. The isomorphism
(H*(S; F) ®p, H**(8;0)) = H**(8; F)¥ @p, H**(S;G)"
is equivariant for the actions of AZ,.

Proof. More generally, if R is any F,-algebra and and M, N are R-modules whose underlying F,-module is
dualizable, then we have an identification

MY QF, NV = (M®Fp N)v
of R°? ®r, R°P-modules. Applying this to R := A} and restricting along A yields the result. O

syn

By the discussion at the beginning of and the comparison of Lemma [I1.2.1] Theorem [IT.1.1]is a
special case of the following more general result. ]

Theorem 11.5.3. Let F,9 € Perf(.), and let F = *F,G = 1*9 € Perf(S). Then the map
¢, H(S; F @04 G) — HY(S; F) @p, H*(S; G)[1]
from (11.2.10) is (AZ;y,)°P-equivariant.

Proof. Tt follows from [Lemma 10.6.1] and [Remark 10.6.2| that the cup product

H (83 FY) @, B (S;6Y) — HY (8 7 @0, 6Y) (115.1)
is A;‘;l—equivariant. Dualizing (|11.5.1)) and using [Lemma 11.5.2| we learn that the dual map
HY*(8; FY)Y @, HY*(8:GY)Y + H"*(§; FY ®0s G)" (11.5.2)

(A %k \OP i
is (AZn)°P-equivariant.

By Lemma [11.5.1} (11.5.2) is identified (A%} )°P-equivariantly with the map

H**(8;Ds(FY)) @r, H*(S;Ds(GY)) « H*(S;Ds(FY ®os GY)). (11.5.3)
By [Corollary 11.3.13} (11.5.3) is identified (AJ;},)°P-equivariantly with the map
o*H"*(S; F(1]) ®p, " H"*(S;G[1]) + " H"*(S; F ®o; G[1]). (11.5.4)

where the underlying map of graded F,-vector spaces is the dashed map in ([11.2.8]), which is ¢ up to shifting
by 1. We still have to track that it is equipped with the prescribed Steenrod action. By the identification

(0 ®0) oA = Aoo of|Proposition 11.4.1) we have an (A%} )°P-equivariant isomorphism

o (S: FI1)) @p, 0" H*(8:G[1]) = 0" (H* (S; F[1]) @p, H™ (S:G[1]). (11:5.5)

Combining (11.5.4) and ((11.5.5)), we obtain an (AX;* )°P-equivariant isomorphism

syn

o H(8; F ®o, G[1]) = o (H"" (S F[1)) @p, H(S:G[1))).

Finally, we conclude by applying (6*)~! replacing F and G by their shifts by 1. O
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Part 4. Characteristic classes

In this Part, we develop a theory of mod 2 characteristic classes in syntomic cohomology for p = 2. The
eventual purpose of this theory is to facilitate explicit calculation of syntomic Steenrod operations. Our
path is inspired by classical results in the algebraic topology of manifolds (as can be found in [MST74], for
example):

e Steenrod operations to the top degree are controlled by “Wu classes”.

e (Wu formula) Wu classes can be expressed in terms of Stiefel-Whitney classes.

e For complex vector bundles, Stiefel-Whitney classes are reductions of Chern classes.
We will establish parallel results which will ultimately be used to prove the vanishing of certain syntomic
Steenrod operations.

12. SYNTOMIC STIEFEL—WHITNEY CLASSES

Let X be a scheme over a field k of characteristic p = 2 and £ — X be a vector bundle. In this section we

construct “syntomic Stiefel-Whitney classes” w , € Hé;}é/ 2] (X), following the approach of [Fen20a|, which

syn
in turn is based on ideas of Thom. A posteriori, these syntomic Stiefel-Whitney classes will turn out to be
merely the reductions modulo 2 of Chern classes, but this is a non-trivial calculation which is essential to

the eventual applications.

12.1. Cohomology with supports. Let i: Z <— X be a closed subscheme and j: U < X the complemen-
tary open embedding. For an étale sheaf F on X, we have the unit map F — j.j*F, which induces
RI'(X,F) — RI'(X, j.j*F) = RI'(U, j* F). (12.1.1)
The cohomology of X with supports in Z is defined as the derived kernel of the restriction map ((12.1.1f), so
that we have an exact triangle
RT'z(X;F) —» RI(X; F) = RI(X; juj" F).

For any F = F)"(b), b € Z, we have from §2f an action of the syntomic Steenrod algebra on RI'(X;F) —
RI'(U; j*F), hence also on RI'z(X; F).

12.2. Syntomic Steenrod operations. We summarize some of the general theory of the syntomic Steenrod
algebra from §6] and specialized to the case p = 2. We have explicit cohomology operations:

(1) “B”, which acts as the Bockstein differential
B: HEh (=) = HELM ()

syn syn
induced by the exact triangle Z/2(b)*¥* — Z/4(b)*" — Z/2(b)*", and
(2) “Sq2 = P! 7 for each i > 0, acting as

Syn syn

b Sq2i, . .
HY (_) AN Ha+21,b+z(_).

syn syn

Example 12.2.1. The operation ngyn acts as the identity.

By Corollary the operation
Syn Hin (=) = HGY'(-)

is given by squaring.

Set Sq2i*! .= B0Sqg2 . The comultiplication on A** takes the form

syn syn* syn
i
Sctzyn (u-v) =D Sq2, (u) - Sazy, > (v)
§=0
and

Szt (u-v)

(Sq2j+1(u) . Sq2i72j(v) + Sq2] (U) . Sq2i72j+1(v))

syn syn syn syn



82 SHACHAR CARMELI AND TONY FENG

12.3. Construction of syntomic Stiefel-Whitney classes. Let i: Z < Y be a regular embedding of
pure codimension d over k. Then we have a cycle class sz, € HZ'(Y;Z3"(d)). In the greater generality of
syntomic cohomology (in mixed characteristic settings), this has been constructed by Longke Tang [Tan24b].
In the case of smooth varieties over k, it follows from results of Milne [Mil86] and Gros [Gro85].

We are going to apply this with Y being the total space of a vector bundle 7: £ — X of rank d, Z = X,
and i: X — E being the zero section. This gives a cycle class sx,/p € HY(E; Z2(d)).

We will define a pushforward map

Tt H (B 23 (b)) — HE 24X Zy(b — d)). (12.3.1)

syn
Let 7: E:= P(E @ Ox) — X, a compactification of 7: E — X. Note that Mayer—Vietoris gluing implies a

derived Cartesian square

RFSyn(F; - — RFSyn(E \ X;-)

| |

RFsyn(E; 7) — RFsyn(E \ X7 7)

which induces a canonical isomorphism H% (E; Z3™ (b)) = HS (E;Z5Y™(b)). Since the map 7: E — X is
smooth and proper, we have by the construction in [Gro85, Chapitre II, §1] a map

T L (b) g — Z™ (b — d) x[-2d]. (12.3.2)

Taking cohomology of (12.3.2)), and passing through the identification H% (E;Z;"(d)) = H% (E; Z"(d)),
gives (12.3.1)).

Similarly we get a pushforward on mod p syntomic cohomology,

me: HYP(E) — HE240—d(X). (12.3.3)

syn

Definition 12.3.1. Suppose k has characteristic p = 2. Let w: E — X be a vector bundle of rank d. Let
Sx/E € Hi(d’d(E) be the reduction modulo 2 of the cycle class of the zero section. For j > 0, we define the
jth syntomic Stiefel-Whitney class of E to be

wl™(B) = 7. (Sayn (5x/2)) € BER/(X). (123.4)

syn

Define the total Stiefel-Whitney class to be w*"(E) := 3, w;""(E). If no vector bundle is mentioned, then

by default we set w; := w;™ (TX) for the tangent bundle TX, and wgy, := Y- ; wi™.
Remark 12.3.2. It is crucial that in Definition|12.3.1{we use the syntomic Steenrod operations ngyn instead

of the E,, Steenrod operations Squ; the classes that would come out of using the latter operations would
not be well-behaved (as can be seen just by considering weights — see Remark [12.5.3)).

