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Abstract. We determine all triples (e, d, n) for which a general degree d hypersurface
X ⊂ Pn contains a degree e rational curve C with balanced restricted tangent bundle TX |C .
In addition, we show how to compute explicit examples of hypersurfaces with balanced TX |C
when C is a rational normal curve.

1. Introduction

The normal and restricted tangent bundles of a curve on a variety give fundamental
information on the local structure of the space of its deformations. They tell the dimension
of the space of curves and the freedom we have in deforming the curve on the variety. In a
sense, curves with a “more balanced” normal and restricted tangent bundles are the “most
free” ones and the ones whose deformations interpolate the maximum number of points. In
this paper, we show when general projective hypersurfaces of degree d in Pn have degree
e rational curves with balanced restricted tangent bundle. We work over an algebraically
closed field k of characteristic p that does not divide the degree e of the curve.
By the Birkhoff-Grothendieck theorem, a vector bundle E on P1 splits as a direct sum of

line bundles, E =
⊕r

i=1 OP1(ai) for integers a1 ≤ · · · ≤ ar. The collection {ai} is called the
splitting type of E. The vector bundle is called balanced if |ai − aj| ≤ 1 for all 1 ≤ i, j ≤ r,
and perfectly balanced if all ai are equal. We remark that there exists a unique balanced
splitting type for vector bundles of a given rank and degree. Also, being balanced is an open
condition in a family of vector bundles (see Section 2.1).

Let X be a smooth degree d hypersurface in Pn containing a smooth rational curve C
of degree e. There has been great interest in describing the possible splitting types of the
normal bundle NC/X and the restricted tangent bundle TX |C . For X = Pn, there is a long
history of works describing the space of curves having a fixed normal or restricted tangent
bundle, see [GS80; Sac80; Sac82; EV81; EV82; Mir86; Asc88; Ran07; GHI13; AR17; ART18;
CR18; Asc22; LV23]. A fair amount of work is done for rational curves and their interpola-
tion properties in more general varieties X, especially projective complete intersections and
Grassmannians, see [Kol96; AR15; Fur16; Lar21; Ran21a; Ran21b; Ran23; Ran24b]. These
questions can be generalized to higher genus curves, and have been studied in Pn in [EL80;
Hul83; Per87; EL92; HK96; Hei00; Lar16; ALY16], for Fano hypersurfaces in [Ran24a] and
for Grassmannians in [BR00; CLV24].
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In [CR19], Coskun and Riedl show that a general Fano hypersurface of degree d ≥ 2
in Pn contains rational curves of degree e with a balanced normal bundle for every degree
1 ≤ e ≤ n. This result was later extended by Ran [Ran21b] for degrees 1 ≤ e ≤ 2n− 2 and
d ≥ 4. A description of all possible splitting types for the normal bundle when C is a rational
normal curve and X is a projective hypersurface, in addition to the space of hypersurfaces
inducing each splitting type, has been done for lines in [Lar21] and higher-degree curves in
[Mio25].

For the restricted tangent bundle, however, much less is known. In [Ran24a], Ran, working
in arbitrary genus and Fano projective hypersurfaces, shows the existence of curves with
balanced restricted tangent bundles for large degrees e in some arithmetic progressions, and
conjectures the existence of obstructions in terms of degree and genus for the existence
of such curves. He highlights the modular interpolation property of the tangent bundle:
for rational curves f : P1 → X, a restricted tangent bundle f ∗TX ∼=

⊕n−1
i=1 O(ai) with

a1 ≤ · · · ≤ an−1 means that, for a1 + 1 general points pi ∈ P1 and general points xi ∈ X,
there are deformations f̃ of f such that f̃(pi) = xi. For curves f with fixed degree e, the
expected (and maximum) number of points that can be interpolated as above is achieved

when f ∗TX is balanced. In this case, we can interpolate up to ⌊deg f∗KX

n−1
⌋+1 = ⌊ e(n+1−d)

n−1
⌋+1

points (see Section 2.7).
In this paper, we determine the existence of degree e rational curves with balanced re-

stricted tangent bundle in general Fano hypersurfaces for every degree e. We remark that
the restricted tangent bundle is never balanced for non-Fano hypersurfaces (see Proposition
2.13).

Theorem 1.1. (see Proposition 2.13 and Theorem 7.2) Let X ⊂ Pn be a smooth Fano
hypersurface of degree d, 3 ≤ d ≤ n.

(1) The restricted tangent bundle TX |C of a degree e ≤ n−1
n+1−d rational curve C on X is

never balanced.

(2) A general hypersurface X contains rational curves of degree e with balanced restricted
tangent bundle for every e > n−1

n+1−d .

The quadrics (d = 2) form a very special case in which only even-degree curves can
have a balanced restricted tangent bundle. Odd-degree curves may have restricted tangent
bundles as close as possible to the balanced splitting type, but cannot be balanced. We use
a ruled surface construction from [Kol18] that relates pairs of curves of different degrees in
quadric hypersurfaces, and then show that odd-degree curves always interpolate fewer than
the expected points.

Theorem 1.2. (see Theorem 4.6 and Theorem 4.8) Let X ⊂ Pn, n ≥ 3, be a smooth quadric
hypersurface.

(1) For every even e ≥ 2, X contains degree e rational curves with balanced restricted
tangent bundle TX |C ∼= O(e)n−1.

(2) No odd-degree rational curve on X has balanced restricted tangent bundle. For every
odd e ≥ 1, there exist degree e rational curves with TX |C ∼= O(e − 1) ⊕ O(e)n−3 ⊕
O(e+ 1).

We approach the problem by considering the particular case of hypersurfaces X containing
a degree e rational normal curve C. In this case, the restricted tangent bundle is the kernel
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in the short exact sequence

0 −→ TX |C −→ O(e+ 1)e ⊕O(e)n−e
δ−→ O(de) −→ 0,

where TPn|C ∼= O(e + 1)e ⊕ O(e)n−e and NX/Pn|C ∼= O(de). By choosing the appropriate
hypersurface X, we can produce a map δ inducing a balanced kernel. This allows us to
produce explicit examples of hypersurfaces X with balanced restricted tangent bundle.

Theorem 1.3. (see Theorems 4.7, 5.1, 6.1 and 7.1) Let X be a general degree 2 ≤ d ≤ 4
hypersurface containing a rational normal curve C of degree e ≤ n. We list the exact splitting
type of TX |C for every e and n and compute explicit examples of X for each one. We also
compute explicit examples of degree d hypersurfaces X with balanced TX |C when n ≥ 2d− 2
and C is the rational normal curve of degree n in Pn.

The examples can be worked out for degrees higher than 4, although the computations
get more involved. We invite the reader to try the examples for particular cases of (d, e, n)
in Macaulay2 [GS].

One of the main tools in our proofs is Proposition 3.2, which implies that for C a rational
normal curve, if TY |C is balanced for a degree d hypersurface Y ⊂ Pn−1, then we can extend
Y to a degree d hypersurface X ⊂ Pn with TX |C also balanced. This allows us to construct
the case e = n and work out inductively when n > e. The induction is done constructively
for d ≤ 4, so we can produce the explicit examples of hypersurfaces. We also take advantage
of the induction when TX |C splits as NC/X ⊕O(2) with NC/X balanced. The known results
for normal bundles and induction give us the restricted tangent bundle for curves of degree
e ≤ max{n, 2d− 2}. We then glue curves to obtain rational curves with balanced restricted
tangent bundle for the remaining degrees e.

Organization of the paper. Section 2 is dedicated to reviewing some preliminary results
and describing the computation of the map δ. We also introduce some notions on curve
interpolation and specialization of vector bundles. Section 3 develops the induction argument
and applies it to curves of degree 1 ≤ e ≤ 2d − 2. In Section 4, we prove the theorem for
quadrics. Sections 4, 5, and 6 show the computation of examples of hypersurfaces of degree
d = 2, 3, 4, respectively. In Section 7, we obtain examples for 2d − 2 ≤ e ≤ n and glue
rational curves to obtain higher-degree curves with balanced restricted tangent bundle.

Acknowledgments. I am very grateful to Carolina Araujo, Eduardo Esteves, Ziv Ran,
Izzet Coskun, and Eric Riedl for discussions and correspondence on rational curves and
their restricted tangent bundles. I thank Coskun and Riedl for suggesting the degeneration
approach for higher-degree rational curves.

2. Preliminaries

2.1. Vector bundles on rational curves. Vector bundles on rational curves can only get
“more balanced” under generalization.

Lemma 2.1. [EH16, Theorem 14.7(a)] Let E1 and E2 be two vector bundles on P1 of same
degree d and rank r. Write their decomposition as direct sums of line bundles as

E1 =
r⊕
i=1

O(ai) and E2 =
r⊕
j=1

O(bj),
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with {ai} and {bj} non-decreasing sequences. The vector bundle E1 specializes to E2 if and
only if for every integer k satisfying 1 ≤ k ≤ r, we have

k∑
i=1

ai ≥
k∑
j=1

bj.

In particular, being balanced is an open condition in a family of vector bundles on a rational
curve. Thus, if we can find specific examples of hypersurfaces and rational curves for which
the restricted tangent bundle is balanced, then we can conclude that the balancedness is
maintained for the general member in their families.

For E a vector bundle in P1, we denote by µ(E) the slope of E, defined by

µ(E) =
degE

rkE
.

If E is balanced, then E has a unique decomposition as a sum of line bundles O(⌊µ(E)⌋)
and O(⌈µ(E)⌉).

2.2. Rational normal curves. Let e ≤ n. We define the rational normal curve of degree
e in Pn as the curve C defined by

f =
(
se : se−1t : se−2t2 : · · · : ste−1 : te : 0 : · · · : 0

)
: P1 → Pn.

Any projective change of coordinates of C is often also called a rational normal curve of
degree e, but to fix coordinates, we will refer to it as the curve defined above.

