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RESTRICTED TANGENT BUNDLE OF RATIONAL CURVES ON
PROJECTIVE HYPERSURFACES

LUCAS MIORANCI

ABSTRACT. We determine all triples (e,d,n) for which a general degree d hypersurface
X C P™ contains a degree e rational curve C with balanced restricted tangent bundle T'x|¢.
In addition, we show how to compute explicit examples of hypersurfaces with balanced T'x|c
when C' is a rational normal curve.

1. INTRODUCTION

The normal and restricted tangent bundles of a curve on a variety give fundamental
information on the local structure of the space of its deformations. They tell the dimension
of the space of curves and the freedom we have in deforming the curve on the variety. In a
sense, curves with a “more balanced” normal and restricted tangent bundles are the “most
free” ones and the ones whose deformations interpolate the maximum number of points. In
this paper, we show when general projective hypersurfaces of degree d in P" have degree
e rational curves with balanced restricted tangent bundle. We work over an algebraically
closed field £ of characteristic p that does not divide the degree e of the curve.

By the Birkhoff-Grothendieck theorem, a vector bundle £ on P! splits as a direct sum of
line bundles, E = @;_, Op1(a;) for integers a; < --- < a,. The collection {a;} is called the
splitting type of E. The vector bundle is called balanced if |a; —a;| < 1forall 1 <i,j <r,
and perfectly balanced if all a; are equal. We remark that there exists a unique balanced
splitting type for vector bundles of a given rank and degree. Also, being balanced is an open
condition in a family of vector bundles (see Section [2.1]).

Let X be a smooth degree d hypersurface in P" containing a smooth rational curve C'
of degree e. There has been great interest in describing the possible splitting types of the
normal bundle N¢/x and the restricted tangent bundle Tx|c. For X = P, there is a long
history of works describing the space of curves having a fixed normal or restricted tangent
bundle, see [GS80}; [Sac80}; [Sac82; [EV81; [EV82; Mir&6; [Asc88; [Ran07; (GHI13} [AR17; [ART18;
(CR18; Asc22; |LV23]. A fair amount of work is done for rational curves and their interpola-
tion properties in more general varieties X, especially projective complete intersections and
Grassmannians, see [Kol96; AR15; [Furl6; Lar21; Ran2la; Ran21b; Ran23; Ran24b|. These
questions can be generalized to higher genus curves, and have been studied in P" in [EL80}
Hul83; Per87; EL92; HK96; Hei00; Larl6; ALY16], for Fano hypersurfaces in [Ran24a] and
for Grassmannians in [BR0OO; CLV24].
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In [CR19], Coskun and Riedl show that a general Fano hypersurface of degree d > 2
in P" contains rational curves of degree e with a balanced normal bundle for every degree
1 < e < n. This result was later extended by Ran [Ran21b] for degrees 1 < e < 2n — 2 and
d > 4. A description of all possible splitting types for the normal bundle when C'is a rational
normal curve and X is a projective hypersurface, in addition to the space of hypersurfaces
inducing each splitting type, has been done for lines in [Lar21] and higher-degree curves in
[Mio25).

For the restricted tangent bundle, however, much less is known. In [Ran24aj, Ran, working
in arbitrary genus and Fano projective hypersurfaces, shows the existence of curves with
balanced restricted tangent bundles for large degrees e in some arithmetic progressions, and
conjectures the existence of obstructions in terms of degree and genus for the existence
of such curves. He highlights the modular interpolation property of the tangent bundle:
for rational curves f : P! — X, a restricted tangent bundle f*Tx = EB?’:_ll O(a;) with
a; < --- < ap_; means that, for a; + 1 general points p; € P! and general points x; € X,
there are deformations f of f such that f(p;) = x;. For curves f with fixed degree e, the

expected (and maximum) number of points that can be interpolated as above is achieved
e(n—l—l—d)J +1

n—1

when f*Tx is balanced. In this case, we can interpolate up to Ldegnf#J +1=|
points (see Section [2.7).

In this paper, we determine the existence of degree e rational curves with balanced re-
stricted tangent bundle in general Fano hypersurfaces for every degree e. We remark that

the restricted tangent bundle is never balanced for non-Fano hypersurfaces (see Proposition
2.13).

Theorem 1.1. (see Proposition and Theorem Let X C P" be a smooth Fano
hypersurface of degree d, 3 < d < n.

(1) The restricted tangent bundle Tx|c of a degree e <
never balanced.

niid rational curve C' on X 1is
(2) A general hypersurface X contains rational curves of degree e with balanced restricted

tangent bundle for every e > niid.

The quadrics (d = 2) form a very special case in which only even-degree curves can
have a balanced restricted tangent bundle. Odd-degree curves may have restricted tangent
bundles as close as possible to the balanced splitting type, but cannot be balanced. We use
a ruled surface construction from [Koll8] that relates pairs of curves of different degrees in
quadric hypersurfaces, and then show that odd-degree curves always interpolate fewer than
the expected points.

Theorem 1.2. (see Theorem and Theorem@ Let X CP", n > 3, be a smooth quadric
hypersurface.

(1) For every even e > 2, X contains degree e rational curves with balanced restricted
tangent bundle Tx|c = O(e)" L.

(2) No odd-degree rational curve on X has balanced restricted tangent bundle. For every
odd e > 1, there exist degree e rational curves with Tx|c =2 O(e — 1) ® O(e)" 3 &
O(e+1).

We approach the problem by considering the particular case of hypersurfaces X containing

a degree e rational normal curve C. In this case, the restricted tangent bundle is the kernel
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in the short exact sequence
0 — Txlo — O(e+1)° @ O(e)"* 25 O(de) —» 0,

where Tpn|c =2 O(e + 1)° @ O(e)" ¢ and Nxpn|c = O(de). By choosing the appropriate
hypersurface X, we can produce a map ¢ inducing a balanced kernel. This allows us to
produce explicit examples of hypersurfaces X with balanced restricted tangent bundle.

Theorem 1.3. (see Theorems and Let X be a general degree 2 < d < 4

hypersurface containing a rational normal curve C' of degree e < n. We list the exact splitting
type of Tx|c for every e and n and compute explicit examples of X for each one. We also
compute explicit examples of degree d hypersurfaces X with balanced Tx|c when n > 2d — 2
and C' is the rational normal curve of degree n in P™.

The examples can be worked out for degrees higher than 4, although the computations
get more involved. We invite the reader to try the examples for particular cases of (d,e,n)
in Macaulay2 [GS].

One of the main tools in our proofs is Proposition [3.2] which implies that for C' a rational
normal curve, if Ty|¢ is balanced for a degree d hypersurface Y C P"~!, then we can extend
Y to a degree d hypersurface X C P" with T'x|¢ also balanced. This allows us to construct
the case e = n and work out inductively when n > e. The induction is done constructively
for d < 4, so we can produce the explicit examples of hypersurfaces. We also take advantage
of the induction when T'x|¢ splits as Neyx @ O(2) with Ne/x balanced. The known results
for normal bundles and induction give us the restricted tangent bundle for curves of degree
e < max{n,2d — 2}. We then glue curves to obtain rational curves with balanced restricted
tangent bundle for the remaining degrees e.

Organization of the paper. Section 2 is dedicated to reviewing some preliminary results
and describing the computation of the map J. We also introduce some notions on curve
interpolation and specialization of vector bundles. Section 3 develops the induction argument
and applies it to curves of degree 1 < e < 2d — 2. In Section 4, we prove the theorem for
quadrics. Sections 4, 5, and 6 show the computation of examples of hypersurfaces of degree
d = 2,3,4, respectively. In Section 7, we obtain examples for 2d — 2 < e < n and glue
rational curves to obtain higher-degree curves with balanced restricted tangent bundle.

Acknowledgments. I am very grateful to Carolina Araujo, Eduardo Esteves, Ziv Ran,
Izzet Coskun, and Eric Riedl for discussions and correspondence on rational curves and
their restricted tangent bundles. I thank Coskun and Riedl for suggesting the degeneration
approach for higher-degree rational curves.

2. PRELIMINARIES

2.1. Vector bundles on rational curves. Vector bundles on rational curves can only get
“more balanced” under generalization.

Lemma 2.1. [EH16, Theorem 14.7(a)] Let E; and Ey be two vector bundles on P! of same
degree d and rank r. Write their decomposition as direct sums of line bundles as

E1 = @O(az) and E2 = @O(bj),
i=1 j=1
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with {a;} and {b;} non-decreasing sequences. The vector bundle E; specializes to Es if and
only if for every integer k satisfying 1 < k < r, we have

k k
Zai Z Zb]
1

i=1 j=

In particular, being balanced is an open condition in a family of vector bundles on a rational
curve. Thus, if we can find specific examples of hypersurfaces and rational curves for which
the restricted tangent bundle is balanced, then we can conclude that the balancedness is
maintained for the general member in their families.

For E a vector bundle in P!, we denote by u(E) the slope of E, defined by

deg £
WE) = — 5
If E is balanced, then E has a unique decomposition as a sum of line bundles O(|u(E)])

and O([u(E)]).

2.2. Rational normal curves. Let e < n. We define the rational normal curve of degree
e in P" as the curve C' defined by

f:(se:se_lt:se_Qtz:---:ste_l:te:O:-u:O):IP’l—HP’”.

Any projective change of coordinates of C' is often also called a rational normal curve of
degree e, but to fix coordinates, we will refer to it as the curve defined above.

Observe that C' spans the linear space P¢ = V(ze11,...,x,). Define the quadratic forms
Qij = vixj_1 —x;—1xj for 1 <1 < k < e, which correspond to the 2 x 2 minors of the matrix

1‘1 x2 ... xe
To X1 - Te-1

Together with the linear forms cutting out IP¢, they generate the homogeneous ideal I C
k|xo, ..., x,] of the rational normal curve:

Ie=({Qi; 11<i<j<elU{ze, ... o)),

In [CR19, Proposition 2.4], Coskun and Riedl use the relations between the generators of
Ic to show that the quadrics Q; 41, for 1 <7 < n — 1, suffice to determine N¢/pn.