12.4. Properties of the syntomic Stiefel-Whitney classes. We now record that the syntomic Stiefel—
Whitney classes, as constructed in enjoy the usual properties of characteristic classes. We continue to
assume that p = 2 through the rest of the section.

(1) If E is a vector bundle on X, then we have wy’™" (E) = 1 and w}™"(E) = 0 for j > 2rank E.
(2) (NATURALITY) If f: X’ — X and F is a vector bundle on X, then we have

frwi™(E) = wi™ (f7E).

(3) (WHITNEY SUM FORMULA) If E, E’ are vector bundles on X, then we have

syn E@E Zwsyn . syQ(E/)'

3

Setting w™™ := 37, w™" to be the total Stiefel-Whitney class, then this can be written more suc-
cinctly as

’LUSyn(E EB E/) — wsyn(E) . wsyn(El)'
These follow formally from the properties of Steenrod operations in §12.2] as in [Fen20al §5.4].
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Lemma 12.4.1. If
0—-EFE —-FE—E' =0

is a short exact sequence of vector bundles on X, then
wsyn(E) _ wsyn(E/) A wsyn(E//)'

Proof. Applying [BL22l, Proposition 9.2.9] in the same way as in the proof of [BL22, Theorem 9.2.7], we may
reduce to the case where £ = E’ @ E”, which was handled above. O

12.5. Relation to Chern classes. Chern classes in syntomic cohomology are defined in [BL22, §9]. For
syn

a vector bundle E2 — X, there are defined in [BL22, Construction 9.2.1] syntomic Chern classes ¢ (E) €
H2, (X3 Z, (7).

Here we prove that our syntomic Stiefel-Whitney classes are simply reductions of Chern classes. This fact
will be of significance later in where we will want to know that our syntomic Stiefel-Whitney classes lift
to integral cohomology. The reason that we have defined them by this complicated construction involving
syntomic Steenrod operations, rather than simply defining them to be the reduction of Chern classes, is that

our definition will interface well with later constructions.

Proposition 12.5.1. Let X be a smooth projective variety over Fo and E a vector bundle on X of rank
r. For each j € N, let ;™ (E) € H2,(X;Z5(j)) be the j** Chern class of (the tangent bundle of) E and

o syn
&' € H2l (X) be its reduction modulo 2. Then we have:
SR
w(E) = if2 (E) vever, (12.5.1)
0 1 odd.

Remark 12.5.2. The form of Proposition is actually simpler than the analogous statement when
¢ # p |Fen20al, Theorem 5.10]. This can be ultimately traced to the difference between Sqiyn and the
Bockstein operation used in that case, which differ by p.

Proof. By standard reductions for characteristic classes, it suffices to check that the formula above is correct
for all line bundles.

Let m: L — X be a line bundle on X. We view X as embedded in L via the zero section. We then have
the associated cycle class sx,, € H% (L; Z5"(1)).

Calculation of w”™. To show that w}"(L) = 0, it suffices to show that Sq;yn(EX/L) = 0. We have
[5x/L] € H%'(L) so the operation Sqiy,[1 is the Bockstein map for the exact triangle

Z/297(1) = Z/4%%(1) — Z/2%"(1)
But the cycle class Sy, 1, even lifts to H5 (L; Z5"" (1)), so this Bockstein map vanishes.

Calculation of w3"". We claim that quyn(EX/L) = n*(@"(L))-5x,r. Granting this claim, we deduce that

wy™ (L) = me(Salyn (3x/1)) = me(n*(@1(L)) - 5x/1) = &1(L)
using the projection formula in the last equality.
It remains to prove the claim. By Example [12.2.1] we have that Squn(gx/L) = 5x/1 - 5x/1- Hence it
suffices to show that the map Hy' (L) — HZ1 (L) sends 5x/;, to m*e"" (L).
Consider the commutative diagram

Pic(X) = HL (X; Gpn) — H2ZL(X)

syn

Pic(L) = Hy (L; Gp) — HEL(L)
where the horizontal arrow is the association of the first Chern class. The line bundle L — X pulls back to
Or(X) on L, i.e., the line bundle associated to the divisor of the zero-section in L. Hence the cycle class of

the zero section in L coincides with ¢ (7*L) = n*¢}’"(L). This completes the proof. 0



84 SHACHAR CARMELI AND TONY FENG

Remark 12.5.3. We could have constructed “E., Stiefel-Whitney classes” wQE in an analogous way, using
the Sqp; instead of Sqéyn. Elementary weight considerations reveal that if £ — X has rank r then wi(E) €
H; . (X). In particular, for i # 2r they cannot lie on the “motivic line” H2;*. Moreover, if r is large compared
to dim X, then they all vanish (even for ¢ = 0!), which indicates that their behavior differs from what would

be expected of characteristic classes.

13. ARITHMETIC WU FORMULA

In this section we prove an arithmetic Wu formula, which calculates certain syntomic Steenrod operations
in terms of the Stiefel-Whitney classes just defined.

The adjective “arithmetic” refers to that our cohomology theory is absolute, with a non-trivial contribution
from the base field. We note that geometric Wu formulas have been proved in [Ura96, [SS24] Ben25| (for ¢-adic
étale cohomology, ¢ # p) and [Pri20l [AE25| (for mod p motivic cohomology in characteristic p). Although
the final formulations look the same, our arithmetic Wu formula is much subtler to prove. The fact that
even a point has non-trivial cohomology, while being geometrically trivial, is the root of all our problems,
and in fact the entire purpose of Part |3| was to provide a technical ingredient to surmount this difﬁcultyﬂ

13.1. The syntomic Wu classes. Throughout this section, we let X be a smooth, proper, and geometrically
connected variety over a finite field k of characteristic p, of dimension d. For p = 2, consider the syntomic
Steenrod operation

i . opr2d+1l—i,d—|i/2 2d+1,d
quyn . Hsyn L/ J(X) - Hsyn (X)
Recall that the cup product
2d+1—i,d—|i/2 i,]4/2 2d+1,d
H LX) @ HEL/2H(X) — HE (X))

syn
induces a perfect pairing. Therefore, there exists a unique v;>" € Hé’y%/ 2] (X) such that
ngyn(a) =u"" - aforall a e ngjl—ivd—W?J (X).
We call v;*" the i*® syntomic Wu class and we call

VY = Z v e H L (X)
i

the total syntomic Wu class.

Example 13.1.1. If i = 0, then Sqéyn is the identity map, so v;>" = 1.

If i > d + 1, then |Corollary 8.1.4| implies that Sq,, (o) =0 on all a € H2E0A=L2) (x) 50 00 = 0.

The purpose of this section is to prove the following theorem.

Theorem 13.1.2 (Arithmetic Wu formula). Let X be a smooth, proper, geometrically connected variety
over a finite field of characteristic 2. Then we have

W (TX) = Sy, (v™") € Hig (X))

. 0 . . . .