Observe that C spans the linear space Pe = V (xe+1, . . . , xn). Define the quadratic forms
Qi,j = xixj−1−xi−1xj for 1 ≤ i < k ≤ e, which correspond to the 2× 2 minors of the matrix[

x1 x2 · · · xe
x0 x1 · · · xe−1

]
.

Together with the linear forms cutting out Pe, they generate the homogeneous ideal IC ⊂
k[x0, . . . , xn] of the rational normal curve:

IC = ({Qi,j | 1 ≤ i < j ≤ e} ∪ {xe+1, . . . , xn}) .

In [CR19, Proposition 2.4], Coskun and Riedl use the relations between the generators of
IC to show that the quadrics Qi,i+1, for 1 ≤ i ≤ n− 1, suffice to determine NC/Pn .

Proposition 2.2. ([CR19] Proposition 2.4) Let C be the rational normal curve of degree n
in Pn. An element α ∈ H0(NC/Pn) = Hom(IC/Pn ,OC) is determined by the images α(Qi,i+1),
for 1 ≤ i ≤ n − 1. Furthermore, sn−i−1ti−1 divides α(Qi,i+1) and this is the only constraint
on α(Qi,i+1). If bi,i+1, for 1 ≤ i ≤ n − 1, are arbitrary polynomials of degree n + 2, there
exists an element α ∈ H0(NC/Pn) such that α(Qi,i+1) = sn−i−1ti−1bi,i+1.
In addition, the image α(Qi,j) of the other generators of IC are expressed in terms of bl,l+1

by

α(Qi,j) =

j−1∑
l=i

sn−j−i+ltj+i−l−2bl,l+1.

Corollary 2.3. ([CR19] Corollary 2.6) Let C be the degree e rational normal curve in Pn.
Then the normal bundle NC/Pn is NC/Pe ⊕NPe/Pn ∼= OP1(e+ 2)e−1 ⊕OP1(e)n−e.
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By using the Euler sequence restricted to C:

0 −→ ΩPn|C −→ OP1(−e)n+1 f−→ OP1 −→ 0,

we can compute the restricted tangent sheaf TPn|C .

Proposition 2.4. (see [CR18, Proposition 3.3]) Let C be the rational normal curve of degree
e in Pn. Then

TPn|C ∼= TPe |C ⊕NPe/Pn ∼= OP1(e+ 1)e ⊕OP1(e)n−e.

Remark 2.5. We can also compute the normal bundle NC/Pn by using the sequence

0 −→ N∗
C/Pn −→ OP1(−e)n+1 ∂f−→ O2

P1 −→ 0,

where ∂f is the transpose of the Jacobian matrix, as it is done in [CR18, Theorem 3.2].

2.3. Normal bundles on hypersurfaces. Let X be a degree d hypersurface in Pn con-
taining the degree e rational normal curve C and smooth along C. There is a short exact
sequence of normal bundles:

0 −→ NC/X −→ NC/Pn
ψ−→ NX/Pn|C −→ 0.

By the identification NX/Pn ∼= OX(d) and Corollary 2.3, this sequence is equivalent to

0 −→ NC/X −→ O(e+ 2)e−1 ⊕O(e)n−e
ψ−→ O(de) −→ 0.

In particular, every hypersurface X defined by a degree d polynomial F ∈ H0(IC/Pn(d))
induces a map ψ of normal bundles, thus defining a map:

ϕ : H0(IC/Pn(d)) → Hom(O(e+ 2)e−1 ⊕O(e)n−e,O(de)).

Proposition 2.2 allows us to explicitly obtain the map ψF for every given polynomial F .
First, let e = n. Write F as a combination of the generators of IC , F =

∑
1≤i<j≤n Fi,jQi,j.

Then ψF (α) =
∑

1≤i<j≤n Fi,j|C · α(Qi,j). By the relations from Proposition 2.2, we have

ψF (α) =
∑

1≤i<j≤n

Fi,j|C
j−1∑
l=i

sn−j−i+ltj+i−l−2bl,l+1.

Collect the terms and write the sum as
∑n−1

i=1 Cibi,i+1, then the map ψF : O(n+ 2)n−1 →
O(dn) is given by the matrix (C1, · · · , Ce−1).

For e < n, the normal bundle NC/Pn splits as the direct sum NC/Pe ⊕ NPe/Pn . So, if we
write F as

F =
∑

1≤i<j≤n

Fi,jQi,j +
n∑

k=e+1

Gkxk,

and collect the coefficients C1, . . . , Ce−1 of the bl,l+1 as above, then the map ψF is given by
the matrix

ψF = (C1, · · · , Ce−1;Ge+1|C , · · · , Gn|C) : O(e+ 2)e−1 ⊕O(e)n−e → O(de).

Proposition 2.6. ([CR19, Theorem 3.1]) If d ≥ 3, then the homomorphism ϕ is surjective,
that is, every map ψ ∈ Hom(O(e+ 2)e−1 ⊕O(e)n−e,O(de)) is induced by some hypersurface
X.
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It is useful to remark that we can get the Fi,j|C and Gk|C to be any polynomial in s, t of
the corresponding degree, since rational normal curves are projectively normal:

Lemma 2.7. [Arb+85] For every k ≥ 1, the map H0(OPn(k)) → H0(OC(k)) ∼= H0(OP1(ek)),
F 7→ F |C, is surjective.

Given a polynomial F |C ∈ H0(OP1(ek)), we can easily find an F that restricts to it:
write each monomial of F |C as a product of k monomials of degree e. For instance, for
F |C = sek−2t2 we can write sek−2t2 = se(k−1)(se−2t2) and choose F = xk−1

0 x2.

2.4. Restricted tangent bundles of hypersurfaces. Let X be a degree d hypersurface
in Pn containing the degree e rational normal curve C. Say X is defined by a homogeneous
polynomial F of degree d. We can see the restricted tangent bundle TX |C as the kernel of
the standard tangent bundle sequence:

0 −→ TX |C −→ TPn|C
δ−→ NX/Pn|C −→ 0.

By Proposition 2.4, this sequence can be written as

0 −→ TX |C −→ O(e+ 1)e ⊕O(e)n−e
δ−→ O(de) −→ 0.

By combining the Euler sequence of Pn restricted to C and the tangent bundle sequence,

we can see the map δ above as the quotient of the gradient of F , ∇F =
(
∂F
∂x0
, · · · , ∂F

∂xn

)
:

0

OP1

OPn(e)n+1 NX/Pn|C 0

0 TX |C TPn|C NX/Pn|C 0

0

f

∇F

δ

Alternatively, and due to Proposition 2.6, it can be very useful to describe δ in terms of
the map of normal bundles ψ. We first describe the maps of the tangent bundle in Pn by
the following commutative diagram, whose rows are the Euler sequences for P1 and Pn (see
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[EV81; GS80]). For this sequence, we need to assume p ∤ e.

0 0

0 OP1 OP1(1)2 TP1 0

0 OP1 OP1(e)n+1 TPn|C
∼= O(e+ 1)e ⊕O(e)n−e 0

NC/Pn NC/Pn ∼= O(e+ 2)e−1 ⊕O(e)n−e

0 0

(st)

e

(t,−s)

Jf df

f

β

In the diagram, f = (se, se−1t, · · · , te, 0, · · · , 0) is the map defining C, and Jf is the Jacobian
matrix

Jf =


∂f0
∂s

∂f0
∂t

...
...

∂fn
∂s

∂fn
∂t

 =



ese−1 0
(e− 1)se−2t se−1

...
...

te−1 (e− 1)ste−2

0 ete−1

0 0
...

...
0 0


.

We can compute the cokernel of f and use it to show that

df =
(
se−1, se−2t, · · · , te−1; 0, · · · , 0

)
.

Thus, the cokernel of df can be obtained, and we get the map β : TPn|C → NC/Pn ,

β =



t −s
t −s

. . .
t −s

1
. . .

1


: O(e+ 1)e ⊕O(e)n−e → O(e+ 2)e−1 ⊕O(e)n−e.
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The tangent bundle and normal bundle sequences can be related in the following commu-
tative diagram:

0 0

TP1 TP1

0 TX |C TPn|C NX/Pn|C 0

0 NC/X NC/Pn NX/Pn|C 0

0 0

df

δ

β

ψ

which, by Corollary 2.3 and Proposition 2.4 is the same as

0 0

O(2) O(2)

0 TX |C O(e+ 1)e ⊕O(e)n−e O(de) 0

0 NC/X O(e+ 2)e−1 ⊕O(e)n−e O(de) 0

0 0

df

δ

β

ψ

That allows us to write the map δ as the composition ψ ◦ β. The explicit computation for
ψ from the previous section gives us a way of finding δ for any given polynomial F defining
X. Say we got

ψ = (C1, · · · , Ce−1;Ge+1|C , · · · , Gn|C) ,
then we obtain

δ = ψ◦β = (tC1,−sC1 + tC2,−sC2 + tC3, · · · ,−sCe−2 + tCe−1,−sCe−1;Ge+1|C , · · · , Gn|C) .
With the matrix of δ, we can use its column relations to explicitly compute the desired

restricted tangent bundle TX |C .

Example 2.8. Let n = e = 3 and d = 5. LetX be the surface defined by F = x30Q1,2+x
3
3Q2,3.

It induces the map on normal bundles ψ given by the matrix

ψ =
(
s10, t10

)
: O(5)2 → O(15).

Notice the columns C1 and C2 of ψ above satisfy the relation

t10 · C1 − s10 · C2 = 0,
8



which can be used to define an injective map

O(−5)

(
t10

−s10
)

−→ O(5)2

that factors through the kernel of ψ. Therefore, we can conclude that it gives the kernel of
ψ, that is, NC/X

∼= O(−5).
With ψ on hands, we can get δ : O(4)3 → O(15), given by

δ = ψ ◦ β = (s10, t10) ·
(
t −s

t −s

)
=
(
s10t,−s11 + t11,−st10

)
.