Proposition 2.2. ([CR19] Proposition 2.4) Let C' be the rational normal curve of degree n
inP*. An element € H°(Neypn) = Hom(Zeypn, Oc) is determined by the images o(Q;i+1),
for 1 <i <n—1. Furthermore, s" " ''~! divides «(Q; ;1) and this is the only constraint
on a(Qiiv1). If bisv1, for 1 < i < n—1, are arbitrary polynomials of degree n + 2, there
exists an element a« € H°(Ngypn) such that a(Qiiy1) = $" 1 ;441
In addition, the image o(Q; ;) of the other generators of I are expressed in terms of by ;11

by

j—1

Q(Qi,j) — Z Sn_j_i+ltj+i_l_2bl7l+1.

1=i
Corollary 2.3. ([CR19] Corollary 2.6) Let C' be the degree e rational normal curve in P".
Then the normal bundle Ngpn is Nope @ Npejpn = Opi (e + 2)¢71 @ Opa (€)" €.
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By using the Euler sequence restricted to C":
0 — Qpn|c — Op1(—e)" 1 7, Opr — 0,
we can compute the restricted tangent sheaf Tpn|c.

Proposition 2.4. (see [CR18, Proposition 3.3]) Let C' be the rational normal curve of degree
e in P". Then
T]P?n |C g T]Pﬁe

c®D NPe/IFDn = O]pl (6 + 1)6 ©® Opl (e)n—e'
Remark 2.5. We can also compute the normal bundle N¢/p» by using the sequence

n+1

0 — N¢ypn — Opi(—e) SN Oz — 0,

where Jf is the transpose of the Jacobian matrix, as it is done in |[CR18, Theorem 3.2].

2.3. Normal bundles on hypersurfaces. Let X be a degree d hypersurface in P" con-
taining the degree e rational normal curve C' and smooth along C. There is a short exact
sequence of normal bundles:

0 — Neyx — Negpn —2 Nyjpnj, — 0.

lo

By the identification Nx/p» = Ox(d) and Corollary , this sequence is equivalent to

0 — Nejx — Ole +2)°1 & O(e)"* -2 O(de) —» 0.

In particular, every hypersurface X defined by a degree d polynomial F € H°(Z¢/pn(d))
induces a map 1 of normal bundles, thus defining a map:

¢+ H(Zcypn(d)) — Hom(O(e +2)° 1 @ O(e)" ¢, O(de)).

Proposition allows us to explicitly obtain the map ¢ for every given polynomial F'.
First, let e = n. Write F' as a combination of the generators of I, F' = Zl§i<j§n F; Qi ;.
Then p(a) =32 i jcn Fijle - @(Qi). By the relations from Proposition , we have

-1
@Z)F(CY) _ Z Fi,j|C Z Sn—]—z+lt]+z—l—2bl71+1.
1<i<j<n I=i

Collect the terms and write the sum as Y7 Cib; 11, then the map vy : O(n 4+ 2)"~1 —
O(dn) is given by the matrix (Cy,---,Ce_q).
For e < n, the normal bundle Ng/pn splits as the direct sum Ngjpe @ Npejpn. So, if we

write F' as
F= Z F; Qi + Z Grxy,
1<i<j<n k=e+1
and collect the coefficients Cf,...,C._; of the b;;;; as above, then the map ¢ is given by
the matrix

V= (C1,- ,Co1;Gerlo, ,Gulc) : Ole +2)71 @ O(e)"¢ — O(de).

Proposition 2.6. ([CR19, Theorem 3.1]) If d > 3, then the homomorphism ¢ is surjective,
that is, every map v € Hom(O(e +2)"1 & O(e)"~¢, O(de)) is induced by some hypersurface
X.
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It is useful to remark that we can get the F; j|c and Gy|c to be any polynomial in s, of
the corresponding degree, since rational normal curves are projectively normal:

Lemma 2.7. [Arb+85] For every k > 1, the map H°(Opn (k) — H(Oc(k)) = H°(Op:i(ek)),
F — F|¢, is surjective.

Given a polynomial F|c € H%(Opi(ek)), we can easily find an F that restricts to it:

write each monomial of F|c as a product of k¥ monomials of degree e. For instance, for
Flo = 5722 we can write s~2t = 51 (5°=2¢2) and choose F = xf 'x,.

2.4. Restricted tangent bundles of hypersurfaces. Let X be a degree d hypersurface
in P" containing the degree e rational normal curve C'. Say X is defined by a homogeneous
polynomial F' of degree d. We can see the restricted tangent bundle T'x|c as the kernel of
the standard tangent bundle sequence:

5
0— Txlc — Tpn|c — NX/]Pm|c — 0.
By Proposition this sequence can be written as
0 — Txlc — Oe+1)° @ O(e)" ¢ -2 O(de) — 0.

By combining the Euler sequence of P" restricted to C' and the tangent bundle sequence,

we can see the map ¢ above as the quotient of the gradient of F', VF = (g—i), R % :
0
Op1
f

2

Opn(e)n+1 i} NX/]P’"‘C e O

~ H

0 — Tx|o —— Tpoloc —>— Ny/pn), — 0

Alternatively, and due to Proposition [2.6] it can be very useful to describe § in terms of
the map of normal bundles 1. We first describe the maps of the tangent bundle in P™ by

the following commutative diagram, whose rows are the Euler sequences for P! and P" (see
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[EV81};/GS80]). For this sequence, we need to assume p { e.

0 0
(i) ~ ) (t,—s) . ~ .
0 —— O]pl —_— O]pl(l) > T]pl > 0
el Jf df

0 —— Op —1 O ()™ —— Ty, 2 O(e+ 1) B O(e)"™¢ —— 0

B
Neypn === Negpn = Oe + 2)L @ O(e)"*

0 0

In the diagram, f = (s¢ s*7'¢,--- ,t¢,0,--- ,0) is the map defining C, and J f is the Jacobian
matrix

es® 1 0
(e —1)s2t se 1
2fo  9fo : :
8.3 8'1& el (6 _ 1)Ste_2
Jf = : : = 0 ete1
Ofn  Ofn
Bs ot 0 0
0 0

We can compute the cokernel of f and use it to show that
df = (36_1, s 0, ,O) .

Thus, the cokernel of df can be obtained, and we get the map 8 : Tpn|c = Neypn,

B = | t —s :O0(e+ 1)@ 0()" = O(e+2)1dO(e) .




The tangent bundle and normal bundle sequences can be related in the following commu-
tative diagram:

0 —— Tx|lc —— Tpnlc SR Nx/pnlc —— 0

; |

2 2

Y
0 —— NC’/X E— Nc/]pn _— Nx/]pn|o — 0

~ ~

0 0
which, by Corollary 2.3 and Proposition [2.4] is the same as
0 0
0(2) 0(2)
df

0 —— Txle —— O(e+1)°® O(e)"¢ —2— O(de) — 0

)
8
1 1 ,
)

0 —— Neyx —— O(e+2) 1 dO(e)" ¢ —— O(de) —— 0

~ ~

0 0

That allows us to write the map  as the composition ¥ o . The explicit computation for
1 from the previous section gives us a way of finding ¢ for any given polynomial F' defining
X. Say we got

¢ - (Cla T aCe—l; Ge+1|C’7 T aGn|C) 5
then we obtain
5 = ¢Oﬁ = (tcla _501 + t027 _SCZ + tc37 ) _SCe—Z + tCe—l; _SCe—l; Ge+1|07 e 7Gn|0) .

With the matrix of §, we can use its column relations to explicitly compute the desired
restricted tangent bundle T'x|c.

Example 2.8. Let n = e = 3and d = 5. Let X be the surface defined by F' = 23Q1 2 +25Q2 3.
It induces the map on normal bundles ¥ given by the matrix

Y= (s",¢9) : O(5)> = O(15).
Notice the columns C; and C5 of ¥ above satisfy the relation

th-Cl—slo-ngo,
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which can be used to define an injective map

(L)
_510 2
O(-5) —" O(5)
that factors through the kernel of . Therefore, we can conclude that it gives the kernel of
1/1, that iS, NC/X = O(—5)
With ¢ on hands, we can get § : O(4)> — O(15), given by

§=1op=(s1t"). (t —ts —s) = ("%, —s"" + ", —st'?) .

The three columns of § satisfy the relations
e s2.Ci+st-Cy+1t?-C3=0, and
o t?-C1+0-Cy+5” 03 =0.

And these relations define the map

szt
K:|st 0]:002 a®0(-5 — 0@1)?,
2 s?

which factors through the kernel T'x|¢ of §. One can show K is injective at all points (s,t) €
P!. Since they have the same rank and degree, we conclude that Tx|c = O(2) ® O(-5). In
particular, X is an example of a quintic surface containing the twisted cubic C for which
N¢/x is balanced, but T'x|¢ is not balanced.

Remark 2.9. Since ¢ is the composition of ¢ with £, not every map in Hom(O(e + 1) &
O(e)" ¢, 0(de)) can be realized as a ¢ for some hypersurface X. In fact, similarly to the
map ¢, we can define the homomorphism

¢r : H(Zo(d)) — Hom(O(e + 1) & O(e)" ¢, O(de)), F + § =10,

which is given by taking the composition of ¢ with 5. Both ¢ and ¢t share the same kernel
H°(Z%(d)). For d > 3, ¢ is surjective, and a dimension computation shows that the image
of ¢r is a subspace of codimension (ed — 1) in Hom(O(e 4+ 1)¢ & O(e)" ¢, O(de)).

2.5. Splitting of the tangent bundle for low-degree curves. The tangent bundle se-
quence of C' in X writes Tx|c as an extension of N¢/x by Tpi:

0 — O2) — Tx|c — Neyx — 0.
We can tell when this sequence splits as a direct sum.
Proposition 2.10. If No/x = @1, O(a;) with a; < 4 for all i, then Tx|c = Nejx © O(2).
Proof. By Serre’s duality for P!,
Ext! (Noyx, 0(2)) = HY((Neyx @ O(=2)) @ O(=2)) = H'(Nojx ® O(—4)) = 0
when a; < 4 for all 7. O

When X is a general hypersurface containing C, the normal bundle is balanced. When
the degree of X gets large enough with respect to the degree of C, the tangent bundle splits
as No/x @ O(2), so the tangent bundle Tx|c stops being balanced when Ng,x has slope

smaller than 1.
9



Corollary 2.11. Let X be a degree d general hypersurface in P™ containing the rational
normal curve C of degree e. If
en+1—d)—2 <

3,

u(Neyx) = m—

then Tx|c = Noyx @ O(2), where Neyx is the balanced bundle of degree ne +e — 2 and rank
n — 2. In particular, if 1(Neyx) < 1, then Tx|c is not balanced.