Remark 13.1.3. ss;f}ce Sdsy, = Id, the equation wey, (TX) = Sqg,, (v™") can be inverted to solve for {v;yn }
P

The analogous definition for the E., Steenrod operations would lead to an “E., Wu class” v® which

is different from v*¥™, as can be seen from weight considerations. Moreover, if X has dimension d > 0

then wg (T'X) € H%(X) would vanish, so that the equation Sqg(v®) = w®(T'X) could not be “inverted”
to calculate the {0} in terms of the {w}j(TX)}. This is another reason we use the syntomic Steenrod

operations instead of the & Steenrod operations for the purpose of defining characteristic classes.

in terms of the {w

13.2. Deformation to the diagonal. In this subsection, p = char(k) can be an arbitrary prime.

34The analogous problem for arithmetic ¢-adic étale cohomology was solved in [Fen20al, using some tricks with étale homo-
topy theory, but those do not apply here.
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13.2.1. More on pushforward maps. Let f: X — Y be a proper map of connected smooth varieties over a
finite field k. Set d := dim X — dim Y. Then there is a pushforward map [Gro85, Chapitre II, §1]

L ZY(b)x — 23" (b — d)y [—2d]. (13.2.1)
It is dual to the pullback map Z3™(b)y — f.Z5™(b)x. We also write
fot B (X3 2, (0) = HE2A(Y3 2, (b — d) (13.2.2)

for the induced map on cohomology, which is dual to the pullback map on cohomology.
It is elementary to show (see for example [Gro85, Chapitre II, §2]) that the map (13.2.1) enjoys the
following properties:

e It is functorial: if f: X — Y is a proper map of smooth varieties over k, and g: Y — Z is another
proper map of smooth varieties over k, then

(9f)« = gs o [s
o We have the projection formula for all « € H:* (X;Z,) and 8 € H! (Y;Z,,),

syn syn

fela- f7B) = (fea) - B. (13.2.3)

o If f: X < Y is a regular embedding of codimension a, let cly(X) be the image of sx/y €
H3¢(Y; 22" (a)) under the “forget supports” map to H**(Y; Z3"(a)). Then f, f* is multiplication by

cly (X). In particular, f.(1) = cly (X) where the input element 1 is regarded in HY,, (X;Z,) = Z,,.
By descent, if f: X — Y is a (representable) smooth and proper map of stacks, then there exists a

pushforward map

foi B (X3 2, (8)) — HE2 (Y 2, (b — d) (13.2.4)

satisfying the same properties.

13.2.2. Weighted deformation to the normal cone. In A'-invariant cohomology theory, Lemmamay be
proved by deformation to the normal cone (using Morel-Voevodsky purity). However, syntomic cohomology
theory is mot Al-invariant, which causes substantial technical complications for us. However, it enjoys a
weaker property called weighted homotopy invariance that turns out to be sufficient for our purposes
More generally, let t: X — Y be a regular embedding. The weighted deformation to the normal cone
[Tan24bl, Definition 5.11] of ¢ is a flat family Y — [Al/G,,] (the stack quotient for the standard scaling action)
whose restriction to pt = [G,,/G,,] = [A1/G,,] is Y — pt and whose restriction to [0/G,,] — [Al/G,,] is
the stack quotient of the normal bundle N, of ¢ by the inverse scaling action of G,,,. Moreover, ) is equipped
with a closed embedding from X := X x [A!/G,,], which restricts over pt = [G,,/G,] = [Al/G,,] to the
given 11 X — Y and over [0/G,,] — [Al/G,,] to the zero section of X in N,. We write Xp,), for the
special fibers of X, ), respectively, over [0/G,,] = [A'/G,,]. This is summarized in the diagram below.

Xo=X/G,, — X=X xAYG,, +— X

[ [ [

Yo =N,/Gm y Y (13.2.5)

| | |

0/Gp 5 AY/Gypy «——— G /Gy

Then it follows from [Tan24bl Theorem 5.20] that we have the following “weighted homotopy invariance”:
the obvious pullback maps induce a commutative diagram with indicated isomorphisms,

Hy, Vo) ¢—=— Hy" (V) —— HY'(Y)

l l l (13.2.6)

HL (O0) «—=— HGL(Y) — HEL(Y)

syn syn

35We learned of this from [Tan24bl §3], which credits the idea to course notes of Dustin Clausen, who credits it to Burt
Totaro.
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Furthermore, the construction of cycle classes is arranged so that (|13.2.6)) has the following effect on cycle
classes [Tan24bl, §5]:
H2*7* HQ*,* H2*7* Y
5 O0) o HYTO) —— HYY) 1320
SXo/Yo < Sx/y — 7 SX/Y

13.2.3. The case of the diagonal embedding. Now assume that X is smooth and proper of (equi)dimension
dover k. Let Y := X X, X and ¢: X — Y be the diagonal embedding. Note that we have a commutative
diagram

yOZNL/Gm — y +—Y

lw l;; Jprl (13.2.8)

X=X/G), — X +— X

which provides a retraction to the upper row of vertical arrows in (13.2.5)). We will construct a commutative
diagram of pushforward maps

HY, (Vo) ¢——=—— HY'(V) ———— HY'(Y)

lm J{ﬁr* Jprl* (13.2.9)

H:};]Zd,bfd(xo) - H:};Qd,bfd(‘)() H:yfr?d,bfd(X)
e Since pry, is smooth and projective, we have on general grounds (§13.2.1) a pushforward map
pry,: H: (V) — Hf;245=4(X). Abusing notation, we define the vertical map pr;, in the right

syn syn
column of to be its composition with the “forget support” map H}’b(Y) — Hzb (V).

e For C := Py, (Nx/y ©0), let C be the quotient stack C/G.,,, where G, acts on Nx/y @O via inverse
scaling. As 7 is a vector bundle, the vertical map 7, in the left column of is defined by the
procedure of §12.3} letting 7: C — Xj be the projection for the compactification, we define m, to be
the isomorphism ngf(yo) = H}é’(C) composed with the “forget supports” map H}f(C) — H;2(0)
followed by the pushforward map H35 (C) — Hi, 240~ X,).

e Then the vertical map pr, in the middle column of ([13.2.9) is determined uniquely by the commu-
tativity of the left square.

Lemma 13.2.1. With the definitions above, diagram (13.2.9) commutes.

Proof. Although the Thom isomorphism fails for syntomic cohomology since it is not Al-invariant, there is
a “weighted Thom isomorphism” [Tan24b, Theorem 4.2] which says that H}:(yo) is free of rank one over

Hin(Xo), with distinguished generator being the Thom class Thrx € H?‘%’d(yo). All cohomology groups
in question are modules over HZ;} (Xp) under pullback and cup product, and the horizontal maps (being
=% (Xo). Moreover, the pushforward maps 7, and pr;, are also linear

pullbacks) are obviously linear over HZ}
over HZ;1 (Xp): this is a reformulation of the projection formula. So it suffices to check the commutativity

on the Thom class Thrx.
By the very construction of cycle classes in [Tan24bl §5], the diagonal cycle class in clyx (X x X) €
H2%4(X x X) is the image of Thyx from the top left to the bottom right ternﬁ of (13.2.6]). By the uniqueness

syn
properties of cycle classes, this definition of clx (X x X) agrees with the pushforward of 1 € H%? (X) under
the diagonal map X < X x X. Then from the functoriality of the pushforward, we see that

pry, (clx (X x X)) =1 € HY? (X).

syn

On the other hand, by the general property of Thom classes we have 7, (Thyx) = 1 € H{; (Xp), which maps
to 1 € H%Y (X) under the composition from left to right (inverting the middle isomorphism)

syn

HY! (Xo) = HES (X x BG,) < HE5 (X x AY/Gyy,) — HE (X)),

syn syn syn syn

?’Gmeaning the inverse of the leftwards restriction, composed with the rightwards restriction, followed by the “forget supports”

map
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since HX® (X x BG,,,) = HZ (X)[c¥"] by [BL22, Lemma 9.3.2], with the restriction map to H¥¥ (X) being

syn syn syn
the quotient by ¢i*". Thus we see the desired commutativity. O

13.3. Calculation of syntomic Wu classes. For the rest of this section, p = 2. Recall that X is a smooth,
proper, geometrically connected variety of dimension d over a finite field k of characteristic 2.