The three columns of δ satisfy the relations

• s2 · C1 + st · C2 + t2 · C3 = 0, and
• t9 · C1 + 0 · C2 + s9 · C3 = 0.

And these relations define the map

K :

s2 t9

st 0
t2 s9

 : O(2)⊕O(−5) → O(4)3,

which factors through the kernel TX |C of δ. One can show K is injective at all points (s, t) ∈
P1. Since they have the same rank and degree, we conclude that TX |C ∼= O(2)⊕O(−5). In
particular, X is an example of a quintic surface containing the twisted cubic C for which
NC/X is balanced, but TX |C is not balanced.

Remark 2.9. Since δ is the composition of ψ with β, not every map in Hom(O(e + 1)e ⊕
O(e)n−e,O(de)) can be realized as a δ for some hypersurface X. In fact, similarly to the
map ϕ, we can define the homomorphism

ϕT : H0(IC(d)) → Hom(O(e+ 1)e ⊕O(e)n−e,O(de)), F 7→ δ = ψ ◦ β,
which is given by taking the composition of ϕ with β. Both ϕ and ϕT share the same kernel
H0(I2

C(d)). For d ≥ 3, ϕ is surjective, and a dimension computation shows that the image
of ϕT is a subspace of codimension (ed− 1) in Hom(O(e+ 1)e ⊕O(e)n−e,O(de)).

2.5. Splitting of the tangent bundle for low-degree curves. The tangent bundle se-
quence of C in X writes TX |C as an extension of NC/X by TP1 :

0 −→ O(2) −→ TX |C −→ NC/X −→ 0.

We can tell when this sequence splits as a direct sum.

Proposition 2.10. If NC/X
∼=
⊕n−1

i=1 O(ai) with ai < 4 for all i, then TX |C ∼= NC/X ⊕O(2).

Proof. By Serre’s duality for P1,

Ext1(NC/X ,O(2)) ∼= H0((NC/X ⊕O(−2))⊗O(−2)) = H0(NC/X ⊗O(−4)) = 0

when ai < 4 for all i. □

When X is a general hypersurface containing C, the normal bundle is balanced. When
the degree of X gets large enough with respect to the degree of C, the tangent bundle splits
as NC/X ⊕ O(2), so the tangent bundle TX |C stops being balanced when NC/X has slope
smaller than 1.

9



Corollary 2.11. Let X be a degree d general hypersurface in Pn containing the rational
normal curve C of degree e. If

µ(NC/X) =
e(n+ 1− d)− 2

n− 2
≤ 3,

then TX |C ∼= NC/X ⊕O(2), where NC/X is the balanced bundle of degree ne+ e− 2 and rank
n− 2. In particular, if µ(NC/X) < 1, then TX |C is not balanced.

Proof. If X is general, then by [CR19, Corollary 3.8 and Corollary 4.1], the normal bundle
NC/X is balanced, hence it is a sum of line bundles of degrees ⌊µ(NC/X)⌋ and ⌈µ(NC/X)⌉.
Then the claim follows from Proposition 2.10. □

We can explore the inequality in Corollary 2.11 to highlight some cases when the restricted
tangent bundle splits.

Corollary 2.12. Let X be a general hypersurface of degree d in Pn containing the rational
normal curve C of degree e ≤ n. If d ≥ n = 3 or d+ 1 ≥ n ≥ 4, then TX |C ∼= NC/X ⊕O(2),
where NC/X is the balanced bundle of degree e(n+ 1− d)− 2 and rank n− 2. In particular,
if e < n = d or e ≤ n ≤ d− 1, then TX |C is not balanced for any hypersurface X.

We can also find cases when TX |C cannot be balanced directly from the tangent bundle
sequence. Notice that TX |C is not balanced when X is not Fano.

Proposition 2.13. Let X be a degree d hypersurface containing a degree e rational curve
C. If

µ(TX |C) =
e(n+ 1− d)

n− 1
≤ 1,

then TX |C is not balanced. Therefore, if n < d, or n ≥ d and e ≤ n−1
n+1−d , then TX |C is not

balanced.

Proof. If TX |C is balanced, then it is a sum of line bundles of degrees ⌊µ(TX |C)⌋ and
⌈µ(TX |C)⌉. So, if µ(TX |C) ≤ 1, we could not have an injection O(2) → TX |C , a contra-
diction. □

2.6. Vector bundles on degenerations of rational curves. Once we know the splitting
type of the restricted tangent bundle for some curves on X, we can glue and smooth them to
obtain higher-degree rational curves with a “controlled” restricted tangent bundle. If C1, C2

are rational curves on X with TX |C1 balanced and TX |C2 perfectly balanced, we can get a
curve of degree degC1 + degC2 with a balanced restricted tangent bundle.

We summarize this in the following lemma on specialization of vector bundles on P1 to a
gluing of two smooth rational curves. We refer to [Smi23] for a more complete discussion on
the possible specializations of vector bundles on trees of rational curves.

Lemma 2.14. (see [Smi23, Theorem 1.2]) Let C = C1∪C2 be a nodal curve with C1, C2
∼= P1

intersecting at one point p. Let E be a rank r vector bundle on C such that

E|C1
∼=

r⊕
i=1

O(ai) and E|C2
∼=

r⊕
i=1

O(bi)

10



with {ai} and {bi} in non-decreasing order. Assume that E is the specialization of a vector
bundle E ′ on P1. Then the “most unbalanced” (in the sense of Lemma 2.1) that E ′ can be is

E ′ ∼=
r⊕
i=1

O(ai + bi).

In particular, if E|C1 is balanced, and E|C2 is perfectly balanced, then E ′ is balanced.

Proof. The obstructions in the splitting type of E ′ come from the upper semicontinuity
conditions:

h0(C,E ⊗ L) ≥ h0(P1, E ′(degL)) and h1(C,E ⊗ L) ≥ h1(P1, E ′(degL))

for all line bundles L on C. We have an exact sequence

0 −→ E|C1(−p) −→ E −→ E|C2 −→ 0.

Denote by O(a, b) the line bundle on C that has degree a on C1 and degree b on C2. By
twisting the exact sequence above by L ∼= O(−a1,−b1 − 1) and taking cohomologies, we get
h1(C,E ⊗ L) = 0, hence 0 ≥ h1(P1, E ′(−a1 − b1 − 1)), thus E ′ does not have summands of
degree less than a1+ b1. Similarly, if we take L ∼= O(−ar,−br−1), we obtain h0(E⊗L) = 0,
so 0 ≥ h0(P1, E ′(−ar− br−1)), thus E ′ cannot have summands of degree larger than ar+ br.
We repeat the argument for the other degrees to conclude the lemma. □

2.7. Modular interpolation of rational curves. An important property of a curve C on
a variety X of dimension n is its capacity to interpolate a given number of general points
in X by deformations of C. We can make sense of this in terms of the space of curves on a
variety going through m general points of X, or in terms of morphisms C → X that send m
marked points in the curve C to a fixed set of m points in X. The first case is often called
the interpolation property, and is controlled by the normal bundle NC/X . The latter is called
modular interpolation, and is connected to the positivity of the restricted tangent bundle
TX |C . Both are studied for arbitrary genus curves in [Ran24a]. Since we are working with
the tangent bundle here, we will use the word “interpolation” as a synonym for modular
interpolation.

In our case of rational curves and tangent bundles, we deal with maps f : P1 → X and
ask what is the maximum number m of general points x1, . . . , xm of X we can deform f so
that f(pi) = xi for given m general points p1, . . . , pm ∈ P1. Let f ∗TX ∼=

⊕n
i=1O(ai) with

a1 ≤ · · · ≤ an be the splitting of the restricted tangent bundle of such a map f . The space
of morphisms P1 → X with pi 7→ xi for i = 1, . . . ,m has tangent space at [f ] isomorphic to

T[f ]Mor(P1, X; pi 7→ xi) ∼= H0(P1, f ∗TX (−p1 − · · · − pm)) = H0

(
P1,

n⊕
i=1

O(ai −m)

)
,

and deformations of f fixing pi 7→ xi will dominate X if a1 ≥ m (see [Kol96, Corollary
II.3.5.4]). In this case, we can choose an additional point of X for f to interpolate. Hence,
a curve f with f ∗TX ∼=

⊕n
i=1O(ai) will interpolate up to a1 + 1 general points in X.

Equivalently, f interpolates m points while H1(f ∗TX(−m)) = 0.
Notice that, among the vector bundles of P1 with fixed rank and degree, the balanced

bundle has the largest a1. In this sense, curves with a balanced restricted tangent bundle
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are the ones that interpolate the most points (see [Ran24a, Corollary 20]). Observe that this
maximum number of points is

⌊µ(f ∗TX)⌋+ 1 =

⌊
− deg f ∗KX

n

⌋
+ 1.

When X is a degree d hypersurface in Pn, and f : P1 → X is a degree e rational curve,
the maximum number of points f can interpolate is⌊

e(n+ 1− d)

n− 1

⌋
+ 1,

which is achieved when f ∗TX is balanced.

Example 2.15. Degree n rational normal curves C in Pn have the nice properties [Har92,
Chapter 1]:

• Through n+ 3 points in linear general position in Pn, there exists a unique rational
normal curve;

• Given n+2 points xi in linear general position in Pn, and n+2 distinct points pi ∈ P1,
there exists a unique rational normal curve f : P1 → Pn such that f(pi) = xi.

They correspond, respectively, to the splitting of the normal bundle NC/Pn ∼= O(n+2)n−1

and of the restricted tangent bundle TPn|C ∼= O(n+ 1)n.