Proof. If X is general, then by [CR19, Corollary 3.8 and Corollary 4.1}, the normal bundle
N¢/x is balanced, hence it is a sum of line bundles of degrees |;1(N¢/x)] and [p(Neyx)].
Then the claim follows from Proposition [2.10} O

We can explore the inequality in Corollary to highlight some cases when the restricted
tangent bundle splits.

Corollary 2.12. Let X be a general hypersurface of degree d in P™ containing the rational
normal curve C' of degree e <n. Ifd>n=3 ord+1>n >4, then Tx|c = N¢/x ® O(2),
where N¢yx is the balanced bundle of degree e(n 41 —d) — 2 and rank n — 2. In particular,
ife<n=dore<n<d-—1, then Tx|c is not balanced for any hypersurface X.

We can also find cases when T'x|c cannot be balanced directly from the tangent bundle
sequence. Notice that Tx|c is not balanced when X is not Fano.

Proposition 2.13. Let X be a degree d hypersurface containing a degree e rational curve

C. If
e(n+1—4d)
T =—= <1
u(Txle) = =D <,
then T'x|c is not balanced. Therefore, if n < d, orn > d and e < niﬁd, then Tx|c is not
balanced.

Proof. If Tx|c is balanced, then it is a sum of line bundles of degrees |u(Tx|c)| and
[1(Tx|c)]. So, if u(Tx|c) < 1, we could not have an injection O(2) — Tx|c, a contra-
diction. U

2.6. Vector bundles on degenerations of rational curves. Once we know the splitting
type of the restricted tangent bundle for some curves on X, we can glue and smooth them to
obtain higher-degree rational curves with a “controlled” restricted tangent bundle. If Cy, Cy
are rational curves on X with Tx|c, balanced and Tx|q, perfectly balanced, we can get a
curve of degree deg C'; + deg Cs with a balanced restricted tangent bundle.

We summarize this in the following lemma on specialization of vector bundles on P! to a
gluing of two smooth rational curves. We refer to [Smi23| for a more complete discussion on
the possible specializations of vector bundles on trees of rational curves.

Lemma 2.14. (see [Smi23, Theorem 1.2]) Let C = C1UC5 be a nodal curve with Cy, Cy = P!
intersecting at one point p. Let E be a rank r vector bundle on C such that

Ele, 2@ O(a;) and Elc, = P O(b)
i=1 =1
10



with {a;} and {b;} in non-decreasing order. Assume that E is the specialization of a vector
bundle E' on P'. Then the “most unbalanced” (in the sense of Lemma that E' can be is

T

i=1
In particular, if E|c, is balanced, and FE|c, is perfectly balanced, then E' is balanced.

Proof. The obstructions in the splitting type of E’ come from the upper semicontinuity
conditions:

RY(C,E ® L) > h°(P*, E'(deg L)) and R'(C,E ® L) > h*(P', E'(deg L))
for all line bundles L on C'. We have an exact sequence
0 — Ele,(-p) — E — E|¢, — 0.

Denote by O(a,b) the line bundle on C' that has degree a on C} and degree b on Cy. By
twisting the exact sequence above by L = O(—ay, —b; — 1) and taking cohomologies, we get
h'(C,E ® L) = 0, hence 0 > h'(P!, E'(—a; — by — 1)), thus E’ does not have summands of
degree less than a; + b;. Similarly, if we take L = O(—a,., —b, — 1), we obtain h°(E® L) = 0,
so 0 > hO(PY, E'(—a, —b.—1)), thus E’ cannot have summands of degree larger than a,. +b,..
We repeat the argument for the other degrees to conclude the lemma. ([l

2.7. Modular interpolation of rational curves. An important property of a curve C' on
a variety X of dimension n is its capacity to interpolate a given number of general points
in X by deformations of C'. We can make sense of this in terms of the space of curves on a
variety going through m general points of X, or in terms of morphisms C' — X that send m
marked points in the curve C to a fixed set of m points in X. The first case is often called
the interpolation property, and is controlled by the normal bundle N¢,x. The latter is called
modular interpolation, and is connected to the positivity of the restricted tangent bundle
Tx|c. Both are studied for arbitrary genus curves in [Ran24aj. Since we are working with
the tangent bundle here, we will use the word “interpolation” as a synonym for modular

interpolation.
In our case of rational curves and tangent bundles, we deal with maps f : P* — X and
ask what is the maximum number m of general points x4, ..., x,, of X we can deform f so

that f(p;) = a; for given m general points py,...,p, € PL. Let f*Tx = @), O(a;) with
a; < --- < a, be the splitting of the restricted tangent bundle of such a map f. The space

of morphisms P! — X with p; — z; for i = 1,..., m has tangent space at [f] isomorphic to
TiMor(P', X; p; v ;) & HO(P', f*Tx (=p1 — -+ — pm)) = H" (Pl, D O(a; - m)) :
i=1

and deformations of f fixing p; — z; will dominate X if a; > m (see [Kol96, Corollary
I1.3.5.4]). In this case, we can choose an additional point of X for f to interpolate. Hence,
a curve f with f*T'x = @; , O(a;) will interpolate up to a; + 1 general points in X.
Equivalently, f interpolates m points while H!(f*Tx(—m)) = 0.

Notice that, among the vector bundles of P! with fixed rank and degree, the balanced

bundle has the largest a;. In this sense, curves with a balanced restricted tangent bundle
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are the ones that interpolate the most points (see [Ran24a, Corollary 20]). Observe that this
maximum number of points is

(F )] +1 = {

When X is a degree d hypersurface in P*, and f : P! — X is a degree e rational curve,
the maximum number of points f can interpolate is

{e(n—#l—d)JJrL

n—1

_ * K
deg f XJ s
n

which is achieved when f*T' is balanced.

Example 2.15. Degree n rational normal curves C' in P" have the nice properties [Har92,
Chapter 1]:
e Through n + 3 points in linear general position in P", there exists a unique rational
normal curve;
e Given n+2 points z; in linear general position in P*, and n+2 distinct points p; € P*,
there exists a unique rational normal curve f : P! — P" such that f(p;) = z;.
They correspond, respectively, to the splitting of the normal bundle N¢/pn = O(n+2)""*
and of the restricted tangent bundle Tpn|c = O(n + 1)™.

3. THE INDUCTIVE METHOD

The process to obtain a hypersurface X with balanced restricted tangent bundle is done
by first approaching the case e = n, and then doing induction on n > e.
For e = n, we have the tangent bundle sequence:

0 — Txle 25 O(n+ 1)" 25 O(dn) — 0.

The strategy is to choose the appropriate polynomial F so that its kernel T'x | is balanced.
To compute the kernel, we find independent column relations satisfied by dr. Then, create
a matrix Ky whose columns are the coefficients of the column relations. This construction
implies that the map defined by K factors through the kernel of dr. Since they agree in
rank and degree, it suffices to show that Kr has maximum rank at every point (s,t) of P!
to conclude that Kr gives the kernel Tx|c of df.

Example 3.1. Let d = 3, e = n = 3. The degree 3 polynomial F' = 2oQ)1 2 + £3Q)2 3 induces
the map
0p = (s't,—s" +°, —st*) : O(4)* = O(9).
The columns C4, Cy, C3 of §p satisfy the relations:
) 82-01+St'02+t2'0320;
[ ] t3'01+0'02+83'03:0.
We use them as columns for the matrix

3 §?
KF = 0 st
3 2

Notice that K has maximum rank 2 for all points (s,t) € P!, hence the map Kp :
O(1) & O(2) — O(4)? is the kernel of §p, thus Tx|c =2 O(1) & O(2).
12



Once the case e = n is done, we approach the case n > e by induction on n. First, observe
that the rational normal curve C' spans a linear space A = P¢, and that a general degree d
hypersurface X C P" containing C' restricts to a general degree d hypersurface Y = X N A
of P¢. The inclusions define the following diagram of tangent bundle sequences:

where the map O(e + 1)¢ — O(e + 1)° @ O(e)" ¢ is the identity on the first e entries and
zero elsewhere since Tpn|c = Tpe|c @ Npe pn.

If X is defined by a polynomial F = Zi<j Fi Qi+ > hey1 Gray in k[zg, ..., 2], then Y
is defined by the polynomial f = >, Fi ;|aQi; in k[zo, ..., x.]. Thus, the map dr coincides
with df in its first e entries; the last (n — e) entries are the ones defined by the forms Gy.
That is, we have 6p = (0;¢g), where g = (Ges1l|o, -+, Gnlc). Our strategy is to work the
diagram backwards, and use f to inductively recover an F' so that T'x|c is balanced.

Suppose, by induction hypothesis, there exists a degree d hypersurface Y C P*~!, for some
n > e, defined by a polynomial f € k[zo,...,x,_1] with Ty|c balanced. It comes with its
tangent bundle sequence

0 — Ty|c N Oe+ 1)@ Ofe)" R O(de) — 0.

Now, say that E is the balanced vector bundle of the same rank and degree as T'x|¢, that
is, if T'x|c is balanced, then we should have Tx|c = E. We then look for a pair of injective
maps

J:Tylc — E and N;:E — O(e+ 1)@ O(e)" ¢!

so that Ky = N; - J. By rank and degree considerations, the cokernel Ny of J maps E to
O(e). These give us the map

N ( 7 ) B Oe 1) O0e) ™

13



that makes the following diagram commute:

0 0
0 —— Tyle —2 Oe +1)° @ O(e)™ ' —2Ls O(de) —— 0
J
0 s E— 5 O(e+1)¢a0(e)" —2— O(de) —— 0
N2
O(e) O(e)
0 0

Define § the cokernel of N. By the commutativity of the diagram, up to a change of basis
0 coincides with d; in its first n — 1 entries, that is,

6= (d5;9)
for some g : O(e) — O(de). By Lemma there exists a degree d — 1 polynomial G,, so
that
F=f+Gz,
defines 0p = (0f; g) = 0. Therefore, N is the kernel of dp, hence, F' defines X with Tx|c = E.
The following proposition shows that we can always obtain X from Y.