13.3.1. Stiefel-Whitney classes of the tangent bundle. The normal bundle of X in its diagonal embedding
into X x X is isomorphic to the tangent bundle TX. Comparing this to the definition of the syntomic
Stiefel-Whitney classes in motivates the following.

Lemma 13.3.1. Let 5y, xxx € H%éi’d(X x X) be the mod 2 cycle class of the diagonal. Then we have
Pr1 Sl (Sx/xxx) = w™ € HER/# (X)), (13.3.1)
where pri: X x X — X denotes projection to the first factor.

Proof. We will use the notation of §13.2.2]and §13.2.3] By naturality of Steenrod operations under pullback,
applying Sq;yn to (|13.2.7)) shows that the maps

Hig)+i,d+ li/2) (V) — Hi{d+1’,d+[i/2j ) HQXd+i,d+ li/2) v)
carry
Sqi‘yn(SXo/yo) AE— Sqi‘yn(sx/y) B Sqi‘yn(sx/y)

Then by Lemma [13.2.1] we see that applying the pushforward maps from (13.2.9)) carry cohomology classes
as in the commutative diagram below

quyn(sxo/yg) —— Sqéyn(SX/y) — quyn(SX/Y)

| 2 e (13.3.2)

PR
IHCO

. . ) incg,, .
T Sq;yn (SXo/yo ) —— Pr, Sq;yn (SX/y) Pryx Sq;yn (SX/Y)
where the maps incg and incg =~ are the pullbacks

incg

Hz;}i}[—]&-i,d+“/2j (X/Gm) PRI Hg}c}r—:—i,dﬂi/ﬂ (X % Al/Gm) m Hg;ig—i,dﬂi/zj (X)

From the Cartesian square

TX —215 9y,

ok

X - x
where the maps ¢ are the quotient by G,,,,we obtain that

0TS Alyn (8200 /30) = TSy (5.2, /3) = TSl (5x/7x) = W (TX). (13.3.3)

We explained earlier that incg is an isomorphism. Comparing (13.3.2) and (13.3.3)), we see that it suffices to
show that incg o(incg) ™ = ¢*. Since the projection map pry: X xA!/G,, = X/G,, satisfies pr; oinco = Id,
and incj is an isomorphism, we must have prj 2 (incj)~!. This implies that

incg, o (incy) ™' =incg, opri = (pry oincg,,)* = ¢*

as desired. O
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13.3.2. The map ¢,. Let
wur HEZ (X xp X) = HUW(X) QF, HLx (X) (13.3.4)

syn syn syn
be the map studied at the beginning of §11.]]

We will now discuss features specific to characteristic p = 2. We have the syntomic Steenrod operations
Sdgyn on HEY (X X X), and also on Hi} (X). Although HY Y (X)®@p, HEj) (X) is not the syntomic cohomology

syn
of a variety over k, it admits a natural AJ;} -module structure because of the Hopf algebra structure of A7,
as discussed in §10.6] Concretely, for z ® y € H} (X) ®p, H35 (X), we have
i
Sin(r®@y) =D 8%, () ® SiZin > (v)
j=0
and
i
S e @y) = (SaFi (x) @ SaZin™ (y) + S, (z) @ Sy ¥ (1) -
3=0
From Theorem we have that
SdsyntPs = P+Sdyn- (13.3.5)

We give another perspective on the map ¢, from (13.3.4). Note that H;‘;;(X x X ) acts by correspondences
on H* (X)), inducing an F,-vector space map

syn
HZ5 (X xg X) — Endp, (H%(X)) (13.3.6)
which sends a € Hj;;, (X xx X) to the endomorphism
Hin (X) 3w (pry)«(a - pryu) € HG L (X). (13.3.7)

Using Poincaré duality, we may identify

Endp, (H35(X)) = HEH(X)Y @r, Hin(X) = HLH(X) @, HEE(X).

syn syn syn syn syn

After unraveling the definitions, one sees that under this identification, (13.3.6)) agrees with (13.3.4)).
Lemma 13.3.2. Let A := clyxx(X) € H2:4(X x;, X). Then the map (13.3.6) sends A + Id.

syn

Proof. Let f: X — X xj X denote the diagonal embedding. Then we may view A = f,(1) as explained in
§13.2.1] Taking a = A in (13.3.7)), we see that A corresponds to the endomorphism

v = (pry)«(fe(1) - p37) = (pry)s fu(1- f*pr3y)

by the projection formula. But since pr; of = pryof = Idx, this last expression is just v again. |

13.3.3. Decomposition of the diagonal. We will now compute Sq(¢+A) explicitly and use it to prove
rem 15.1.2

Lemma 13.3.3. Let X be a smooth, proper variety over a finite field (of any characteristic). Let
e {e,} be a basis for HE% (X)), and

syn

o {fm} be the dual basis of H} (X) under Poincaré duality.
For a cohomology class x € Hi, (X) let |x| = i. Then, letting A be as in Lemma we have
A=) (=D)lerle, @ fr, € HYL(X) @ HyH(X), (13.3.8)

where @, s as in (|13.3.4)).

Proof. Lemma [13.3.2] says that the action of A induced on Hf  (X) by (13.3.7)) is just the identity map.
Therefore, it suffices to show that the right hand side of (13.3.8) acts as the identity on HZ  (X), which

syn
is a straightforward linear algebra exercise about dual bases in graded vector spaces (cf. [MS74, Theorem
11.11]). O
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Let (pr})« and (prj). denote the “pushforward” maps

Hih (X) €20 i, (00 @, B (X) 225 H, ()

syn syn syn syn

which are dual to the obvious “pullbacks”

HI(X) 270 L (X) @, B, (X) €22 B (X).

syn syn syn

Note that (pr}). and (pr})* are not induced by a map of varieties pr, since indeed H;, (X) @, Hin (X) is

syn
not the cohomology of a variety; we are just introducing formal notation. Concretely, (pr}). and (pr}). are
characterized by the identities

(pr})«(prifz @ pry y) =z - (/X y> for all z,y € HGL(Y), (13.3.9)

(prh)«(pry’z @ pry y) = (/X x) -~y forall x,y € HI L (X), (13.3.10)

where [ is the projection to HZ4 ¢ followed by the trace map.

Proof of Theorem [13.1.3, Since the pullback H%;} (X) Pri, e (X xj X) obviously factors as

syn

H*,* (X) (PH)* H*’* (X) ®Fp H*’* (X) PrI ~pr£ H*,* (X % X)

syn syn syn syn

(morally, “pr; = pr} op”) we have a corresponding factorization of the pushforward maps as

(pry)« = (PrY)«ps- (13.3.11)

Combining Lemma [13.3.1{ and ((13.3.11]), we find that
wsyn = (prl)*sqsyn(A) = (prll)*QD*quyn(A) € H:};(X) (13312)
We saw in ({13.3.5]) that = Sqgynps- Let {en} and {f,,} be dual bases for Hz;} (X). Then by Lemma

@*qu n
13.3.3] we may rewrite (13.3.12) as
w¥™ = (pr})«Sdgyn (Z(pr’l)*em : (pr’z)*fm> : (13.3.13)