3. The inductive method

The process to obtain a hypersurface X with balanced restricted tangent bundle is done
by first approaching the case e = n, and then doing induction on n ≥ e.
For e = n, we have the tangent bundle sequence:

0 −→ TX |C
KF−→ O(n+ 1)n

δF−→ O(dn) −→ 0.

The strategy is to choose the appropriate polynomial F so that its kernel TX |C is balanced.
To compute the kernel, we find independent column relations satisfied by δF . Then, create
a matrix KF whose columns are the coefficients of the column relations. This construction
implies that the map defined by KF factors through the kernel of δF . Since they agree in
rank and degree, it suffices to show that KF has maximum rank at every point (s, t) of P1

to conclude that KF gives the kernel TX |C of δF .

Example 3.1. Let d = 3, e = n = 3. The degree 3 polynomial F = x0Q1,2 + x3Q2,3 induces
the map

δF =
(
s4t,−s5 + t5,−st4

)
: O(4)3 → O(9).

The columns C1, C2, C3 of δF satisfy the relations:

• s2 · C1 + st · C2 + t2 · C3 = 0;
• t3 · C1 + 0 · C2 + s3 · C3 = 0.

We use them as columns for the matrix

KF =

t3 s2

0 st
s3 t2

 .
Notice that KF has maximum rank 2 for all points (s, t) ∈ P1, hence the map KF :

O(1)⊕O(2) → O(4)3 is the kernel of δF , thus TX |C ∼= O(1)⊕O(2).
12



Once the case e = n is done, we approach the case n > e by induction on n. First, observe
that the rational normal curve C spans a linear space Λ ∼= Pe, and that a general degree d
hypersurface X ⊂ Pn containing C restricts to a general degree d hypersurface Y = X ∩ Λ
of Pe. The inclusions define the following diagram of tangent bundle sequences:

0 0

0 TY |C O(e+ 1)e O(de) 0

0 TX |C O(e+ 1)e ⊕O(e)n−e O(de) 0

O(e)n−e NPe/Pn ∼= O(e)n−e

0 0

Kf δf

KF δF=(δf ;g)

where the map O(e + 1)e → O(e + 1)e ⊕ O(e)n−e is the identity on the first e entries and
zero elsewhere since TPn|C ∼= TPe|C ⊕NPe/Pn .

If X is defined by a polynomial F =
∑

i<j Fi,jQi,j +
∑n

k=e+1Gkxk in k[x0, . . . , xn], then Y

is defined by the polynomial f =
∑

i<j Fi,j|ΛQi,j in k[x0, . . . , xe]. Thus, the map δF coincides

with δf in its first e entries; the last (n − e) entries are the ones defined by the forms Gk.
That is, we have δF = (δf ; g), where g = (Ge+1|C , · · · , Gn|C). Our strategy is to work the
diagram backwards, and use f to inductively recover an F so that TX |C is balanced.
Suppose, by induction hypothesis, there exists a degree d hypersurface Y ⊂ Pn−1, for some

n > e, defined by a polynomial f ∈ k[x0, . . . , xn−1] with TY |C balanced. It comes with its
tangent bundle sequence

0 −→ TY |C
Kf−→ O(e+ 1)e ⊕O(e)n−e−1 δf−→ O(de) −→ 0.

Now, say that E is the balanced vector bundle of the same rank and degree as TX |C , that
is, if TX |C is balanced, then we should have TX |C ∼= E. We then look for a pair of injective
maps

J : TY |C −→ E and N1 : E −→ O(e+ 1)e ⊕O(e)n−e−1

so that Kf = N1 · J . By rank and degree considerations, the cokernel N2 of J maps E to
O(e). These give us the map

N =

 N1

N2

 : E → O(e+ 1)e ⊕O(e)n−e−1

13



that makes the following diagram commute:

0 0

0 TY |C O(e+ 1)e ⊕O(e)n−e−1 O(de) 0

0 E O(e+ 1)e ⊕O(e)n−e O(de) 0

O(e) O(e)

0 0

Kf

J

δf

N

N2

δ

Define δ the cokernel of N . By the commutativity of the diagram, up to a change of basis
δ coincides with δf in its first n− 1 entries, that is,

δ = (δf ; g)

for some g : O(e) → O(de). By Lemma 2.7, there exists a degree d − 1 polynomial Gn so
that

F = f +Gnxn

defines δF = (δf ; g) = δ. Therefore, N is the kernel of δF , hence, F defines X with TX |C ∼= E.
The following proposition shows that we can always obtain X from Y .

Proposition 3.2. Let n > e and Y ⊂ Pn−1 be a degree d hypersurface containing the rational
normal curve C of degree e. Then, for any extension

0 −→ TY |C −→ E −→ O(e) −→ 0

of O(e) by TY |C, there exists a degree d hypersurface X ⊂ Pn such that TX |C ∼= E. In
particular, if TY |C is balanced for a general Y , then TX |C is balanced for a general X.

Proof. As above, δf is fixed for Y , and we look for a map δ = (δf ; g) whose kernel is E.
Every (δf ; g) comes from an F = f +Gnxn for some polynomial Gn. Therefore, it suffices to
show that, for any extension E, there is a g inducing E. In other words, it suffices to show
the map

Hom(O(e),O(de)) → Ext1(O(e), TY |C), g 7→ TX |C
is surjective. Indeed, applying the functor Hom(O(e),−) to the short exact sequence

0 −→ TY |C −→ O(e+ 1)e ⊕O(e)n−e−1 δf−→ O(de) −→ 0,

we obtain

Hom(O(e),O(de)) −→ Ext1(O(e), TY |C) −→ Ext1(O(e),O(e+ 1)e ⊕O(e)n−e−1) = 0.

□

Therefore, we only need to obtain X for the case n = e, and then the case n > e follows
by induction. The following lemmas will help us find explicit matrices J and N1 for degrees
d = 2, 3, 4.

14



Lemma 3.3. Let A,B,C,D be vector bundles over P1 with rkA ≤ rkB and rkC ≥ rkD,
and maps K : A → B, J : A → C, N2 : C → D, and N1 : C → B so that the diagram
commutes:

A B

C B ⊕D

K

J

(
Id

0

)(
N1

N2

)

If, at all points in P1, K and N2 have maximum rank rkA and rkD, respectively, then N1

N2

 has maximum rank (rkA+ rkD).

Proof. Since K = N1 · J , we have rkN1 ≥ rkK = rkA. And since N1 and N2 map to

different summands, we have rk

 N1

N2

 = rkN1 + rkN2 ≥ rkA+ rkD. □

The consequence of Lemma 3.3 is that we only need to look for matrices J and N1 so that
Kf = N1 · J , and the injectivity of N follows automatically. Next, we present the matrices
J that will be used in the induction, and show how to find the corresponding N1. They will
come in three kinds: J0, J1, and J2, described in the following lemmas.

Lemma 3.4. Let A,B and D be vector bundles in P1. Let K : A → B be any map. Then
for

J0 =

 Id
0

 : A→ A⊕D, and N1 = (K | 0) : A⊕D → B,

we have K = N1 · J0.

Proof. It follows directly from the definitions. □

Notice that the cokernel of J , that we will use as N2, is

coker J0 = (0 | Id) : A⊕D → D.

Lemma 3.5. Let a, r, s be integers with r ≥ 1, s ≥ 0, and let B ∼=
⊕

iO(ai) be a vector
bundle over P1 with all ai > a. Let J1 : O(a)r ⊕O(a+ 1)s → O(a)r−1 ⊕O(a+ 1)s+2 be the
map defined by the matrix

J1 =


s
0 1
...

. . .
0 1
t 0

 .
Then for every map K : O(a)r ⊕ O(a + 1)s → B we can compute a map N : O(a)r−1 ⊕

O(a+ 1)s+2 → B such that K = N · J1.

We remark that the cokernel of J1, which will serve as our N2, is

coker J1 = (t, 0, · · · , 0,−s) .
15



Proof. Let m = rkB. Write the matrix N = (bi,j)m×(r+s+1). Then

N · J1 =


sb1,1 + tb1,r+s+1 b1,2 b1.3 · · · b1,r+s
sb2,1 + tb2,r+s+1 b2,2 b2,3 · · · b2,r+s

...
...

...
. . .

...
sbm,1 + tbm,r+s+1 bm,2 bm,3 · · · bm,r+s

 .
Since B has summands of degree larger than a and r ≥ 1, K contains a column of degree

at least one, which can be chosen as the first column of N · J1 above. Then, we can easily
choose bij so that N · J1 = K. □

Lemma 3.6. Let a, r, s be integers with r ≥ 2, s ≥ 0, and let B ∼=
⊕

iO(ai) be a vector
bundle over P1 with all ai > a. Let J2 : O(a)r ⊕O(a+ 1)s → O(a)r−2 ⊕O(a+ 1)s+3 be the
map defined by the matrix

J2 =



s 0
0 t
0 0 1
...

...
. . .

0 0 1
t s 0

 .

Then, for every map K : O(a)r⊕O(a+1)s → B we find an N1 : O(a)r−2⊕O(a+1)s+3 → B
such that K = N1 · J2.

Observe that the cokernel of J2 is

coker J2 =
(
t2, s2, 0, · · · , 0,−st

)
.

Proof. Let m = rkB. Let N1 = (bi,j)m×(r+s+1). Then

N1 · J2 =


sb1,1 + tb1,r+s+1 tb1,2 + sb1,r+s+1 b1,3 b1,4 · · · b1,r+s
sb2,1 + tb2,r+s+1 tb2,2 + sb2,r+s+1 b2,3 b2,4 · · · b2,r+s

...
...

...
...