Proposition 3.2. Letn > e andY C P! be a degree d hypersurface containing the rational
normal curve C of degree e. Then, for any extension

0—Tylc — E— O(e) — 0
of O(e) by Ty|c, there exists a degree d hypersurface X C P" such that Tx|c = E. In

particular, if Ty |c is balanced for a general Y, then Tx|c is balanced for a general X .

Proof. As above, d; is fixed for Y, and we look for a map 6 = (d7;¢g) whose kernel is E.
Every (dy; g) comes from an F' = f + Gz, for some polynomial G,,. Therefore, it suffices to
show that, for any extension F, there is a ¢ inducing E. In other words, it suffices to show
the map

Hom(O(e), O(de)) — Ext'(O(e), Ty |c), g+ Tx|c

is surjective. Indeed, applying the functor Hom(O(e), —) to the short exact sequence
0 — Tyle — Ole +1)° @ O(e) = 215 O(de) — 0,
we obtain
Hom(O(e), O(de)) — Ext'(O(e), Ty |c) — Ext'(O(e), O(e + 1) ® O(e)" ) = 0.
[

Therefore, we only need to obtain X for the case n = e, and then the case n > e follows
by induction. The following lemmas will help us find explicit matrices J and N; for degrees
d=2,3,4.

14



Lemma 3.3. Let A, B,C, D be vector bundles over P with tk A < rk B and tkC > rk D,
and maps K : A —- B, J: A— C, Ny: C — D, and N; : C — B so that the diagram
commutes:

— B

g () 165

2

—$S BoD

If, at all points in P', K and N, have mazimum rank rk A and tk D, respectively, then

M ) has mazimum rank (tk A + 1k D).
2

Proof. Since K = Nj - J, we have rk Ny > tk K = rk A. And since N; and N, map to

different summands, we have rk ( %1 ) =1k N; +rk Ny > 1k A+r1k D. O
2

The consequence of Lemma [3.3|is that we only need to look for matrices J and V; so that
Ky = N; - J, and the injectivity of N follows automatically. Next, we present the matrices
J that will be used in the induction, and show how to find the corresponding N;. They will
come in three kinds: Jy, Ji, and Js, described in the following lemmas.

Lemma 3.4. Let A, B and D be vector bundles in P*. Let K : A — B be any map. Then
for

Jo = (Iod) A A@D, and Ny=(K|0): AeD— B,
we have K = Ny - Jy.
Proof. 1t follows directly from the definitions. O
Notice that the cokernel of J, that we will use as Ns, is
coker Jy=(0|1d): A& D — D.

Lemma 3.5. Let a,r,s be integers with r > 1, s > 0, and let B = @, O(a;) be a vector
bundle over P* with all a; > a. Let J; : O(a)” @ O(a+1)* = Oa)"t & O(a+ 1)**? be the
map defined by the matriz

s
0 1

Ji=|: -
0 1
t 0

Then for every map K : O(a)” ® O(a + 1)* — B we can compute a map N : O(a)"' &
O(a+1)**2 — B such that K = N - J;.

We remark that the cokernel of J;, which will serve as our Ns, is

coker J; = (£,0,---,0,—s).
15



Proof. Let m = rk B. Write the matrix N = (bi;), (1 s41)- Then

sbi1 +1thiryst1 big b1z oo biygs
Nogy = | e e bas e b
Sbm,l + tbm,’/‘-}-s—i—l bm,2 bm,3 e bm,’r—i—s

Since B has summands of degree larger than a and r > 1, K contains a column of degree
at least one, which can be chosen as the first column of N - .J; above. Then, we can easily
choose b;; so that N - J; = K. O

Lemma 3.6. Let a,r,s be integers with r > 2, s > 0, and let B = @, O(a;) be a vector
bundle over P* with all a; > a. Let J: O(a)" @ O(a+1)* — O(a)" 2@ O(a+ 1)**3 be the
map defined by the matriz

e 0 -
0 ¢
0 01
Jo= 1. .
0 1
|t s 0]

Then, for every map K : O(a)"®0O(a+1)* — B we find an Ny : O(a)"2®0O(a+1)**3 — B
such that K = Ny - Js.

Observe that the cokernel of Js is
coker Jy = (tQ, s2,0,---,0, —st) .

Proof. Let m =rk B. Let N1 = (bij),,,(sys:1)- Then
sbig +thiprst1 thig+ Sbisqpsr1 b1z bia o0 biggs
Sbo1 +thypysi1 thao 4+ Sbasysr1 baz baa - Doy
Ny-Jy = . . . .
Sbm,l + tbm,r—l—s—‘rl tbm72 + Sbm,r+s+1 bm,3 bm,4 e bm,r—f—s

Write K = (Kij)mx(r+s)- Since B is a sum of terms of degree larger than a and r > 2, at
least the first two columns of K have degree at least one. Let d; ; = degk; ;. Decompose the
entries of the first two columns of K as

d; d;
kix = spi+ ciat™" and kiz = tq; + ¢ 2877,

with p;, q; € ks, t], ci1,¢ci0 € k, for 1 <i <m.
Then, we can choose
biy1 = pi — Ci25™2 2t
bio = q — ¢;pst 177

diqi—1 dia—1.
bipgst1 = Ciat™' T+ 8T

for 1 <4 < m. And for all the other entries, we can pick b; ; = k; ;. U
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Example 3.7. Let d = 3, e = 3, n > 3. In the example 3.1} we let n = 3 and showed that
the polynomial f = 20Q12 + 3Q2 3 induces d; = (s*t, —s° + t°, —st*) and a balanced kernel

Tylc = O(1) @ O(2) given by

_t3 2

S
Kf = 0 st
s t?

Now, for n = 4, we want to find F' so that
[B.5] it suffices to choose

J =

we get a kernel Tx|c = E = O(2)?. By Lemma

Y

+ O W»
O = O

and there will exist a matrix N; such that Ky = N; - J. Indeed, we can follow the proof of
the lemma to compute

0 s2 ¢t?
N1 = 0 st O
2 20

Ny
2

Let Ny = coker J = (¢,0, —s) and N = ( ) We then obtain the commutative diagram

oM @02 — 5 o) — 5 09

/| |

012} — ¥ — 043 0(3) —2= 0(9)

| |

0(3) 03)

(n=e=23)

The map N is injective by Lemma [3.3] which can also be directly checked. Similarly to
the computation of the kernel, we can use the relations between the rows of N to compute
its cokernel

0 = coker N = (s4t, —s7 4+ 17, —stt; s3t3) .

Notice that, as expected, we got 6 = (d7; g), with g = s*t>. Let G4 = ox3, so G4l = s3t3.
Then F' = [+ Guxy = (Q12 + Q23) + (xox3)zrs induces ép = . Hence, N is the kernel of
5F7 and Tx|c = 0(2)3

We can repeat the process for n = 5. In this case, the balanced bundle E is O(2)* & O(3),

which is just the T'x|c from the case n = 4 plus a summand O(3), so we can simply choose
J as Jy in Lemma that is,

0 00
so Ny = (0,0,0,1), and N; = (K | 0). We then simply obtain § = (dr;0), and the new F
is the same as in the case n = 4. Similarly for every n > 4, we get Tx|c = O(2)* & O(3)"3

which are all induced by F' = (Q12 + Q23) + (zox3) 4.
17



By Corollary [2.12, we know how T'x|c decomposes when n < d + 1. Then, Proposition
allows us to use the induction on n to settle the case e < d + 1.

Theorem 3.8. Let 3 < e<d+1,d>3 ande < n. Let X CP" be a general degree d
hypersurface containing the degree e rational normal curve C.

(1) If n <d, orn >d and e < 25, then Tx|c is not balanced.

(2) If n >d and e > ni{id, then Tx|c is balanced.

Proof. (1) This follows from Proposition [2.13]

(2) Suppose first that e = d or e = d + 1. In both cases, we have 1 < u(N¢g/x) < 3, then
by Corollary, we have T'x|c = Neo/x @ O(2) with Tx|¢ balanced. Therefore, by
Proposition and induction on n, we can find X with Tx|c balanced for all n > e.

We can now assume e < d — 1. By Corollary there exists a degree d hyper-
surface Y C P¢ with Ty |c = N¢/y @ O(2), where N¢y is the balanced bundle of
degree e(e + 1 — d) — 2 and rank e — 2. That is, Ty |c is written as a direct sum of
line bundles of degrees 2, |(N¢yy)] and [pu(Neyy)], where

efe+1—d)—2
e—2 '
Let E be the balanced vector bundle of degree n(e+1—d) and rank n—1, that is, if

Tx|c is balanced, then we should have Tx|c = E. By Proposition 3.2/ and induction
on n, it suffices to show that there is an injection Ty |c — E. Notice that we have

/J(NC/Y) =

t(Neyy) <0 since e <d—1,

while
e(n—d+1) n—1
F)=— > >1f > .
HE) n—1 or e n+1—-d
Therefore, E has at least one summand of degree > 2, and all summands of degree
larger than the summands of N¢yy. Thus, we do have an injection Ty|c — E, and
it follows that there exists X with Tx|c & E.

O

We remark that, since we know examples of hypersurfaces Y with balanced normal bundle
N¢yy from [Mio25], we can follow the proof of Theorem and our induction method to
construct explicit examples of hypersurfaces X with balanced restricted tangent bundle as
long as we can find the appropriate matrices J and N; at each step.

We treat the cases e = 1 and e = 2 separately. We remark that, in both cases, the
restricted tangent bundle splits as No/x @ O(2).

Theorem 3.9. Let n > 3 and d > 3. Let X C P" be a general degree d hypersurface
containing the rational curve C.