By the Cartan formula for Sqg,, and the “projection formula for (prf).” (13.3.9)), we have
(pr/l)*sqsyn <Z(pr’1)*em : (pré)*fm> = Z(prll)* ((prll)*SQSyn(em) : (pré)*sqsyn(fm))

m - £ (San(en) [ Saulfn) ) (13314

Combining this with (13.3.13) and (13.3.14) and using that [y Sqq,(fm) = [ (™" f;n) by definition of v*¥*,
we find that

wsyn = Z (quyn(em) /X(Usynfm)) = quyn (Z €m /X vsynfm> = quyn(vsyn)ﬂ

m

with the last equality using that {e,,} and {f,,} are dual bases. O

Part 5. Applications to Brauer groups

In this final Part, we will assemble the preceding theory for applications to arithmetic duality on Brauer
groups. In we define the Milne-Artin-Tate pairing (—, —)mar for surfaces over F;, and higher dimen-
sional generalizations. We prove that (—, —)yar is always skew-symmetric and non-degenerate. Our goal is
to show that it is symplectic, so the interesting case left is p = 2. Thanks to the skew-symmetry, the map

w = (U, UYMAT
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defines a linear functional on Br(X),q[p®°], which we want to explicate. In we will prove a formula for
this functional in terms of E,, Steenrod operations, of the form

G vhar = [ 2710 PAGT).
X
See Theorem [5.0.1] for explanation of the terms. Crucially, this is one of the “edge” cases of

where the E., power operation Pg coincides with the syntomic power operation ngn. That allows us to
transfer the formula to one involving syntomic Steenrod operations instead, which we can then calculate in
terms of characteristic classes using the results of Part @] In we carry out this computation to finally
show that the pairing is symplectic.

14. THE MILNE—ARTIN-TATE PAIRING

In this section, we define various pairings of interest, including the Milne-Artin—Tate pairing on the Brauer
group of a surface and its higher dimensional generalizations, and prove their skew-symmetry.

14.1. The Brauer group. Let X be a scheme. The (cohomological) Brauer group [PoolT, §6.6.1] of X is
HZ (X;G,,) & H?ppf(X; G,.). If X is a smooth projective surface over a finite field k of characteristic p,
then Br(X) is a torsion abelian group, which is conjecturally finite. We will express its p-primary part in
terms of syntomic cohomology.

The short exact sequence of fppf sheaves

0= fiyn — Gy £ Gy — 0

induces a long exact sequence in cohomology

S HL (X Gy) 2 HY

fppf(X; Gm)

(X;Gp) 2 12

N prpf(X s pipn ) — HZ Fopt

fppf (X;:Gn)

— H?ppf(X;:U‘P") B H?ppf(Xma) p—>

from which we extract a short exact sequence

Hflppf(X; Gm) 2 . 2 . n
0 DL (X.G.) (X:Go) = Hippe (X5 ppn ) — Hippp (X5 G ) [p"] — 0. (14.1.1)
fppf \o =m

Taking the colimit over n € N in ((14.1.1)) along the multiplication-by-p map, we get a short exact sequence
0= Hypp(X;Go) ® gp

P

= HE 0t (X ppee ) = Br(X)[p™] = 0. (14.1.2)

For an abelian group G, we write Gphq for the non-divisible quotient of G (i.e., the quotient of G by its
subgroup of divisible elements), and we write Gyors for the torsion subgroup of G. Since Q,/Z,, is divisible,
(14.1.2)) induces an isomorphism

H%ppf(Xh“pw)nd = Br(X)[p™]na = Br(X)na[p™].

On the other hand, we have by Example a canonical identification Hy (X ppe ) = HZ (X5 Qp/Zy(1)),
which when combined with the preceding discussion yields

Hn (X3 Qp/Zp(1))na = Br(X)aa[p™]-

14.2. Duality on the Brauer group. Now suppose that X is a smooth, proper, geometrically connected
surface over a finite field k of characteristic p. By Poincaré duality, there is a trace map

. 5,2 . ny "~ n
/XHsyn(X7Z/p)_>Z/p
and the resulting pairing

HEY (X3 Z/p") x BO027Y (X3 Z/p) — BO2 (X Z/p") L5 27

syn syn Syn
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is perfect for every a,b € Z, and n € N. Taking colimits in n in one factor and limits in n in the other, we
obtain a non-degenerate pairing

HZ, (X;Qp/Zyp) H, (X;Zy) — HY? (X5Qp/Zy) = Qp/Zy.

syn syn syn

Since the divisible subgroup is the annihilator of the torsion subgroup, this induces a non-degenerate pairing
HZ) (X5Qp/Zp)na % HE) (X5Zp)tors — Hg)})/%](X7 Q,/Zy) = Qp/Zy.

syn syn

On the other hand, the short exact sequence
0—Z,(1) - Qu(1) - Qp/Zy(1) —» 0

yields a boundary map on cohomology S HgQL(X 1 Qp/Zy) — HS’&}I(X ;Z,), and from the long exact sequence
we see that it induces an isomorphism

5: HZ) (X3 Qp/Zp)na = Hign (X5 Zyp)tons-

syn syn

Definition 14.2.1 (Milne-Artin-Tate pairing). Let X be a smooth, proper, geometrically connected sur-
face over a finite field k& of characteristic p. The Milne—Artin—Tate pairing on Br(X)nq[p™] sends u,v €
Br(X)na[p™] = H (X5 Qp/Zp)na to

syn
(u, v)MAT = / u-dv € Q,/Z,
X

14.3. Higher Brauer groups. We next give a higher-dimensional generalization of the Milne—Artin—Tate
pairing. Following Jahn [Jahl5|, for an integer r > 1 we define the rth higher Brauer group of a smooth
quasiprojective variety X over a field to be the étale-motivic cohomology

Br'(X) := HZ (X Z(r)).
These groups are torsion, since Hgf“(X; Q(r)) = H2T+1(X; Q(r)) =0.

mot

Example 14.3.1. For r = 1, Z(1)[1] & G,, so that Br'(X) = Br(X) recovers the usual cohomological
Brauer group.

Lemma 14.3.2. Assume that X is a smooth quasiprojective variety over a finite field k of characteristic p.
Then there is a natural isomorphism

Br" (X)nap™] 2 HZ (X3 Qp/Zp)na (14.3.1)

syn
Proof. Consider the exact triangles of étale-motivic sheaves on X,

Z(r)® 25 2(r)® — Z/p" (r).
As explained in §2.4.2) the results of Geisser-Levine [GLO0] identify Z/p"(r)¢* with Milne’s logarithmic
de Rham-Witt sheaves, which in turns are identified with Z/p"(r)*™ by Bhatt—Morrow—Scholze [BMSI19.

Corollary 8.21 and Remark 8.22]. (Recall from that we regard Z/p™(r)™" as an étale sheaf.) In
particular, we have natural isomorphisms

HE (X Z/p" (1)) = Hy (X Z/p" (r)™").
From these identifications and the associated long exact sequence in cohomology, we obtain exact sequences
HEMH (X Z(n)) @ 2/p" 2 — B2 (X Z/p" () = HEHH (X Z(r) ) [p"] = 0.

syn

Taking the direct limit over n, the leftmost term becomes HZ{ 7' (X; Z(r)) ® Q,/Zy, which is divisible. Hence,
after passing to non-divisible quotients we obtain the claimed isomorphism. (Il

Now suppose that X is furthermore proper and geometrically connected over k, of dimension 2d. For
¢ # p, Jahn defines a pairing on Bré(X)[¢>]; this is recalled in [Fen20al §2] and called the Artin-Tate
pairing. We will now extend the pairing to the full Br¥(X) by defining it on Bré(X)[p>], and we will also
call this extension the Milne—Artin—Tate pairing.