. . .
...

sbm,1 + tbm,r+s+1 tbm,2 + sbm,r+s+1 bm,3 bm,4 · · · bm,r+s

 .
Write K = (ki,j)m×(r+s). Since B is a sum of terms of degree larger than a and r ≥ 2, at

least the first two columns of K have degree at least one. Let di,j = deg ki,j. Decompose the
entries of the first two columns of K as

ki,1 = spi + ci,1t
di,1 and ki,2 = tqi + ci,2s

di,2 ,

with pi, qi ∈ k[s, t], ci,1, ci,2 ∈ k, for 1 ≤ i ≤ m.
Then, we can choose

bi,1 = pi − ci,2s
di,2−2t;

bi,2 = qi − ci,1st
di,1−2;

bi,r+s+1 = ci,1t
di,1−1 + ci,2s

di,2−1;

for 1 ≤ i ≤ m. And for all the other entries, we can pick bi,j = ki,j. □
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Example 3.7. Let d = 3, e = 3, n ≥ 3. In the example 3.1, we let n = 3 and showed that
the polynomial f = x0Q1,2 + x3Q2,3 induces δf = (s4t,−s5 + t5,−st4) and a balanced kernel
TY |C ∼= O(1)⊕O(2) given by

Kf =

t3 s2

0 st
s3 t2

 .
Now, for n = 4, we want to find F so that we get a kernel TX |C ∼= E = O(2)3. By Lemma

3.5, it suffices to choose

J =

s 0
0 1
t 0

 ,
and there will exist a matrix N1 such that Kf = N1 · J . Indeed, we can follow the proof of
the lemma to compute

N1 =

 0 s2 t2

0 st 0
s2 t2 0

 .
Let N2 = coker J = (t, 0,−s) and N =

 N1

N2

. We then obtain the commutative diagram

O(1)⊕O(2) O(4)3 O(9) (n = e = 3)

O(2)3 O(4)3 ⊕O(3) O(9) (n = 4)

O(3) O(3)

Kf

J

δf

N

N2

δ

The map N is injective by Lemma 3.3, which can also be directly checked. Similarly to
the computation of the kernel, we can use the relations between the rows of N to compute
its cokernel

δ = cokerN =
(
s4t,−s5 + t5,−st4; s3t3

)
.

Notice that, as expected, we got δ = (δf ; g), with g = s3t3. Let G4 = x0x3, so G4|C = s3t3.
Then F = f + G4x4 = (Q1,2 + Q2,3) + (x0x3)x4 induces δF = δ. Hence, N is the kernel of
δF , and TX |C ∼= O(2)3.
We can repeat the process for n = 5. In this case, the balanced bundle E is O(2)3⊕O(3),

which is just the TX |C from the case n = 4 plus a summand O(3), so we can simply choose
J as J0 in Lemma 3.4, that is,

J =


1

1
1

0 0 0

 ,
so N2 = (0, 0, 0, 1), and N1 = (KF | 0). We then simply obtain δ = (δF ; 0), and the new F
is the same as in the case n = 4. Similarly for every n ≥ 4, we get TX |C ∼= O(2)3 ⊕O(3)n−3

which are all induced by F = (Q1,2 +Q2,3) + (x0x3)x4.
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By Corollary 2.12, we know how TX |C decomposes when n ≤ d + 1. Then, Proposition
3.2 allows us to use the induction on n to settle the case e ≤ d+ 1.

Theorem 3.8. Let 3 ≤ e ≤ d + 1, d ≥ 3 and e ≤ n. Let X ⊂ Pn be a general degree d
hypersurface containing the degree e rational normal curve C.

(1) If n < d, or n ≥ d and e ≤ n−1
n+1−d , then TX |C is not balanced.

(2) If n ≥ d and e > n−1
n+1−d , then TX |C is balanced.

Proof. (1) This follows from Proposition 2.13.
(2) Suppose first that e = d or e = d+1. In both cases, we have 1 ≤ µ(NC/X) ≤ 3, then

by Corollary 2.10, we have TX |C ∼= NC/X ⊕O(2) with TX |C balanced. Therefore, by
Proposition 3.2 and induction on n, we can find X with TX |C balanced for all n ≥ e.
We can now assume e ≤ d − 1. By Corollary 2.12, there exists a degree d hyper-

surface Y ⊂ Pe with TY |C ∼= NC/Y ⊕ O(2), where NC/Y is the balanced bundle of
degree e(e + 1 − d) − 2 and rank e − 2. That is, TY |C is written as a direct sum of
line bundles of degrees 2, ⌊µ(NC/Y )⌋ and ⌈µ(NC/Y )⌉, where

µ(NC/Y ) =
e(e+ 1− d)− 2

e− 2
.

Let E be the balanced vector bundle of degree n(e+1−d) and rank n−1, that is, if
TX |C is balanced, then we should have TX |C ∼= E. By Proposition 3.2 and induction
on n, it suffices to show that there is an injection TY |C → E. Notice that we have

µ(NC/Y ) ≤ 0 since e ≤ d− 1,

while

µ(E) =
e(n− d+ 1)

n− 1
> 1 for e >

n− 1

n+ 1− d
.

Therefore, E has at least one summand of degree ≥ 2, and all summands of degree
larger than the summands of NC/Y . Thus, we do have an injection TY |C → E, and
it follows that there exists X with TX |C ∼= E.

□

We remark that, since we know examples of hypersurfaces Y with balanced normal bundle
NC/Y from [Mio25], we can follow the proof of Theorem 3.8 and our induction method to
construct explicit examples of hypersurfaces X with balanced restricted tangent bundle as
long as we can find the appropriate matrices J and N1 at each step.

We treat the cases e = 1 and e = 2 separately. We remark that, in both cases, the
restricted tangent bundle splits as NC/X ⊕O(2).

Theorem 3.9. Let n ≥ 3 and d ≥ 3. Let X ⊂ Pn be a general degree d hypersurface
containing the rational curve C.

(1) If C is a line, the restricted tangent bundle TX |C is not balanced.
(2) If C is a smooth conic, the restricted tangent bundle TX |C is balanced if and only if

n ≥ 2d− 2.

Proof. (1) For e = 1, Corollary 2.11 holds with µ(NC/X) < 1.
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(2) For e = 2, Corollary 2.11 holds with µ(NC/X) ≤ 3, thus TX |C ∼= NC/X ⊕ O(2) with
NC/X balanced. Since we have µ(NC/X) ≥ 1 if and only if n ≥ 2d− 2, it follows that
TX |C is balanced if and only if n ≥ 2d− 2.

□

For n ≥ 4, Ran [Ran24a, Theorem 40] shows that a general degree n Fano hypersurface
in Pn contains a degree e rational curve C with balanced normal bundle for every e ≥ n− 1.
We use this curve to produce hypersurfaces X with balanced TX |C for d ≤ e ≤ 2d− 2.

Theorem 3.10. Let n ≥ d ≥ 3, n ≥ 4 and let X ⊂ Pn be a general degree d hypersurface.
Then X contains a degree e rational curve with balanced restricted tangent bundle for every
d ≤ e ≤ 2d− 2.

Proof. We will work by induction on n starting at n = d. So first, let n = d < e ≤ 2d−2. By
[Ran24a, Theorem 40], there exists a degree e rational curve C ⊂ X with balanced normal
bundle NC/X . Notice that, for our degree range, 1 < µ(NC/X) ≤ 3. Then, by Corollary 2.11,
TX |C ∼= NC/X ⊕O(2) and TX |C is balanced.
Now, we repeat the proof of Proposition 3.2 to apply induction on n. Notice that, for

d < e ≤ 2d − 2, we have e + 1 < µ(TPd |C) ≤ e + 2, and since TPd |C is balanced for a
general rational curve in Pd [Ram90, Theorem 2], TPd|C is a direct sum of terms O(e + 1)
and O(e+2). By induction hypothesis, suppose that for some n ≥ d and the curve C above,
there exists a degree d hypersurface Y ⊂ Pn with balanced TY |C . For the step n+1, we have
the diagram:

0 0

0 TY |C TPn|C O(de) 0

0 E TPn|C ⊕O(e) O(de) 0

O(e) O(e)

0 0

δ

(δ;g)

Notice that, since C ⊂ Pd, we have TPn+1|C ∼= TPn|C ⊕ O(e) and we get all maps g ∈
Hom(O(e),O(de)) above. And again, applying the functor Hom(O(e),−) to the first row,
we have

Hom(O(e),O(de)) −→ Ext1(O(e), TY |C) −→ Ext1(O(e), TPn|C) = 0,

where Ext1(O(e), TPn|C) = 0 since TPn|C is a sum of terms O(e),O(e+1) and O(e+2). Thus,
the map Hom(O(e),O(de)) → Ext1(O(e), TY |C) is surjective, hence we get all extensions E
of O(e) by TY |C . In particular, there exists a degree d hypersurfaceX ⊂ Pn+1 with TX |C ∼= E
balanced. Therefore, for all n ≥ d, there exists a degree d hypersurface X ⊂ Pn with TX |C
balanced. □
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Corollary 3.11. Let X be a general degree d ≥ 3 Fano hypersurface in Pn. Then X contains
rational curves of degree e with balanced restricted tangent bundle for all n−1

n+1−d < e ≤ 2d−2.

Proof. For Fano hypersurfaces, n ≥ d. The corollary follows for e = 1 and 2 by Theorem
3.9, for 3 ≤ e ≤ d by Theorem 3.8 and for d ≤ e ≤ 2d− 2 by Theorem 3.10. Theorem 3.10
does not include the case n = 3, which we prove in Theorem 5.1. □

4. Quadrics

In this section, we consider the case d = 2, that is, when X is a quadric hypersurface. As
we will see in the next sections, the restricted tangent bundle becomes balanced for a curve
of sufficiently large degree when d ≥ 3. Quadrics are a special case, where odd-degree curves
will never have a balanced restricted tangent bundle. In other words, we can interpolate
fewer than expected points by deforming odd-degree curves on quadric hypersurfaces.