(1) If C is a line, the restricted tangent bundle Tx|c is not balanced.
(2) If C is a smooth conic, the restricted tangent bundle Tx|c is balanced if and only if
n > 2d— 2.

Proof. (1) For e = 1, Corollary holds with p(Ne/x) < 1.
18



(2) For e = 2, Corollary holds with p(Neyx) < 3, thus Tx|c = Neyx @ O(2) with
N¢/x balanced. Since we have ,u(NC/X) > 1 if and only if n > 2d — 2, it follows that
Tx|c is balanced if and only if n > 2d — 2.

O

For n > 4, Ran [Ran24a), Theorem 40] shows that a general degree n Fano hypersurface
in P contains a degree e rational curve C' with balanced normal bundle for every e > n — 1.
We use this curve to produce hypersurfaces X with balanced Tx|¢ for d < e < 2d — 2.

Theorem 3.10. Letn > d > 3, n > 4 and let X C P™ be a general degree d hypersurface.
Then X contains a degree e rational curve with balanced restricted tangent bundle for every
d<e<2d-2.

Proof. We will work by induction on n starting at n = d. So first, let n =d < e <2d—2. By
[Ran24a;, Theorem 40], there exists a degree e rational curve C' C X with balanced normal
bundle N¢/x. Notice that, for our degree range, 1 < (Neyx) < 3. Then, by Corollary ,
Tx|c = Neyx @ O(2) and Tx|c is balanced.

Now, we repeat the proof of Proposition to apply induction on n. Notice that, for
d < e <2d—2, we have e + 1 < pu(Tpalc) < e+ 2, and since Tpa|c is balanced for a
general rational curve in P¢ [Ram90, Theorem 2], Tpd|c is a direct sum of terms O(e + 1)
and O(e+2). By induction hypothesis, suppose that for some n > d and the curve C' above,
there exists a degree d hypersurface Y C P" with balanced Ty |c. For the step n+ 1, we have
the diagram:

0 > B > Tpn|c @ Ole) O(de) —— 0
Ole) O(e)
0 0

Notice that, since C C P9, we have Tprii|c = Tpn|c @ O(e) and we get all maps g €
Hom(O(e), O(de)) above. And again, applying the functor Hom(O(e), —) to the first row,
we have

Hom(O(e), O(de)) —s Ext!(O(e), Ty |¢) — Ext'(O(e), Tn|c) = 0,

where Ext'(O(e), Tpn|¢) = 0 since Tpn|¢ is a sum of terms O(e), O(e+1) and O(e+2). Thus,
the map Hom(O(e), O(de)) — Ext'(O(e), Ty|c) is surjective, hence we get all extensions E
of O(e) by Ty|c. In particular, there exists a degree d hypersurface X C P"*! with Tx|c = E
balanced. Therefore, for all n > d, there exists a degree d hypersurface X C P with Tx|¢

balanced. 0
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Corollary 3.11. Let X be a general degree d > 3 Fano hypersurface in P". Then X contains

rational curves of degree e with balanced restricted tangent bundle for all 25— < e < 2d—2.

Proof. For Fano hypersurfaces, n > d. The corollary follows for e = 1 and 2 by Theorem
B.9] for 3 < e < d by Theorem and for d < e < 2d — 2 by Theorem [3.10 Theorem [3.10
does not include the case n = 3, which we prove in Theorem [5.1] l

4. QUADRICS

In this section, we consider the case d = 2, that is, when X is a quadric hypersurface. As
we will see in the next sections, the restricted tangent bundle becomes balanced for a curve
of sufficiently large degree when d > 3. Quadrics are a special case, where odd-degree curves
will never have a balanced restricted tangent bundle. In other words, we can interpolate
fewer than expected points by deforming odd-degree curves on quadric hypersurfaces.

Example 4.1. A smooth quadric surface X C P? is isomorphic to P! x P!, and a degree ¢
rational curve C' in X corresponds to a bi-degree (ey, es) curve in P* x P! with e; + ey = e.
Let 7, m : Pt x P! — P! be the two natural projections. Then

T[plx[plyc = (TTTPI &) W;TPI)‘C > Op (261) @ Op1 (262).

Hence, Tp1yp1|c will be balanced exactly when e; = ey. In particular, it can be balanced
for an even-degree curve but never for an odd-degree rational curve.

The quadric in P5 corresponds to another classical example of an unbalanced restricted
tangent bundle, which is the case of most rational curves in Grassmannians.

Example 4.2. A smooth quadric hypersurface in P? is isomorphic to the Grassmannian
G(2,4) (see [GH78, Chapter 6.2]). The tangent bundle T, of a Grassmannian splits as
Ton = 9" ® Q, where S and () are the tautological and quotient bundle, respectively.
As investigated in [Man21, Lemma 33], for T |c to be balanced, both S*|¢ and Q¢
need to be balanced. But, for G(2,4) and C of odd degree e = 2m + 1, we will have
S*le = Qle = O(m) & O(m + 1), hence Tgpnlc = O2m) & O2m + 1) & O(2m + 2) is
unbalanced. Notice that it can be balanced if C' has even degree.

More generally, a general deformation of a degree e rational curve in G(k,n) will have a
balanced restricted tangent bundle if and only if either k|e or (n—k)|e (see [Ran24a, Example
21]).

Let X be a degree 2 hypersurface in P* and C' C X a rational curve of degree e. From
the tangent bundle sequence, we see that if Tx|c is balanced, then it is O(e)"~'. Hence C
interpolates e 4+ 1 points exactly when Tx|¢ is balanced. We will show that an odd-degree
curve cannot interpolate the expected number of points in a quadric hypersurface. For that,
we will describe a method of constructing rational curves of a given degree via rational
scrolls from [Kol18]. Kolldr studies degree e maps P! — Q" where Q™ is a smooth quadric
of dimension n > 3, and shows the following theorem.

Theorem 4.3. [Kol18, Theorem 1] Let Q" be a smooth quadric of dimension n > 3. Then

1 Ay bir Q" x P if e is even, and
Mor. (B, Q") {OG(HM,Q”) x P8 if ¢ s odd,
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where % denotes birational equivalence and OG(P', Q") the orthogonal Grassmannian of
lines in Q™.

During the proof of Theorem Kollar shows the following proposition, which relates
curves of the same parity.

Proposition 4.4. [Kol18, Proposition 26] Let Q™ be a smooth quadric of dimension n > 3.
Then 4
Mor, (P, Q™) % Mor,_s(P, Q™) x P*" for e > 3.

Since degree 1 maps are lines, we have the rational equivalence Mor; (P!, Q™) % OG(PY, Q") x
P3. We will obtain the higher-degree curves by intersecting ruled surfaces with the quadric.

Let C' be a smooth projective curve and ¢,v : C' — P" be two morphisms. We will
consider the ruled surface swept out by the lines (¢(p),1(p)) for p € C. If ¢ and ) coincide
at a zero-dimensional subscheme Z C C, ¢|z = 1|z, then we can construct a ruled surface
S(¢p,1) C P™ from ¢, with deg S = deg ¢ + degy) — deg Z (see [Koll8, Section 2] for more
details on the definition of 5).

Let X C P™ be a smooth quadric. Suppose that ¢ : C' — X above maps to X and
¥ : C'— P™ is a morphism not contained in X. We get a ruled surface S(¢,v). The quadric
and the ruled surface meet on the image of ¢ and on the residual intersection R. The degree
of Ris 2degS —deg¢p = deg¢p + 2degy) — 2deg Z.

The following proposition uses the construction in the proof of Proposition to show
that we can interpolate m points in X with rational curves of degree e if and only if we can
interpolate m — 2 points with rational curves of degree e — 2.

Proposition 4.5. Let n > 3 and m < e+ 1 be integers. Let X C P" be a smooth quadric,
and p1,...,pm be m general points in P*. Then there exists a degree e morphism ¢, : P! — X
with ¢.(p;) = x; for any general set of m points x1,...,x, € X if and only if there ezists a
degree e — 2 morphism ._o : P* — X with ¥(p;) = y; for any general set of m — 2 points
Yty Ym—2 € X.

Proof. Let H C P" be an auxiliary hyperplane, and fix the points 0, 1,00 € P! without loss
of generality.




First, suppose that we can interpolate m general points with curves of degree e, and let
Y1, ---,Ym—_o be a set of m — 2 general points in X. Choose x,,_1,x,, two general points
in X. Let ¢; : P! — P" be the line defined by ¢1(prm_1) = Tm-1, &1(pm) = T, and
¢(00) = (xp_1,Tm) N H. This also sets the images ¢1(p1),- ., ¢1(Pm_2) € P™. For each
1 <i < m—2, the line (¢1(p;), y;) meets X at y; and at another point, which we name as z;.
Since y1, ..., Ym—2, Tm_1, T, Were chosen as general points in X, then x1, ..., Zm_2, Tm_1, Tm
are general points in X. Then, by hypothesis, there exists a degree e morphism ¢, : P* — X
such that ¢1(p;) = x; for i = 1,...,m. Then, by [Koll8 Section 2|, there is a ruled
surface S(¢1,¢.) such that the residual of its intersection with X is an irreducible curve
Ye_g : P — X of degree e — 2 determined by the rulings of S. By construction, we have
eo(p;) =y; for 1 <i <m —2.

Conversely, suppose we can interpolate m — 2 general points with rational curves of degree
e — 2. Let z1,...,2, be m general points in X. Define ¢; : P* — P" the line with
O1(Pm-1) = Tm-1, O1(Pm) = Ty and ¢(o0) = (zy,—1, Tp) N H. Then, for each 1 <i <m — 2,
the line (¢1(p;), z;) meets X at a second point y;. By hypothesis, there exists a degree e — 2
curve 1.5 : P! — X such that ¢._o(p;) = y; fori=1,...,m — 2. Thus, ¢; and 1. o define
a ruled surface S(¢y, . ») whose intersection with X is an irreducible curve ¢, : P* — X of
degree e determined by the rulings of S, and such that ¢.(p;) = z; fori =1,... m. O

Theorem 4.6. Let X C P" be a smooth quadric, and let C C X be a rational curve of odd
degree e. Then Tx|c is not balanced. Equivalently, deformations of C' do not interpolate
e + 1 general points of X.