Let

6 H2A(X;Qp/Zp)na — HZEH (X5 Z) ors (14.3.2)

be the map induced by the boundary map for the exact triangle of syntomic sheaves
Zy(d)™ = Qp(d)™" — Qp/Zy(d)™" (14.3.3)



92 SHACHAR CARMELI AND TONY FENG

Lemma 14.3.3. The map (14.3.2) is an isomorphism.
Proof. The long exact sequence associated to (14.3.3|) reads

HQd’d(X§ Qp) EE— HQd’d(X§ Qp/Zp)

syn syn

H2d+l’d(X;Zp) H2d+1’d(X;Qp)

syn syn

From this, we see that the image of the boundary homomorphism is Hf}‘flg‘ Ld(x; Z,)tors; and its kernel is

divisible. Therefore, it factors over an isomorphism g, as claimed. O

Definition 14.3.4. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a
finite field k of characteristic p. For u,v € H244(X;Q,/Z,)na, we define

syn

(u, v)maT ZZ/X(u-gv).

By (14.31), we may view this as a pairing on Br?(X),q[p>°]. This extends the Artin-Tate pairing to a
pairing on all of Brd(X )nd, which we call the Milne—Artin—Tate pairing.

From Poincaré duality and the fact that is an isomorphism, it is evident that this pairing is
non-degenerate on Br?(X),q. We prove below that it is skew-symmetric, i.e.,
(u, v)mar = — (v, uymar for all u,v € Brd(X)nd.
Recall that this is weaker than symplectic, or alternating, which would say
(u,u)yiar =0 for all u € Bré(X)pnq.
We will even prove the stronger property that the pairing is symplectic.

Theorem 14.3.5. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite
field k of characteristic p. Then the Milne-Artin-Tate pairing on Bre(X),q is symplectic.

The proof of [Theorem 14.3.5 will be completed in §I6]

14.4. Skew-symmetry. Let X be a smooth, proper, geometrically connected variety of dimension 2d over
a finite field k of characteristic p. We will define an auxiliary pairing on the group Hgg;ld(X s Z/p™).
Definition 14.4.1. Consider the exact triangle of syntomic sheaves on X:

Z/p"(d)™™ = Z/p*"(d)™" — Z/p" (d)™™"
and call the induced boundary map

B HYL (X Z/p") — HEELA(X, Z/pn). (14.4.1)

syn syn
We define the pairing
<., >n H2d’d(X; Z/p") % H2d’d(X; Z/p") N Z/pn

syn syn

by
(11, 0 1= /X (u- Bov).

Proposition 14.4.2. The pairing (-, ), is skew-symmetric.

Proof. The assertion is equivalent to
z - (Bny) +y - (Baz) =0.

Since 3, is a derivation, we have x - (6,y) + vy - (Bnx) = Bn(z - y). Then the result follows from the next
Lemma. ]

Lemma 14.4.3. The boundary map (3, : Hi%2d(X; Z /p") — HAH1.2d( X 7, /p") vanishes.

syn syn
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Proof. By the obvious long exact sequence, the image of (3, is the kernel of
ny. pdd+1,2d, . n 4d+1,2d [ yr. 2n
[p}‘Hsyn (X7Z/p )_>Hsyn (sz/p )
which is identified with the inclusion p"Z/p?*"Z < Z/p*"Z by Poincaré duality. O

Proposition 14.4.4. The boundary map
H2L4(X;Z/p™) — H2EFLA(X Z,) (14.4.2)

syn syn

induced by the exact triangle of syntomic complexes
Z,(d)™" 5 2y (d)™ = Zfp"(d)"

surjects onto H2LM4(X Z,)[p"]. Moreover, it is compatible for the pairings (-,-)n and (-, -)mar in the sense
that the following diagram commutes

n n ¢)n n
WA Z/p") < HEH(XGZ/p) —————= HifT 24 (X5 2/p")

syn syn
1' 1> ll
HEL LG Z,) ") % HEL NG Z,) ") — = B (X1 Q, /2, ")
Proof. This follows formally from a diagram chase, exactly as in [Fen20al Proposition 2.5]. ]

Corollary 14.4.5. The Milne—Artin—Tate pairing is skew-symmetric.
Proof. Combine Proposition [I4.4.2 and Proposition [14.4.4] O

Corollary 14.4.6. If the pairing (-, ), on Hg;,ir’ld(X; Z/p™) is alternating, then so is the pairing (-, -YmMaT 0N
Br(X)nalp"]-

Proof. This follows immediately from Proposition O

Therefore, to prove it suffices to establish:
Theorem 14.4.7. The pairing (-, ), is alternating for all n.

The proof of Theorem will be the focus of the rest of the paper. Thanks to Corollary the
only non-trivial case is p = 2.

15. ARITHMETIC DUALITY AND E., STEENROD OPERATIONS

The goal of this section is to prove the following result, which relates the pairing of [Definition 14.4.1| with
E. Steenrod operations.

Theorem 15.0.1. Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite
field k of characteristic 2. For all uw € H243(X;Z/2™), we have

syn

u- By(u) = [2n_1] ° P](}?Z(Bn(u))
where:
o Bn: HZLH(X;Z/2) — HZLH4(X; Z/2™) is the Bockstein homomorphism (14.4.1)).

syn

e [, (u) denotes the reduction of ,(u) mod 2.
o [2n71]: HH 24X Z/2) — HiAHH24(X;Z/2™) is the map on cohomology induced by the map of

syn

syntomic sheaves Z/2(2d)3" — Z/2"(2d)3¥" given by multiplication by 2"~ 1.
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15.1. The Bockstein spectral sequence. The key ingredient behind is a more general
formula relating the E,.-power operations and the differentials in the Bockstein spectral sequence, which we
will now formulate.

For M € D(Z), we can form the derived 2-adic filtration

M/2% ;. M/2%" — M/2*" — M/2™ — 0

where all quotients are formed in the derived sense, that is, M /2" is the derived cofiber of multiplication by
2" on M. The limit of this filtration is, by definition, the derived 2-adic completion M3'.

The filtration M /2° is obtained by tensoring M with the filtered commutative algebra Z/2°. Let t be the
class of 2" in the first graded piece Gr1(Z/2%) = 2"Z/2?"Z[—1]. Then the associated graded algebra of Z/2*
is given by Gr(Z/2*) = Z/2"[t] (where ¢ has degree 1). Consequently, the associated graded of Gr(M/2°) is

Gr(M/2°) = M ® Gr(Z/2%) = M/2"[t].

The spectral sequence of cohomology groups associated with this filtration is the familiar Bockstein spectral
sequence, which therefore assumes the form

By, =H\(M/2") - t* = HY(MY). (15.1.1)

(where ¢ should be treated as an indeterminate polynomial variable with grading degree 1 and cohomological
degree 0).

The d;-differentials in the Bockstein spectral sequence are given by dy(z) = B, (z)t for x € H*(M/2").
The d, differentials are divisible by ¢?> and we denote

da(z) = B2 ()t

for a partially defined map 8\ H*(M/2") — H**1(M/2") that we refer to as the secondary Bockstein
homomorphism. It is defined on the kernel of 3,, and modulo the image of 5, in the appropriate degrees.
If A=@D,cy Ay is a Z-graded E.-algebra over Z, we write

H*Y(A) := H%(Ap).

Although both sides of the equation in Theorem [I5.0.1] can be defined for general such E.-algebras, the
equality does not hold in this generality. The abstract ingredient in the proof of the Theorem, which does
hold for general graded E,-algebras, is the following.

Proposition 15.1.1. Let A be a Z-graded By -algebra over Z. Let ﬂ,(LQ) be the secondary Bockstein homo-

morphism for A. Then, with similar notations as in|Theorem 15.0.1), for all u € Hza’b(A/Q") we have
ﬂn(2"71u2) =0

and

B (2" M) = - fa(u) — 2771 PE(Ba(w)).

15.2. Calculation of differentials. In this subsection, we will prove [Proposition 15.1.1}

Let D& (Z) be the oo-category of graded Z-module spectra, or equivalently the graded derived co-category
of Z. We write H*?(M) for the ath cohomology group of the bth graded piece of M.