Example 4.1. A smooth quadric surface X ⊂ P3 is isomorphic to P1 × P1, and a degree e
rational curve C in X corresponds to a bi-degree (e1, e2) curve in P1 × P1, with e1 + e2 = e.
Let π1, π2 : P1 × P1 → P1 be the two natural projections. Then

TP1×P1|C ∼= (π∗
1TP1 ⊕ π∗

2TP1)|C ∼= OP1(2e1)⊕OP1(2e2).

Hence, TP1×P1|C will be balanced exactly when e1 = e2. In particular, it can be balanced
for an even-degree curve but never for an odd-degree rational curve.

The quadric in P5 corresponds to another classical example of an unbalanced restricted
tangent bundle, which is the case of most rational curves in Grassmannians.

Example 4.2. A smooth quadric hypersurface in P5 is isomorphic to the Grassmannian
G(2, 4) (see [GH78, Chapter 6.2]). The tangent bundle TG(k,n) of a Grassmannian splits as
TG(k,n)

∼= S∗ ⊗ Q, where S and Q are the tautological and quotient bundle, respectively.
As investigated in [Man21, Lemma 33], for TG(k,n)|C to be balanced, both S∗|C and Q|C
need to be balanced. But, for G(2, 4) and C of odd degree e = 2m + 1, we will have
S∗|C ∼= Q|C ∼= O(m) ⊕ O(m + 1), hence TG(k,n)|C ∼= O(2m) ⊕ O(2m + 1)2 ⊕ O(2m + 2) is
unbalanced. Notice that it can be balanced if C has even degree.

More generally, a general deformation of a degree e rational curve in G(k, n) will have a
balanced restricted tangent bundle if and only if either k|e or (n−k)|e (see [Ran24a, Example
21]).

Let X be a degree 2 hypersurface in Pn and C ⊂ X a rational curve of degree e. From
the tangent bundle sequence, we see that if TX |C is balanced, then it is O(e)n−1. Hence C
interpolates e + 1 points exactly when TX |C is balanced. We will show that an odd-degree
curve cannot interpolate the expected number of points in a quadric hypersurface. For that,
we will describe a method of constructing rational curves of a given degree via rational
scrolls from [Kol18]. Kollár studies degree e maps P1 → Qn where Qn is a smooth quadric
of dimension n ≥ 3, and shows the following theorem.

Theorem 4.3. [Kol18, Theorem 1] Let Qn be a smooth quadric of dimension n ≥ 3. Then

More(P1, Qn)
bir∼
{

Qn × Pne if e is even, and
OG(P1, Qn)× Pne−n+3 if e is odd,
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where
bir∼ denotes birational equivalence and OG(P1, Qn) the orthogonal Grassmannian of

lines in Qn.

During the proof of Theorem 4.3, Kollár shows the following proposition, which relates
curves of the same parity.

Proposition 4.4. [Kol18, Proposition 26] Let Qn be a smooth quadric of dimension n ≥ 3.
Then

More(P1, Qn)
bir∼ More−2(P1, Qn)× P2n for e ≥ 3.

Since degree 1 maps are lines, we have the rational equivalence Mor1(P1, Qn)
bir∼ OG(P1, Qn)×

P3. We will obtain the higher-degree curves by intersecting ruled surfaces with the quadric.
Let C be a smooth projective curve and ϕ, ψ : C → Pn be two morphisms. We will

consider the ruled surface swept out by the lines ⟨ϕ(p), ψ(p)⟩ for p ∈ C. If ϕ and ψ coincide
at a zero-dimensional subscheme Z ⊂ C, ϕ|Z = ψ|Z , then we can construct a ruled surface
S(ϕ, ψ) ⊂ Pn from ϕ, ψ with degS = deg ϕ+ degψ − degZ (see [Kol18, Section 2] for more
details on the definition of S).

Let X ⊂ Pn be a smooth quadric. Suppose that ϕ : C → X above maps to X and
ψ : C → Pn is a morphism not contained in X. We get a ruled surface S(ϕ, ψ). The quadric
and the ruled surface meet on the image of ϕ and on the residual intersection R. The degree
of R is 2 degS − deg ϕ = deg ϕ+ 2degψ − 2 degZ.

The following proposition uses the construction in the proof of Proposition 4.4 to show
that we can interpolate m points in X with rational curves of degree e if and only if we can
interpolate m− 2 points with rational curves of degree e− 2.

Proposition 4.5. Let n ≥ 3 and m ≤ e + 1 be integers. Let X ⊂ Pn be a smooth quadric,
and p1, . . . , pm be m general points in P1. Then there exists a degree e morphism ϕe : P1 → X
with ϕe(pi) = xi for any general set of m points x1, . . . , xm ∈ X if and only if there exists a
degree e − 2 morphism ψe−2 : P1 → X with ψ(pi) = yi for any general set of m − 2 points
y1, . . . , ym−2 ∈ X.

Proof. Let H ⊂ Pn be an auxiliary hyperplane, and fix the points 0, 1,∞ ∈ P1 without loss
of generality.
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First, suppose that we can interpolate m general points with curves of degree e, and let
y1, . . . , ym−2 be a set of m − 2 general points in X. Choose xm−1, xm two general points
in X. Let ϕ1 : P1 → Pn be the line defined by ϕ1(pm−1) = xm−1, ϕ1(pm) = xm and
ϕ(∞) = ⟨xm−1, xm⟩ ∩ H. This also sets the images ϕ1(p1), . . . , ϕ1(pm−2) ∈ Pn. For each
1 ≤ i ≤ m−2, the line ⟨ϕ1(pi), yi⟩ meets X at yi and at another point, which we name as xi.
Since y1, . . . , ym−2, xm−1, xm were chosen as general points in X, then x1, . . . , xm−2, xm−1, xm
are general points in X. Then, by hypothesis, there exists a degree e morphism ϕe : P1 → X
such that ϕ1(pi) = xi for i = 1, . . . ,m. Then, by [Kol18, Section 2], there is a ruled
surface S(ϕ1, ϕe) such that the residual of its intersection with X is an irreducible curve
ψe−2 : P1 → X of degree e − 2 determined by the rulings of S. By construction, we have
ψe−2(pi) = yi for 1 ≤ i ≤ m− 2.
Conversely, suppose we can interpolate m−2 general points with rational curves of degree

e − 2. Let x1, . . . , xm be m general points in X. Define ϕ1 : P1 → Pn the line with
ϕ1(pm−1) = xm−1, ϕ1(pm) = xm and ϕ(∞) = ⟨xm−1, xm⟩ ∩H. Then, for each 1 ≤ i ≤ m− 2,
the line ⟨ϕ1(pi), xi⟩ meets X at a second point yi. By hypothesis, there exists a degree e− 2
curve ψe−2 : P1 → X such that ψe−2(pi) = yi for i = 1, . . . ,m− 2. Thus, ϕ1 and ψe−2 define
a ruled surface S(ϕ1, ψe−2) whose intersection with X is an irreducible curve ϕe : P1 → X of
degree e determined by the rulings of S, and such that ϕe(pi) = xi for i = 1, . . . ,m. □

Theorem 4.6. Let X ⊂ Pn be a smooth quadric, and let C ⊂ X be a rational curve of odd
degree e. Then TX |C is not balanced. Equivalently, deformations of C do not interpolate
e+ 1 general points of X.

Proof. Since being balanced is an open condition, if TX |C is balanced for some X, then it
is for a general quadric. Thus, we may assume X is general. Similarly, we can choose C
general in its family.

If e = 1, C is a line, and we have TX |C ∼= O ⊕O(1)n−3 ⊕O(2), which is not balanced. In
particular, lines interpolate up to 1 point in X. Therefore, by Proposition 4.5 and induction
on e, a curve of odd degree e interpolates up to e points. Hence, its restricted tangent bundle
is not balanced. □

Theorem 4.7. Let X ⊂ Pn, n ≥ 3, be a general quadric hypersurface containing a degree e,
1 ≤ e ≤ n, rational normal curve C.

(1) If e is even, then TX |C ∼= O(e)n−1.
(2) If e is odd, then TX |C ∼= O(e− 1)⊕O(e)n−3 ⊕O(e+ 1).

In addition, for each one of the cases above, we obtain an explicit example of a quadric X
with the corresponding TX |C and balanced NC/X .

Proof. The case d = 2 is simpler, and we can show all the cases n ≥ e at the same time.
Equivalently, we could show the case n = e and run the induction with matrices J as in
Lemma 3.4 on every step.

(1) Suppose e is even. The tangent bundle sequence is

0 −→ TX |C −→ O(e+ 1)e ⊕O(e)n−e
δ−→ O(2e) −→ 0.

We choose the quadratic polynomial F = Q1,2+Q2,3+ · · ·+Qe−1,e, which induces the
map ψF : O(e+ 2)e−1 ⊕O(e)n−e → O(2e) given by the matrix

ψF =
(
se−2, se−3t, se−4t2, · · · , ste−3, te−2; 0, 0, · · · , 0

)
.

22



And this defines the map δF = ψF ◦ β : O(e+ 1)e ⊕O(e)n−e → O(2e),

δF =
(
tse−2,−se−1 + se−3t2,−se−2t+ se−4t3, · · · ,−s2te−3 + te−1,−ste−2; 0, · · · , 0

)
.

The columns C1, . . . , Cn of δF satisfy the n− 1 relations:
• t · Ci − s · Ci+1 = 0 for 2 ≤ i ≤ e− 2;
• s · C1 + t · C2 + t · C4 + t · C6 + · · ·+ t · Ce−2 + t · Ce = 0;
• t · C1 + t · C3 + t · C5 + · · ·+ t · Ce−5 + t · Ce−3 + s · Ce = 0;
• 1 · Cj = 0 for e+ 1 ≤ j ≤ n.