Proof. Since being balanced is an open condition, if T'x|¢ is balanced for some X, then it
is for a general quadric. Thus, we may assume X is general. Similarly, we can choose C'
general in its family.

If e=1, C is a line, and we have Tx|c 2 O @& O(1)" 3 & O(2), which is not balanced. In
particular, lines interpolate up to 1 point in X. Therefore, by Proposition and induction
on e, a curve of odd degree e interpolates up to e points. Hence, its restricted tangent bundle
is not balanced. 0J

Theorem 4.7. Let X C P", n > 3, be a general quadric hypersurface containing a degree e,
1 < e <mn, rational normal curve C.

(1) If e is even, then Tx|c = O(e)" 1.

(2) If e is odd, then Tx|c 2 O(e —1) ® O(e)" 3@ Oe + 1).
In addition, for each one of the cases above, we obtain an explicit example of a quadric X
with the corresponding Tx|c and balanced Neyx .

Proof. The case d = 2 is simpler, and we can show all the cases n > e at the same time.
Equivalently, we could show the case n = e and run the induction with matrices J as in
Lemma [3.4] on every step.

(1) Suppose e is even. The tangent bundle sequence is

0 — Txle — O(e + 1)@ O(e)" ™ -2 O(2¢) — 0.

We choose the quadratic polynomial F' = Q)19+ Q23+ - -+ Qc_1,, which induces the
map g : Oe +2) 1 & O(e)" ¢ — O(2e¢) given by the matrix

Vp = (56’2, s, s o st 10720,0, - - - ,O) .
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And this defines the map dp = po f: Ole+ 1) ® Oe)* ¢ — O(2e),

5F — (t88_2, _Se—l 4 86_3t2, _Se—2t + Se_4t37 e _S2te—3 + te—l7 —Ste_2; 07 L 70) )
The columns Cf, ..., C, of ér satisfy the n — 1 relations:
ot -Ci—s-Cipy=0for2<i<e—2;

es-C1+t-Co+t-Cy+t-Co+---+t-Cog+t-C.=0;
ot - Ci+t-C3+t-Cs+---+t-Cos+t-Cog+s-C.=0;
el1-Cj=0fore+1<j5<n.

We remark that when e = 2 the relations s - Cy +¢-Cy =0and 1-C; = 0,3 < j < n,
are satisfied.

Hence, we define the matrix Kpr whose columns are the coefficients of the column
relations of dp:

[ 0 0 0 s t i
t 0 0 0 ¢t 0
—s t 0 0 0 t
0 —s t 0 ¢t 0
0 0 -—s 0 0 t
Kr=|0 0 0 0 0 t
0 0 0 t t 0
0 0 0 —s 00
0 0 0 0 t s

1
1

It defines a map O(e)"! LN O(e + 1) @ O(e)" ¢ that factors through the kernel
Tx|c of 0p. Thus, it suffices to show that Kz has maximum rank n — 1 at every point
(s,t) € PL. This can be easily checked by dividing into the cases s = 1 and ¢t = 1 and
applying elementary row and column operations. Therefore, it follows that Kp is the
kernel of 0r and Tx|c = O(e)" .

(2) By Corollary [2.11] the claim follows for e = 1. Assume that e > 1. When e is odd, we

use the same polynomial F' = Q12+ Q23+ - - + Qe_1,¢, which will induce the same map
0. However, dp will not satisfy the column relations from the even case. Instead, we
have:

° 01+03+"'+Ce_3+0620;

o - Ci+5-Ceoqfor2<i<e—2

o (s> —t%)Cy + (st) - Cy = 0;

e1.-C;=0fore+1<j7<n.
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Thus defining the matrix

1 0 0 O 0 0 s*—1t?

0 -t 0 O 0 0 st

1 s =t 0 0 0 0

0 0 s —t 0 0 0

1 0 5 0 0 0
Krp=10 0 0 0 —t 0 0

10 0 O s —t 0

0 0 0 O 0 s 0

10 0 0 0 0 0

1
1

Again, it is not difficult to check that Kr has maximum rank at all points (s, t) € P!,
and thus defines an injection O(e — 1) ® O(e)" 2 & O(e + 1) LN O(e+ 1)@ O(e)"-.
Hence K gives the kernel of §p, that is, Tx|c 2 O(e — 1) ® O(e)" 2 @ O(e + 1).

The proof of [Mio25, Theorem 4.3] with the polynomials F' above show they also induce a
balanced normal bundle. 0

Theorem 4.8. Let X be a smooth quadric hypersurface in P".
(1) For every even e > 2, X contains degree e rational curves with balanced restricted
tangent bundle Tx|c = O(e)" 1.
(2) For every odd e > 1, X contains degree e rational curves with restricted tangent
bundle Tx|c 2 O(e —1) @ O(e)" 3@ O(e + 1).

Proof. By Theorem , X contains lines L with restricted tangent bundle Tx|, = O &
O(1)" 3 & O(2) and conics Q with perfectly balanced restricted tangent bundle Tx|g =2
O(2)""'. Then, by Lemma , we can glue conics to L and @) to obtain curves C' of any
degree e and the desired restricted tangent bundle. 0

5. CUBICS

Theorem 5.1. Let X C P" be a general cubic hypersurface containing a degree e rational
normal curve C.

(1) If e=1, C is a line, and we have the following cases:

Tl o O(—-1) ® 0(2), forn = 3;
xle =102 0 00110 0Q), forn >4,

(2) If e =2, C is a conic, and we have the following cases:

Tylo = O 0(2), forn = 3;
X102 0(2)" 3, forn >4
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(3) If 3 < e < n, we have:

Tyle = Oe—2)®0(e—1)2, forn=c¢;
XICZ0(e— 1)@ 0(e)* 1, forn>e.

In addition, we obtain explicit examples of cubic hypersurfaces X for each splitting type
above.

Proof. Cases (1) e = 1 and (2) e = 2 follow from Corollary [2.11, Examples with balanced
normal bundle are found in [Mio25, Theorem 3.1].

(3) Let e > 3. First, suppose that the case n = e holds, and let us show how to run the
induction for n > e. Recall that, for each step, it suffices to find matrices J and Ny of
correct dimension and degree such that Kr = Ny -J. Thus, for n = e+ 1, it follows from
Lemma [3.5| with J of the form J;. And for n > e+ 2, the result follows from Lemma |3.4
with J of the form J;. The following diagram summarizes the process:

Ole—1) 2@ O —2) — 5 Oe+1)° — 5 O(de) (n=e)
J1
M KF6+1 - 5Fe+1
Oe—1)¢ —————— O(e+ 1)*® O(e) O(de) (n=e+1)
Jo
4 Kr., ¥ e,
Oe —1)* @ O(e) — Oe+1)° @ O(e)> — O(de) (n=-e+2)
Jo

Therefore, it suffices to show the case n = e. We work separately on the cases n =
3,n =4, and n > 5. The case n = 3 was done in the examples and 3.7 For the case
n = 4, consider F' = 29Q12 + x1Q23 + v2Q3,4. It defines the map

op = (%, —s" + s°tY, —=s't* + 17, —st°) : O(5)* — O(12)

satisfying column relations that induce the matrix

2 st s3
0 t* s%
Kp = s2 0 st?
st s 3

which has maximum rank for all (s,t) € P!. Hence, the restricted tangent bundle is
balanced, Tx|c = O(2) & O(3)%.
Assume now n > 5. Let

F=20Qi2+21Q23+  +Tp-a@Qnsn2+Tp2Qnon1+T,Qn1n.
It induces the map on normal bundles ¥z : O(n + 2)"! — O(3n),

wF — (52n72’ 82n74t2’ S2n76t47 . ’86t2n787 S3t2n75, t2n72) ]
25



Observe that the degree in t increases by 2 in each entry of ¢z, except for the last two
entries, when it increases by 3. We then get dp : O(n + 1)" — O(3n) of the form

§ = ¢F o 6 — (827‘L—2t7 _8277,—1 4 S2n_4t3, _82n—3t2 + SQn_6t5, _8277,—5t4 + 82n—8t77 e

_ 89t2n_10 + SGth_7, —87t2n_8 + 53t2n—4’ _S4t2n—5 + t2n—1’ _Sth—Q)‘

It satisfies the following column relations:
o 2.0 +52-Ciyy=0for2<i<n-—4
o (s —13)-C1+s%t-Cy=0.

It satisfies three additional “alternating relations” that depend on n mod 3. The
relations end with different coefficients at the last columns C,, C,_1,C,_s, C,,_3, and
then keep alternating the coefficients t2, st, 0, t2, st, 0, . ..

If n=0 mod 3, they are:

o t? Cptst-Ch1+8* Cphot+0-Chgtst-Coyg+0-Cps+t* Chg+st-Cpr+

0-Chgt--+t2-C3+st-Cy+s*- C,=0;

o s5t-Cp+52-Ch1+0-Cpot+t?Chgtst-Cpy+0-Cps+t2-Chg+st-Cohr+

"‘+t2'03+8t'02+52'01 :0;
052 C+0-Cpg+1t2-Chogt+st-Chg+0-Cpy+t2-Chs+st-Chg+0-Cp_r+
oot st-C3+0-Co+t2-Cp = 0.

For n =1 mod 3, the relations are the same, except they differ at the first coefficients
due to the alternation. They are:

ot Cp+st-Cpy+5*Chot0-Chg+st-Coy+0-Cps+t*Cpg+st-Cpr+
0-Chg+--+st-Cs3+0-Co+t*-C,=0;

o s5t-Cp+52-Ch1+0-Cpot+t? Cpgtst-Cpyq+0-Cps+t2-Chg+st-Chr+
"‘+8t'03+0'02+t2'0120;

[} 52~Cn+0~Cn_1 —|—t2~Cn_2+8t'cn_3+0'0n_4+t2'Cn_5—|—8t'Cn_6+O'Cn_7+
c40-C3+12-Cy+st-Cp = 0.