For M € D(Z), we suggestively denote byﬂ M (a) € D8 (Z) the module M concentrated in degree a.

15.2.1. Universal models for cohomology classes. We will develop some explicit models to calculate power
operations on cohomology classes.

Lemma 15.2.1. Given a graded Eo.-algebra A over Z, the data of a class u € H**(A/2") agrees with that
of a homotopy class of maps

Ou: L/2"(=b)[—a — 1] — A.

3TNote that this notation clashes with the Tate-twist notation for motivic spectra. However, they are compatible in our
application: MSg is linear over filtered, and hence graded, spectra, in such a way that the Tate twist agrees with tensoring with
the graded spectrum S(n).
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The base change @, of v, along the map Z — Z /2™ classifies the pair (8,(u),u), under the identifications
of the commutative diagram below.

Z/2"(—b)[—a — 1] ® Z/2"(—b)[—d]

li P

Proof. We have
HY(A/2") = BExt®®(Z, A/2") = Ext®(Z(—b)[—a], A ® Z/2")
=~ Ext®(Z(—b)[—a] ® (Z/2")", A) = Ext®(Z/2"(—b)[—a — 1], A).
where in the last step we used that the dual of Z/2" in D& (Z) is Z/2"[—-1].
Explicitly, we can represent Z/2"(—b)[—a — 1] by the complex
0 — Z(—b) 25 Z(=b) — 0. (15.2.1)

where the non-zero terms are in cohomological degrees a and a 4+ 1. Hence if A is represented by a graded
chain complex of Z-module with levelwise torsion-free terms, then the map ¢, can be chosen to send the
summand in degree a to an integral lift @ of w and the summand in degree a + 1 to d(@)/2". From this
description we immediately get the desired description of the map @, by reducing modulo 2”. O

We can now use this discussion to compute power operations acting on v and §,(u). To ease notation,
from now on we abbreviate M,1p := Z/2"(—b)[—a — 1], which we shall assume to be represented by the
explicit chain complex (|15.2.1]).

Recall that C5 is the cyclic group of order 2. To compute u - 3, (u), we shall consider the composition

W?Q mult
Yu: (Mat1p)hg, —— ALg, —— A, (15.2.2)

in which Cy acts on the tensor factors by swapping them, and (—),¢, is the homotopy quotient by the action
of Cy. Let

Gy, =Py @z /2" (Mag1)50, ©z L/2" — A/2" (15.2.3)
be the base change of 1, along Z — Z/2™.
Proposition 15.2.2. We have

(Ma+1,b)§g‘2 ®z Z/2" = (Maat2.26/2" )hey B Maat1,26/2" & (Maa,26/2" )ncs,
where Cy acts on the summands according to the Koszul sign rule. Via this identification, the map ,, from
(115.2.3)) is given by the triple of cohomology classes
(P? (B (w)), u - B (u),P?(u)).

Here P?(u): (Mag 2p/2™)nc, — AJ27 is the “total square® (in the sense of [Definition 7.5.4, for p = 2) of u,
and similarly for P?(B,(u)).

Proof. Since the functor (—) ®z Z/2": D(Z)8" — D(Z/2™)%" is colimit-preserving and symmetric monoidal,
it commutes with the operations in the definition of 1, (15.2.2)). Interchanging the order of operations, the
map 1, can be described as the composition

&2
1
(Ma,/2")58, 7 (A/27)52, ™5 Af2"
where the tensor products are now over Z/2". Using [Lemma 15.2.1} this identifies with the composition
(u® B (u)®? 1
(Ma/2" & Mas1 /25, S0 (A2)52, 225 Af2"

The result now follows from the (Cs-equivariant) distributivity of the tensor product. More precisely, by
distributivity the first map identifies with the direct sum of the maps u®?, 3, (u)®? and u® B, (u) ® B, (u) D u,
which give the desired map formula after composing with the multiplication map by the definition of the
total square. O
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15.2.2. Calculation in the universal case. By functoriality, the preceding results allow us to focus on the uni-
versal case of M. To carry out the computation in this case, we shall work with the explicit presentation

(115.2.1) of M,41, used in the proof of |[Lemma 15.2.1 We let x € M4, be the generator in cohomological

degree a and y be the generator in degree a+ 1, so that d(z) = 2"y, and both = and y have grading degree b.
We also assume from now that a is even, though a similar analysis applies to the odd case (giving a different
formula that we shall not need).

We will build an explicit model for the group homology chains C,(Cy; M). Let o be a generator for Cs.
For the trivial module Z of (s, there is the standard resolution

0 Z[Chles D ZChler =2 Z[Chleo (15.2.4)
which in degree i is the free rank one Z[Cs]-module on a generator e;, satisfying
d(ez) = (1 + (—1)i0)€i_1.

If M is a complex of modules over Cs, then tensoring M with (15.2.4]) over Z[C5] gives a model for C..(Cq; M)
by the complex

S eaeoMbaaML e M (15.2.5)
whose differentials are described by
dle;@m) =e;_1 @ (m+ (=1)'c(m)) + (—1)"e; ® d(m). (15.2.6)
Accordingly, the object (Ma7b)§éz is representable by a graded complex of abelian groups with generators
;2% IRy eyez, e y®% i>0.
The differential is determined by and the og-action (coming from the Koszul sign rule)
o(z%?) =22, o(z@y)=yow, o@y®?)=—y*%

Let Z (resp. §) denote the reductions of x (resp. y) mod 2". We are now ready for the computation in our
universal example.

Proposition 15.2.3. Leta € 2Z andn € Z>1. Then in (Ma+1’b>%gv2/2n, the cochain 2" 1Z%? is a cocycle,
whose cohomology class [2"12%2] satisfies

Ball2 127 =0
and
B2 = oy - 2" e © 7%
modulo the image of B,,.

Proof. The fact that 2" 12®2 is a cocycle is seen by calculating directly that d(z®2) is divisible by 2.
To calculate the Bockstein operations, consider the integral lift

2 =2""lrzr+2" ey
of 2"~ 17 ® Z. From the formulas above, we have

dz)=2"""1ezey+yer)+2>" ey -—yoz) - 2°"leg@y®y
=2 (z2@y-2""a®y®y). (15.2.7)

Since (15.2.7)) is divisible by 227, we learn that 3, ([2" 12%2]) = 0, and the secondary Bockstein is

d
8P 1) = M) oy ot eyey, (15.2.8)

yielding the result. O
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15.2.3. Reduction to the universal case. To complete the computation of the Bockstein images of the classes
of the form 2"~ '4?, it remains to identify the image of the classes appearing in [Proposition 15.2.3| under the
map v, : (Ma+17b)%éz /2" — A/2™ which is given by our explicit chain complex presentations as above.

Proposition 15.2.4. The map v,, satisfies

Vu(z®y) =u- Bp(u) (15.2.9)

and

by (er ® y @y) mod 2 =PE (B (u)). (15.2.10)
Proof. Recall from |Proposition 15.2.2] that under the identification
(Ma+1,b)%2 ®z Z/2" = (Magt2.26/2" )by B Mogr1,26/2" & (Maa,20/2" )ncs,

the map 1, is the sum of the maps P?(u),u - 3,(u), and P?(3,(u)). Explicitly, the first summand is the
restriction to the subcomplex spanned by the tensors e; ® x ® x, the second to e; ® x ® y, and the third
to e; ® y ® y, where the first and third complexes give the standard presentations of (Maqy2.25/2")nc, and
(Masg 26/2™)ne, as chain complexes (by tensoring with the resolution over Z[Cs)).