We remark that when e = 2 the relations s ·C1 + t ·C2 = 0 and 1 ·Cj = 0, 3 ≤ j ≤ n,
are satisfied.

Hence, we define the matrix KF whose columns are the coefficients of the column
relations of δF :

KF =



0 0 0 0 s t
t 0 0 0 t 0
−s t 0 · · · 0 0 t
0 −s t 0 t 0
0 0 −s 0 0 t
...

...
...

. . .
...

...
...

0 0 0 0 0 t
0 0 0 t t 0
0 0 0 · · · −s 0 0
0 0 0 0 t s

1
. . .

1



.

It defines a map O(e)n−1 KF−→ O(e + 1)e ⊕ O(e)n−e that factors through the kernel
TX |C of δF . Thus, it suffices to show that KF has maximum rank n − 1 at every point
(s, t) ∈ P1. This can be easily checked by dividing into the cases s = 1 and t = 1 and
applying elementary row and column operations. Therefore, it follows that KF is the
kernel of δF and TX |C ∼= O(e)n−1.

(2) By Corollary 2.11, the claim follows for e = 1. Assume that e > 1. When e is odd, we
use the same polynomial F = Q1,2+Q2,3+ · · ·+Qe−1,e, which will induce the same map
δF . However, δF will not satisfy the column relations from the even case. Instead, we
have:

• C1 + C3 + · · ·+ Ce−3 + Ce = 0;
• −t · Ci + s · Ce+1 for 2 ≤ i ≤ e− 2;
• (s2 − t2)C1 + (st) · C2 = 0;
• 1 · Cj = 0 for e+ 1 ≤ j ≤ n.
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Thus defining the matrix

KF =



1 0 0 0 0 0 s2 − t2

0 −t 0 0 0 0 st
1 s −t 0 · · · 0 0 0
0 0 s −t 0 0 0
1 0 0 s 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 −t 0 0
1 0 0 0 s −t 0
0 0 0 0 · · · 0 s 0
1 0 0 0 0 0 0

1
. . .

1



.

Again, it is not difficult to check that KF has maximum rank at all points (s, t) ∈ P1,

and thus defines an injection O(e − 1) ⊕O(e)n−3 ⊕O(e + 1)
KF−→ O(e + 1)e ⊕O(e)n−e.

Hence KF gives the kernel of δF , that is, TX |C ∼= O(e− 1)⊕O(e)n−3 ⊕O(e+ 1).

The proof of [Mio25, Theorem 4.3] with the polynomials F above show they also induce a
balanced normal bundle. □

Theorem 4.8. Let X be a smooth quadric hypersurface in Pn.
(1) For every even e ≥ 2, X contains degree e rational curves with balanced restricted

tangent bundle TX |C ∼= O(e)n−1.
(2) For every odd e ≥ 1, X contains degree e rational curves with restricted tangent

bundle TX |C ∼= O(e− 1)⊕O(e)n−3 ⊕O(e+ 1).

Proof. By Theorem 4.7, X contains lines L with restricted tangent bundle TX |L ∼= O ⊕
O(1)n−3 ⊕ O(2) and conics Q with perfectly balanced restricted tangent bundle TX |Q ∼=
O(2)n−1. Then, by Lemma 2.14, we can glue conics to L and Q to obtain curves C of any
degree e and the desired restricted tangent bundle. □

5. Cubics

Theorem 5.1. Let X ⊂ Pn be a general cubic hypersurface containing a degree e rational
normal curve C.

(1) If e = 1, C is a line, and we have the following cases:

TX |C ∼=
{
O(−1)⊕O(2), for n = 3;
O2 ⊕O(1)n−4 ⊕O(2), for n ≥ 4.

(2) If e = 2, C is a conic, and we have the following cases:

TX |C ∼=
{
O ⊕O(2), for n = 3;
O(1)2 ⊕O(2)n−3, for n ≥ 4.
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(3) If 3 ≤ e ≤ n, we have:

TX |C ∼=
{
O(e− 2)⊕O(e− 1)e−2, for n = e;
O(e− 1)e ⊕O(e)n−e−1, for n > e.

In addition, we obtain explicit examples of cubic hypersurfaces X for each splitting type
above.

Proof. Cases (1) e = 1 and (2) e = 2 follow from Corollary 2.11. Examples with balanced
normal bundle are found in [Mio25, Theorem 3.1].

(3) Let e ≥ 3. First, suppose that the case n = e holds, and let us show how to run the
induction for n > e. Recall that, for each step, it suffices to find matrices J and N1 of
correct dimension and degree such that KF = N1 ·J . Thus, for n = e+1, it follows from
Lemma 3.5 with J of the form J1. And for n ≥ e+2, the result follows from Lemma 3.4
with J of the form J0. The following diagram summarizes the process:

O(e− 1)e−2 ⊕O(e− 2) O(e+ 1)e O(de) (n = e)

O(e− 1)e O(e+ 1)e ⊕O(e) O(de) (n = e+ 1)

O(e− 1)e ⊕O(e) O(e+ 1)e ⊕O(e)2 O(de) (n = e+ 2)

...
...

...

KFe

J1

δFe

KFe+1

J0

δFe+1

KFe+2

J0

δFe+2

Therefore, it suffices to show the case n = e. We work separately on the cases n =
3, n = 4, and n ≥ 5. The case n = 3 was done in the examples 3.1 and 3.7. For the case
n = 4, consider F = x0Q1,2 + x1Q2,3 + x2Q3,4. It defines the map

δF =
(
s6t,−s7 + s3t4,−s4t3 + t7,−st6

)
: O(5)4 −→ O(12)

satisfying column relations that induce the matrix

KF =


t2 st s3

0 t2 s2t
s2 0 st2

st s2 t3


which has maximum rank for all (s, t) ∈ P1. Hence, the restricted tangent bundle is
balanced, TX |C ∼= O(2)⊕O(3)2.

Assume now n ≥ 5. Let

F = x0Q1,2 + x1Q2,3 + · · ·+ xn−4Qn−3,n−2 + xn−2Qn−2,n−1 + xnQn−1,n.

It induces the map on normal bundles ψF : O(n+ 2)n−1 → O(3n),

ψF =
(
s2n−2, s2n−4t2, s2n−6t4, · · · , s6t2n−8, s3t2n−5, t2n−2

)
.

25



Observe that the degree in t increases by 2 in each entry of ψF , except for the last two
entries, when it increases by 3. We then get δF : O(n+ 1)n → O(3n) of the form

δ = ψF ◦ β = (s2n−2t,−s2n−1 + s2n−4t3,−s2n−3t2 + s2n−6t5,−s2n−5t4 + s2n−8t7, · · · ,
− s9t2n−10 + s6t2n−7,−s7t2n−8 + s3t2n−4,−s4t2n−5 + t2n−1,−st2n−2).

It satisfies the following column relations:
• −t2 · Ci + s2 · Ci+1 = 0 for 2 ≤ i ≤ n− 4;
• (s3 − t3) · C1 + s2t · C2 = 0.

It satisfies three additional “alternating relations” that depend on n mod 3. The
relations end with different coefficients at the last columns Cn, Cn−1, Cn−2, Cn−3, and
then keep alternating the coefficients t2, st, 0, t2, st, 0, . . .
If n ≡ 0 mod 3, they are:
• t2 ·Cn+ st ·Cn−1 + s2 ·Cn−2 +0 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
0 · Cn−8 + · · ·+ t2 · C3 + st · C2 + s2 · C1 = 0;

• st ·Cn+ s2 ·Cn−1 +0 ·Cn−2 + t2 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
· · ·+ t2 · C3 + st · C2 + s2 · C1 = 0;

• s2 ·Cn + 0 ·Cn−1 + t2 ·Cn−2 + st ·Cn−3 + 0 ·Cn−4 + t2 ·Cn−5 + st ·Cn−6 + 0 ·Cn−7 +
· · ·+ st · C3 + 0 · C2 + t2 · C1 = 0.

For n ≡ 1 mod 3, the relations are the same, except they differ at the first coefficients
due to the alternation. They are:

• t2 ·Cn+ st ·Cn−1 + s2 ·Cn−2 +0 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
0 · Cn−8 + · · ·+ st · C3 + 0 · C2 + t2 · C1 = 0;

• st ·Cn+ s2 ·Cn−1 +0 ·Cn−2 + t2 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
· · ·+ st · C3 + 0 · C2 + t2 · C1 = 0;

• s2 ·Cn + 0 ·Cn−1 + t2 ·Cn−2 + st ·Cn−3 + 0 ·Cn−4 + t2 ·Cn−5 + st ·Cn−6 + 0 ·Cn−7 +
· · ·+ 0 · C3 + t2 · C2 + st · C1 = 0.

And if n ≡ 2 mod 3, the relations are:
• t2 ·Cn+ st ·Cn−1 + s2 ·Cn−2 +0 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
0 · Cn−8 + · · ·+ 0 · C3 + t2 · C2 + st · C1 = 0;

• st ·Cn+ s2 ·Cn−1 +0 ·Cn−2 + t2 ·Cn−3 + st ·Cn−4 +0 ·Cn−5 + t2 ·Cn−6 + st ·Cn−7 +
· · ·+ 0 · C3 + t2 · C2 + st · C1 = 0;

• s2 ·Cn + 0 ·Cn−1 + t2 ·Cn−2 + st ·Cn−3 + 0 ·Cn−4 + t2 ·Cn−5 + st ·Cn−6 + 0 ·Cn−7 +
· · ·+ t2 · C3 + st · C2 + s2 · C1 = 0.
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We exhibit here the matrix KF for n ≡ 0 mod 3:

KF =



0 s2 s2 t2 s3 − t3

−t2 st st 0 s2t
s2 −t2 t2 t2 st

s2 0 0 t2

...
...

...
. . . st st 0

t2 t2 st
0 0 t2

−t2 st st 0
s2 0 t2 st
0 s2 0 t2

0 st s2 0
0 t2 st s2



.