And if n =2 mod 3, the relations are:

o t2.C+st-Cpr1+52-Chot+0-Chg+st-Cpy+0-Cps+t*-Chg+st-Ch_z+
0-Chg+--+0-C3+1t>-Cy+st-C=0;

o s5t-Cp+52-Ch1+0-Cpot+t?Chgtst-Cpy+0-Cps+t2-Chg+st-Chq+
"‘+0'03+t2'02+8t'0120;

02 Cy+0-Cpg+1t2-Chot+st-Chg+0-Cpy+t?-Chs+st-Cphg+0-Cpr+
"'+t2'03+8t'02+82'01:0.
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We exhibit here the matrix Kr for n =0 mod 3:

[0 s?2 §2 2 g3 — 3]
—t? st st 0  s%t
52 —t? 2 2 st
52 0 0 ¢
st st 0
Krp= 22 s
0 0 ¢
—t2 st st 0
20 t? st
0 s> 0 ¢t
0 st s> 0
0 t* st &2

We still need to show K is injective to confirm it is the kernel of . We claim it has
maximum rank n — 1 at all points (s, ) in P!. Suppose ¢ = 1; it is similar for s = 1. We
can show it by Gauss-Jordan elimination. Send the first row to the last one, and use the
—t? = —1 along the diagonal as pivots to make their rows and columns into zeros. This
reduces K to

KF ~ )
1
2P 1+ 2P, s+ s2P; 29
52 0 1 0
s 52 0 0
1 s s? 0
52 52 1 s —1

where Py, P», P3 are polynomials in s. Thus, it suffices to show that

P, 1+ $°Py, s+ s2P; 29

52 0 1 0
S s? 0 0
1 s 52 0
52 s? 1 s3—1

has rank 4 for all s, which can be verified directly by computing its 4 x 4 minors.
Therefore, Kr is the kernel of 6z, and we get Tx|c = O(n — 1)" 2 & O(n — 2).

U
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Corollary 5.2. Let X C P" be a general cubic hypersurface. If e =2 andn > 5; ore > 3,
then X contains a rational curve of degree e < n with balanced restricted tangent bundle.

6. QUARTICS

Theorem 6.1. Let X C P" be a general quartic hypersurface containing a degree e rational
normal curve C.

(1) If e =1, we have the following cases:
O(-2)® 0(2), forn =3;
Tyle={0(-1)©080@), forn=—4
O’ 01)" & 0(2), forn>5.
(2) If e =2, we have:
O(-2) & 0(2), forn =3;
Tyle = O0? @ 0(2), forn = 4;
XICZY001)2® 0(2), forn=5;
O)*@O02)">,  forn>6.

(3) If e = 3, we have:

O(_ ) (2)7 Jorn = 3;
OEBO( )@ (’)(2) forn =4;
Txle = 4 O(1)?®0(2)?,  forn=05;
O(1) ® O(2)4, for n = 6;
0203, forn>T.
(4) If e > 4, we have:
Oe —3)2 @ O(e — 2)¢73, forn =e;
Txlc =2 O(e —2)* "1 O(e — 12"V for2e+1>n>e¢;
Oe —1)* @ O(e) 271, forn > 2e + 1.

In addition, we obtain explicit examples of quartic hypersurfaces X for each splitting type
above.

Proof. The cases e = 1,2,3 follow from Corollary Examples with balanced normal
bundle are shown in [Mio25, Theorem 3.1].

(4) Suppose first that we have proved the case n = e, and let us show how to apply the
induction on n to obtain the cases n > e. For each step, we have K obtained from the
previous step. Then, it suffices to find matrices J and N; such that Kp = N; - J. For
n = e+ 1, it follows from Lemma with J of the form J5. For 2e4+1 > n > e, it follows
from Lemma with J of the form J;. And for n > 2e + 1, it follows from Lemma
with J of the form J,.

Therefore, it suffices to show the case n = e. We work the cases n =4,5,6 and n > 7
separately.
Assume n = 4. We choose F = 23Q12 + 23Q23 + £3Q3 4, which induces the map
0p = (5", —s'"t + 5710, =0 + ', —st'%) - O(5)* — O(16).
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The column relations of dr define the kernel matrix

sttt st

st 0t
Kp = st2 st 0
3 8t st

Since K has maximum rank 3, we have Tx|c = O(1)? & O(2).
Now, let n = 6. We choose a slightly different polynomial in this case: F' = x3Q12 +
Tor3Qa3 + 12Q34 + T3706Qu 5 + 12Q56 + T3Q36 induces op : O(7)% — O(24) given by

5 = (81615’ LSV 125 13t B9 Ol 98 13 (512 AT 98 87516) .

This map has kernel

(3 s%t s3 —s%t? — st? s2t2 — st3 7]
0 st? 52t —st3 — st3 — ¢t
Ko s3 t3 st? 0 0
F7 st —s%t —s34+1% —st4 22 —t* —s3t+ st?
st s? 0 —s3t + st3 — 522
| 3 s%t s3 —s3t — 22+ tt st — st ]

Hence Tx|c = O(3)? @ O(4)3.
Now, we work on the more general case n > 7. We consider polynomials F' of the form

F = x%QLQ + $%Q2,3 + -+ x?—b—ﬁQn—S,n—él
+ $n75xn74Qn74,n73 + xi-3@n73,n72 + xi—?,n—lQn*Z,nfl + xi@n,lyn.

They induce a map ¢p : O(n + 2)"~! — O(4n) on normal bundles,

p = (83n—2 3543 Bn—846  16;3n—18 123n—14 8:3n—10 (4;3n—6 t3n—2) '
The map 1 starts with s3"~2, and then the powers of t increase by 3 for each entry,
except the last four entries, when it increases by 4. It gives the map ép : O(n + 1)" —
O(4n):

5F — <83n72t7 SSnfl + 53n75t4’ _S3nf4t3 4 53n78t7’ S3n77t6 4 83n711t10, .

_ 2032l | (163017 (ATy3n—18 4 (1243013 (13y3n—14 | (830
_ 10 | gAy3n=s  (5y3n—6 | y3n—1 _St3n—2>‘

We look for the column relations of §r to define our kernel matrix Kp. We have (n—6)
“simple relations”:

o 3.0;+5-Ciiy =0for2<i<n-—6;

o (st—t")-Cr+(s%)-Cu=0

Additionally, there are 5 “alternating relations” whose first coefficients depend on n
mod 4. We will display them for n = 0 mod 4. The other cases are very similar.
The first 4 relations end differently at C,,, ..., C,,_4 but then alternate the coeffiecients
3, st2, 5%, 0; 13, st?, s%t,0; ... then at C; they might break the sequence. They are:
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e The one ending with ¢:
t3.Cp+st2-Cp1+5%-Cpo+53-Chg+0-Cpy+t3-Cp_5+5t2-Cp_g+5*-Cp_7+0-
On_s—l—tg'On_g+8t2'On_10+82t'cn_11 +0'Cn_12+' : '+t3'03+8t2'02+82t'01 = 0;

e The one ending with st?:
st?-Cp+8*-Cp 1+ Cp_o+0-Cp_3+1t3-Cp_y+st*-Cp_5+5*t-Cp_+0-Cp_7+13-
Crg+5t2-Chg+5°t-Co_190+0-Cp11+t3-Cp_19+- - -+ 5t2-Cy+5*-Cy+53-C) = 0;

e The one ending with s*t:
$2t-C+53-Ch1+0-Cpo+t3-Cps+st2-Chy+5*t-Cos5+0-Cpg+t3-Cpr+st>-
Cn,8+82t'cn,9+0‘0n710+t3'Cn,11+5t2-cn,12+' : '+82t~03+0'02+t3'01 = 0;

e The one ending with s*:
$3.CL40-Cp14+12-Ch_g+5t2-Ch_5+5*t-Cp_y+0-Cps+1>-Ch_g+5t>-Cp_7+ 5%t
Cn_8+0'Cn_9+t3'Cn_10+St2 'Cn_u —|—S2t'0n_12+' : '+O'03+t3 '02+St2 '01 =0.

The last relation ends at C,_, with coefficients s*, —t*, st — st3, —s%t?, and then
repeats the sequence t*, st3 — t4, s2t? — st3, —s%t?, except at the coefficient of C;. It is:
o st Cpy—ttCphs+ (22 —st?) - Cpg— st Cpq+t- Cpg+ (st3—11) - Cpg +
(82t2 - St3) : Cn,w - 52t2 : Cnfu + Zf4 : Cn,12 + (Stg - t4) . Cn,13 + (82t2 - St?’) : Cn,14 -
A2 Chpgs + -+ 4 Cy+ (st — 1) - Cs + (5%% — st?) - Oy + (st — s**)Cy = 0.

We display here the matrix K when n =0 mod 4:

[ 0 2t 3 st? St — %2 st — 4]
—t3 st?2 s2t 0 3 SPP—stP st
2 =t 3 ost?2 2t 0 stP—td

53 0 ¢ st % tt
s’t st 0 3 — 522

0 ¢ st %t 4
st 0t st? —s242
st? 2t 0t $*?— st?
3 ost2 2t 0 std—tt
0 3 st st t

Kp

—3 st 0t st? =5
3 =3 st? 2t 0 2 22— st
2 st $2t 0 —tt

0 0 & st s%t st
0 s 0 3 st? 0
0 s* s 0 ¢ 0
0 st st s 0 0
0 3 st? st s? 0

We can check K is injective by showing it has rank n — 1 at all points (s,t) in P
This can be done by Gauss-Jordan elimination. Consider ¢t = 1; the case s = 1 is similar.