It follows that ¥, (Z ® ) = u - B,(u), and that 1, (e; ® y ® y), after reduction modulo 2, is given by the
composition

~ P2 (B, (u
Magy2.2/2[1] 4, Magy2,95/2 @ BCy =2 (Magi2,20/2)ne, M A2

where t; is the homology class of e; modulo 2. Comparing with [Definition 7.5.3| (which is related to our
other definition of the E., power operation by [Proposition 7.5.5), we see that this composition is precisely

PE (Ba(w)). O

Proof of [Proposition 15.1.1, Let A be a Z-graded E., algebra over Z and let v € H**(A/2"). By
tion 15.1.1} u corresponds to a map ¢, : My11,5 — A which after tensoring with Z/2™ classifies the classes
(Brn(w),uw) in H**(A/2™). Taking the Cs-equivariant square, we obtain a map

(9 (Mffl,b)hcb — A

whose reduction t,, modulo 2" classifies the triple (P2(Bn(u)), u- Bnl(u),P?(u)), by [Proposition 15.2.2 Now,
by [Proposition 15.2.4| the map 1), satisfies

(T ®F) =u-Pu(u), P (e @F®F) mod 2 = PE(B,(u)) (15.2.11)
where a = 2d. Note that the last equality promotes to an equality mod 2™,
0, (2" e @T@7) = 2" PL(Bn(u)). (15.2.12)

Since 1, lifts to an integral map, it is compatible with the Bockstein differentials. Then from
tion 15.2.3| we get the identities:

Ba(271u?) = Ba(,(2"71F?)) = 4, (Ba (277 1F?)) = 0
and, using (15.2.11)) and ([15.2.12]),
B2 ) = B (4, (2" E9%)) = 4, (B2 (2" 1T?)
=,@®7-2""'e1 ®7%) = u- fu(u) — [2"7|PE(Bn(w)),
as desired. ]

15.3. Proof of[Theorem 15.0.1] We now prove[Theorem 15.0.1] Applying[Proposition 15.1.1]to the graded
E-algebra A := RI'%% (X;Z/2™), we deduce that

syn

_ ipd - Hagn (X Z/20)
(2) (on 1u2 = - w) — [27 11pd U Y

It then clearly suffices to show the following two items:
(1) Im (B,) C H34F1.24(X; Z/2™) is the zero subspace, and then

syn

(2) B (27 1u?) vanishes in HAL124(X;Z, /2.

syn
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Thanks to the interpretations of 3, and 67(3) as differentials in the Bockstein spectral sequence, both vanishing
statements follow from the torsion-freeness of Hi:2?(X; Z5). We can also spell this out explicitly as follows.
By the commutative diagram of syntomic complexes on X,

Zo(2d)™ — 2 Zo(2d)V" — Z/27(2d)"

| | |

22724y —2s Z/47(2d)V" —— 7,2 (2d)"

we see that (3, is the reduction modulo 2™ of the connecting map 571 for the long exact sequence associated
to the upper row. But the long exact sequence shows that the image of 3, is contained H4d"’1 24X, Z-)[2"],
which is torsion-free thanks to Poincaré duality, so we obtain the desired vanishing of Im ( ﬁn) C Hid+1.2d( X, 7,/2™).

syn
Similarly, equation ([15.2.8)) exhibits Sy 2)(2" u?) as the reduction of a 2*"-torsion class in Hi424(X; Z5),
which is then necessarily zero. O

16. SYMPLECTIC STRUCTURE ON BRAUER GROUPS

Let X be a smooth, proper, geometrically connected variety of dimension 2d over a finite field of char-
acteristic 2. We will complete the proof of Theorem which (as already noted in Corollary [14.4.6])

implies
16.1. Reductions to characteristic classes. We wish to show that
u- Bp(u) =0 for all u € Hg;,ind(X; Z/2").
From Theorem we have that
u- B (u) = 277 0 SqZ (B, (u)). (16.1.1)

Thanks to the coincidence of the weight with the degree of the Steenrod operation, implies
that

S ]QEd(ﬁn(u)) = quyn(ﬁn( u)) for all u € ngnd(X; Z/2™). (16.1.2)
Inserting this into (|16.1.1]), we have to show that
[2" 1o quyn(ﬁn(u)) =0 forallue Hf;fnd(X; Z/2™). (16.1.3)
From the definition of the syntomic Wu classes, we have
Salyn(Bn(u)) = 03" - Ba(u). (16.1.4)
It is immediate from the definition of [2"~!] that
27 (03" - Bu(w)) = (2" sy - Bu(u) for all u € HALH (X Z/2™). (16.1.5)

Since (3, is a derivation, we have
(27 o) - Br() = Bu (27 Mugy") - w) = Bu([27 o) - u. (16.1.6)

Stringing together (16.1.3]), (16.1.4), and (16.1.5), we see that it suffices to show that (16.1.6) vanishes for
all u. Since ([2"v3)") - u € Hi%*(X;Z/2"), [Lemma 14.4.3| implies that £, (([2"~ 1]1}%“) -u) = 0. Hence
we have reduced to showing that

Bn([2" o) = 0 for all n > 1. (16.1.7)
Lemma 16.1.1. For all v € HY,,(X;Z/2(b)) we have
Ba([2"1v) = Ba,2n (v) (16.1.8)

where B2 9n 1s the boundary map for the exact triangle of syntomic sheaves

Z/2n( )Syn 2 Z/2n+1( )syn - Z/2( )syn (1619)
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Proof. Consider the commutative diagram of exact triangles,
Z/2 (0" 2 Z/2 O —— 2203
| e
Z/2" (BN 22O —— Z/2" (0"

Then (|16.1.8]) results from comparing the two induced maps on cohomology from the top right to bottom
left sheaves. 0

Applying (16.1.8)) in (16.1.7)), it suffices to show that S on(v5}") = 0 for all n. This will be done in the
next subsection.

16.2. Calculations with characteristic classes. So far, we have merely reformulated the question in
terms of syntomic Wu classes. Now, we will draw on the earlier computations that express syntomic Wu
classes in terms of characteristic classes.

Lemma 16.2.1. For any w;™ € HLY/2N(X), its syntomic Steenrod square Sy (W™

a polynomial in the syntomic Stiefel-Whitney classes {wj, } with coefficients in F,,.

) can be expressed as

Proof. Using the Adem relations from Proposition [6.1.6] and the Cartan formula from Proposition [6.4.1] this
follows from the same inductive argument as in the proof of [Fen20a, Lemma 5.4]. O

Lemma 16.2.2. FEvery syntomic Wu class vjyn € Hgg,tnj/2J (X) can be expressed as a polynomial in the
syntomic Stiefel-Whitney classes {w3)"}.

Proof. We induct on j. The base case is vy = wy'" =1 € H*?(X). Consider the equation

quyn (,Usyn) = w™"
from Theorem Equating terms in cohomological degree j, we obtain

U™+ Sqd (V) + = wi (16.2.1)

By the induction hypothesis, for i > 1 each term v3"} is a polynomial in the {w3™} with coefficients in F,,

so by the Cartan formula and Lemma |16.2. 1L each quyn( v3™) is a polynomial in the {w3™} with coefficients

in F,. Then solving for v>"" in (16.2.1)) completes the 1nduct10n. O
Corollary 16.2.3. For every j € Z, the syntomic Wu class vjy gyE{/QJ( X) is the reduction of a class in
B2 (X3 2,).

Proof. Combine Lemma, and Proposition O

Completion of the proof of Theorem [T].7.7. At the end of §16.1] we reduced to showing that 85 2n (v3))") = 0

for all n. Inspecting the long exact sequence associated to ((16.1.9)) whose boundary map is B2 on, we see
that this vanishing is equivalent to the property that v5}" lifts mod 2" for all n, which is guaranteed by

Corollary O
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