Send the first row to the last position, and use the —t> = —1 along the diagonal as pivots
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to make their rows and columns zero. This process reduces K to

1
1
KF ~ ’
1
1
0 1+8P, s+sP 24P P —14+sP 00
0 0 1 s 52 s 0
0 s> 0 1 s 0 0
0 s2 s> 0 1 0 0
0 s s2 s3 0 0 0
0 1 s 52 s3 0 0
0 52 s3 1 S §3 — 52 st—1
where P, ..., Ps are polynomials in s. Thus, it suffices to show that
1+ s°P, s+ 8P, s2+s°P; 3P —1+4 2P 307

0 1 s 52 s 0

s3 0 1 s 0 0

52 53 0 1 0 0

s 52 53 0 0 0

1 s 52 s3 0 0

| $? s3 1 s 53 — 52 st —1]

has rank 6 for all s, which can be done directly by computing its 6 x 6 minors. Therefore,
Tx|c = O(n — 3)2 %, O(n — 2)71—3.
O

Corollary 6.2. Let X C IP" be a general quartic hypersurface. If e =2 andn > 6; ore =3
and n > 5; ore >4, then X contains a degree e < n rational curve with balanced restricted

tangent bundle.

7. HIGHER-DEGREE CURVES

Theorem 7.1. Let X C P" be a general degree d > 4 hypersurface containing a degree e < n
rational normal curve C. If e > 2d — 2, then the restricted tangent bundle Tx|c is balanced.

Proof. By Proposition and induction on n, it suffices to prove the theorem for e = n.
By [CR19, Corollary 3.8], the normal bundle N¢,x is balanced, and for n > 2d — 2 it has
the form
NC/X ~ O(n 492 d)2d_4 D O(n +3— d)n_2d+2.
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It is induced by a map ¥r : O(n + 2)"! — O(dn) having 2d — 4 column relations with
degree d and n — 2d + 2 columns relations with degree d — 1. To obtain such a ¥ p, we start
with the entry s%~"~2 and increase the powers of t by d — 1 for the first n — 2d + 2 entries,
and then increase it by d for the remaining ones. That is, we use the following ¢ p:

wF _ (Sdn—n—Q’ 8(dn—n—2)—(d—1)td—1’ S(dn—n—2)—2(d—l)t2(d—1)’ e

o S(2d—3)dt(dn—n—2)—(2d—3)d’ o

)

dn—n—2)—(n—2d+1)(d—1) t(n—2d+1) (d-1) S(2d—4)dt(dn—n—2)—(2d—4)d

SZdt(dnfnf2)72d Sdt(dnfn72)7d7 tdnfnf2> )

Y

We know this 1z is indeed induced by a degree d polynomial /' by Proposition It is
not difficult to obtain examples of F' for a given ¢¥r. Hence, this same polynomial induces
the map on tangent bundles ¢ : O(n + 1)" — O(dn):

5F — wF o ﬁ — <Sdnfn72t’ _Sdnfnfl + S(dnfan)f(dfl)td7

. S(dn—n—Z)—(d—l)—th—l + S(dn—n—2)—2(d—1)t2(d—1)+17 .

_ gldn—n—2)—(n—2d+1)(d~1)+1(n—2d+1)(d~1) | S(2d—4)dt(dn—n—2)—(2d—4)d+17

Y

_ (2d=4)d+1y(dn—n-2)~(2d—4)d | 8(2d73)dt(dnfnf2)7(2d73)d+17 L

Y

o 82d+1t(dn—n—2)—2d + Sdt(dn—n—Q)—d-&-l, _Sd+lt(dn—n—2)—d + tdn—n—l’ _Stdn—n—2)‘

Call the n entries of dr by C1,...,C,. We will compute the kernel of 6z by finding n — 1
independent relations between these entries. There are n — 2d + 1 relations of degree d — 1
of the form

o 110 + 59710, =0for2<i<n—2d+2;
and d — 4 relations of degree d given by
o tiC; +5C; =0forn—2d+4<i<n-—d-—1.
We also have d “alternating relations” of degree d — 1. The first four end with
o IO, + STHTETIC, e SO, (o + ST O a1y +

for 0 < i < 3, and repeat the sequence of coefficients 0,971, st?2, ..., 5972t for the remaining
entries. We repeat this sequence as it is until C5, whose coefficient will depend on n mod d.
The coefficient of C; might differ from the sequence: if the next term in the sequence is 0,
then use s%~! instead; otherwise, use the expected coefficient. For example, if n =0 mod d,
then the relation ending with t?~! is:

(10, + stT20, -+ 51O gy
+(0-Crg + 17 C gy + stTPC g g A+ 8THC g41)
+(0-Crog +t71Crgq1 + - + 870 _3441) + -+
+(0-Cqg+t"1Cqy + -+ s7%C,) = 0.

The next relation, ending with s*t?=°C,,, ends with

o (sM9PC,+s7t970C, 1+ 4 5T2C (g + 5T Crm(a—5)) +0-Crgya+ (1 Cr_gy s+

stT2C, _ara + -+ 8T Ch2aia) + 0+ Crogps + (s1972C, _agin + -+
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and then they start repeating the sequence 0,t?' ... 592t as for the four ones above.

Notice it skips the coefficient ¢t~ that would be in C,,_sg.o.
The remaining d — 5 alternating relations end with sit¢~'~‘C,, for 5 < i < d — 1. They are
similar to the relation above, but they end with

° (Sitd_l_icn + Si—th_Q_iCnfl +---+ Sd_2tCn_(d_2_Z‘) + Sd_lcn_(d_l_i)) +0- CnfdJri +
(tdilcn—d—ki—l + Std72Cn—d+i—2 + -+ Sd*lCn—QdH) + -

for 5 <i < d—1 and then they start repeating the sequence 0, %1, ..., 5972t as for the five
ones above. The reason we divide them into these three groups is due to the (2d —4) column
relations of degree d followed by the n — 2d + 2 relations of degree d — 1 of ¥, which divide
Y into two parts.

We also have the degree d relation

o (Sd — td)C'l + Sd_ltCQ =0.

And finally, an additional alternating relation of degree d. It ends at C),_o4.4 with the
sequence of coefficients:

o 90, ogrs — t9C, _aqis + (571972 — st Chigqra + (83977 — 21772 Crogyr + -+ +
(Sd_2t2 — Sd_3t3)Cn_3d+6 + (—sd‘2t2)Cn_3d+5 + -

then, for the remaining entries, we repeat the sequence of coefficients t¢, st4=! — ¢4, 5242 —
std=1 0 597242 — gd73¢3 59242 As with the other alternating relations, the sequence has
d terms, then the coefficient of C'; will depend on n mod d.

These give us all the relations we need. They form the columns of the matrix K, which

we show here for the case n =0 mod d:
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gd—2¢ gd—1
gd—342 gd—24

Sd73t2

std—2

$d—1
0
s372¢

Sd_3t2

std—2 g23d—3 g3pd—4 g4yd—5

td—1
0

s4—2¢

std—2

td—1

0

std—2 g3pd—4
tdfl Std72

0 td_l

gd—342 gd—24 gd—24 0

sd73t2

SStd74
g2¢d-3

std—2

g9¢d—6
84td75
83td74

gd—3¢2 gd—342

std—2

0
sd—l
s4=2¢

S4td75 S5td76
g3td—4 g4pd—5
g2¢d—3 g3pd—4

g6¢d—T gT7¢d—8
g9d—6 g64d—T7
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Now, we are left with showing that Kp : O(n+2—d)" " @& On+1-d)*? - O(n+1)"
defines an injective map. We will show Kr has maximum rank n — 1 at all points (s, t) € P
Let t = 1; the case s = 1 is similar. We do it by Gauss-Jordan elimination. Move the first
row to the last position, and use the —t¢~! and the —t along the diagonals to make their
rows into zero. This shows that K is equivalent to the matrix

$471P) 145271 Py 5450 1Py s2454- 1Py 345415 sdqsd—1ps s54sd—1p, ...

sd—1 0 1
52 s3 st
s s2 s3
1 S 52

Sd72 8d7 1 1
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@ »w »w .,
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«
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w.ww w .,
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gd—4 5d-3
0

sd—1 0

Sd72 Sdfl

Sd75 Sd 4

sd=344d-1p, | gd=24 gd-1p ((d—1)M




Thus, we only need that the matrix

Sd71P1 1+sd71P2 8+Sd71P3 52+Sd71P4 S3+Sd71P5 s4+sd71P6 55+Sd71P7 Sd73+8d71[_)d71 Sd72+sd71Pd s(dfl)]bl

sd=1 0 1 s 52 s3 st sd—4 53 0
52 s3 st s° s6 s7 s8 0 0
s 52 s3 st s° s6 s7 sd—1 0 0
1 S s2 s3 st s? s6 s3—2 sd-1 0

sd—2 gd—1 1 s s2 $3 = d—5 gd—4 sd—1

has rank d + 1. This can be shown by using the diagonal of 1’s and induction. Therefore,
we get Tx|c =2 On+2—d)" e On+1—d)*2 0

By Corollary and Theorem [7.1], we have shown so far that a general Fano hypersurface
X C P" of degree d > 3 contains rational curves of degree e with balanced restricted tangent
bundle for every niﬁ 5 < e <max{2d —2,n}. By Lemma we can glue a rational curve
of degree e; with balanced restricted tangent bundle to a curve of degree es with perfectly
balanced restricted tangent bundle to obtain a degree e; 4 e, rational curve with balanced

restricted tangent bundle. This allows us to extend our result for all degrees e.

Theorem 7.2. Let X C P" be a general degree d > 3 Fano hypersurface. Then X contains

degree e rational curves with balanced restricted tangent bundle for every degree e > niid.
Proof. First, notice that:

©2d—2> Lniidj + (n —1) for "TJF?’ <d<n,and

e n> ||+ (n—1)ford < 2.
Then, max{2d —2,n} > Lnii =]+ (n—1). Hence, X contains rational curves with balanced
restricted tangent bundle for every degree Lnii dJ <e< Lnﬁi dJ + (n—1).

Now, let C; be a rational curve in X of degree n — 1 with perfectly balanced restricted
tangent bundle T'x|c, = O(n+1—d)" ! and Cy be a rational curve of degree e with balanced
restricted tangent bundle T'x|c,. Since they are balanced, they are both free, then C; U Cy
smooths into a degree e+ (n — 1) rational curve C. By Lemma , the general deformation
of C' has balanced restricted tangent bundle. By gluing m curves C, we get curves C of
degrees e-+m(n—1) for every integer m > 0. Since we have every - < e < Lol 4 (n—1),

this gives us all degrees e > niﬁ - O
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