We still need to show KF is injective to confirm it is the kernel of δF . We claim it has
maximum rank n− 1 at all points (s, t) in P1. Suppose t = 1; it is similar for s = 1. We
can show it by Gauss-Jordan elimination. Send the first row to the last one, and use the
−t2 = −1 along the diagonal as pivots to make their rows and columns into zeros. This
reduces KF to

KF ∼



1
1

. . .

1
s2P1 1 + s2P2 s+ s2P3 s2(n−4)

s2 0 1 0
s s2 0 0
1 s s2 0
s2 s2 1 s3 − 1



,

where P1, P2, P3 are polynomials in s. Thus, it suffices to show that
s2P1 1 + s2P2 s+ s2P3 s2(n−4)

s2 0 1 0
s s2 0 0
1 s s2 0
s2 s2 1 s3 − 1


has rank 4 for all s, which can be verified directly by computing its 4 × 4 minors.
Therefore, KF is the kernel of δF , and we get TX |C ∼= O(n− 1)n−2 ⊕O(n− 2).

□
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Corollary 5.2. Let X ⊂ Pn be a general cubic hypersurface. If e = 2 and n ≥ 5; or e ≥ 3,
then X contains a rational curve of degree e ≤ n with balanced restricted tangent bundle.

6. Quartics

Theorem 6.1. Let X ⊂ Pn be a general quartic hypersurface containing a degree e rational
normal curve C.

(1) If e = 1, we have the following cases:

TX |C ∼=

O(−2)⊕O(2), for n = 3;
O(−1)⊕O ⊕O(2), for n = 4;
O3 ⊕O(1)n−5 ⊕O(2), for n ≥ 5.

(2) If e = 2, we have:

TX |C ∼=


O(−2)⊕O(2), for n = 3;
O2 ⊕O(2), for n = 4;
O ⊕O(1)2 ⊕O(2), for n = 5;
O(1)4 ⊕O(2)n−5, for n ≥ 6.

(3) If e = 3, we have:

TX |C ∼=


O(−2)⊕O(2), for n = 3;
O ⊕O(1)⊕O(2), for n = 4;
O(1)2 ⊕O(2)2, for n = 5;
O(1)⊕O(2)4, for n = 6;
O(2)6 ⊕O(3)n−7, for n ≥ 7.

(4) If e ≥ 4, we have:

TX |C ∼=

O(e− 3)2 ⊕O(e− 2)e−3, for n = e;
O(e− 2)2e−n+1 ⊕O(e− 1)2(n−e−1), for 2e+ 1 ≥ n > e;
O(e− 1)2e ⊕O(e)n−2e−1, for n > 2e+ 1.

In addition, we obtain explicit examples of quartic hypersurfaces X for each splitting type
above.

Proof. The cases e = 1, 2, 3 follow from Corollary 2.11. Examples with balanced normal
bundle are shown in [Mio25, Theorem 3.1].

(4) Suppose first that we have proved the case n = e, and let us show how to apply the
induction on n to obtain the cases n > e. For each step, we have KF obtained from the
previous step. Then, it suffices to find matrices J and N1 such that KF = N1 · J . For
n = e+1, it follows from Lemma 3.6 with J of the form J2. For 2e+1 ≥ n > e, it follows
from Lemma 3.5 with J of the form J1. And for n > 2e+ 1, it follows from Lemma 3.4
with J of the form J0.
Therefore, it suffices to show the case n = e. We work the cases n = 4, 5, 6 and n ≥ 7

separately.
Assume n = 4. We choose F = x20Q1,2 + x22Q2,3 + x24Q3,4, which induces the map

δF =
(
s10t,−s11 + s5t6,−s6t5 + t11,−st10

)
: O(5)4 −→ O(16).
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The column relations of δF define the kernel matrix

KF =


s3 t4 st3

s2t 0 t4

st2 s4 0
t3 s3t s4

 .
Since KF has maximum rank 3, we have TX |C ∼= O(1)2 ⊕O(2).
Now, let n = 6. We choose a slightly different polynomial in this case: F = x20Q1,2 +

x0x3Q2,3 + x23Q3,4 + x3x6Q4,5 + x26Q5,6 + x23Q3,6 induces δF : O(7)6 → O(24) given by

δF =
(
s16t,−s17 + s12t5,−s13t4 + s8t9 + s6t11,−s9t8 + s4t13,−s5t12 + t17,−s9t8 − st16

)
.

This map has kernel

KF =


t3 s2t s3 −s2t2 − st3 s2t2 − st3

0 st2 s2t −st3 − t4 st3 − t4

s3 t3 st2 0 0
s2t −s2t −s3 + t3 −s4 + s2t2 − t4 −s3t+ st3

st2 s3 0 −s3t+ st3 −s2t2
t3 s2t s3 −s3t− s2t2 + t4 s4 − st3

 .

Hence TX |C ∼= O(3)2 ⊕O(4)3.
Now, we work on the more general case n ≥ 7. We consider polynomials F of the form

F = x20Q1,2 + x21Q2,3 + · · ·+ x2n−6Qn−5,n−4

+ xn−5xn−4Qn−4,n−3 + x2n−3Qn−3,n−2 + x2n−2,n−1Qn−2,n−1 + x2nQn−1,n.

They induce a map ψF : O(n+ 2)n−1 → O(4n) on normal bundles,

ψF =
(
s3n−2, s3n−5t3, s3n−8t6, · · · , s16t3n−18, s12t3n−14, s8t3n−10, s4t3n−6, t3n−2

)
.

The map ψF starts with s3n−2, and then the powers of t increase by 3 for each entry,
except the last four entries, when it increases by 4. It gives the map δF : O(n + 1)n →
O(4n):

δF = (s3n−2t, s3n−1 + s3n−5t4,−s3n−4t3 + s3n−8t7, s3n−7t6 + s3n−11t10, · · ·
− s20t3n−21 + s16t3n−17,−s17t3n−18 + s12t3n−13,−s13t3n−14 + s8t3n−9,

− s9t3n−10 + s4t3n−5,−s5t3n−6 + t3n−1,−st3n−2).

We look for the column relations of δF to define our kernel matrix KF . We have (n−6)
“simple relations”:

• −t3 · Ci + s3 · Ci+1 = 0 for 2 ≤ i ≤ n− 6;
• (s4 − t4) · C1 + (s3t) · C2 = 0

Additionally, there are 5 “alternating relations” whose first coefficients depend on n
mod 4. We will display them for n ≡ 0 mod 4. The other cases are very similar.

The first 4 relations end differently at Cn, . . . , Cn−4 but then alternate the coeffiecients
t3, st2, s2t, 0; t3, st2, s2t, 0; ... then at C1 they might break the sequence. They are:
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• The one ending with t3:
t3 ·Cn+st2 ·Cn−1+s

2t ·Cn−2+s
3 ·Cn−3+0 ·Cn−4+t

3 ·Cn−5+st
2 ·Cn−6+s

2t ·Cn−7+0 ·
Cn−8+t

3 ·Cn−9+st
2 ·Cn−10+s

2t ·Cn−11+0 ·Cn−12+ · · ·+t3 ·C3+st
2 ·C2+s

2t ·C1 = 0;
• The one ending with st2:
st2 ·Cn+s2t ·Cn−1+s

3 ·Cn−2+0 ·Cn−3+t
3 ·Cn−4+st

2 ·Cn−5+s
2t ·Cn−6+0 ·Cn−7+t

3 ·
Cn−8+st

2 ·Cn−9+s
2t ·Cn−10+0 ·Cn−11+t

3 ·Cn−12+ · · ·+st2 ·C3+s
2t ·C2+s

3 ·C1 = 0;
• The one ending with s2t:
s2t ·Cn+s3 ·Cn−1+0 ·Cn−2+t

3 ·Cn−3+st
2 ·Cn−4+s

2t ·Cn−5+0 ·Cn−6+t
3 ·Cn−7+st

2 ·
Cn−8+s

2t ·Cn−9+0 ·Cn−10+ t
3 ·Cn−11+st

2 ·Cn−12+ · · ·+s2t ·C3+0 ·C2+ t
3 ·C1 = 0;

• The one ending with s3:
s3 ·Cn+0 ·Cn−1+t

3 ·Cn−2+st
2 ·Cn−3+s

2t ·Cn−4+0 ·Cn−5+t
3 ·Cn−6+st

2 ·Cn−7+s
2t ·

Cn−8+0 ·Cn−9+ t
3 ·Cn−10+st

2 ·Cn−11+s
2t ·Cn−12+ · · ·+0 ·C3+ t

3 ·C2+st
2 ·C1 = 0.

The last relation ends at Cn−4 with coefficients s4,−t4, s2t2 − st3,−s2t2, and then
repeats the sequence t4, st3 − t4, s2t2 − st3,−s2t2, except at the coefficient of C1. It is:

• s4 ·Cn−4 − t4 ·Cn−5 + (s2t2 − st3) ·Cn−6 − s2t2 ·Cn−7 + t4 ·Cn−8 + (st3 − t4) ·Cn−9 +
(s2t2− st3) ·Cn−10− s2t2 ·Cn−11+ t

4 ·Cn−12+(st3− t4) ·Cn−13+(s2t2− st3) ·Cn−14−
s2t2 · Cn−15 + · · ·+ t4 · C4 + (st3 − t4) · C3 + (s2t2 − st3) · C2 + (s3t− s2t2)C1 = 0.

We display here the matrix KF when n ≡ 0 mod 4:

KF =



0 s2t s3 t3 st2 s3t− s2t2 s4 − t4

−t3 st2 s2t 0 t3 s2t2 − st3 s3t
s3 −t3 t3 st2 s2t 0 st3 − t4

s3 0 t3 st2 s2t t4

s2t s2t 0 t3 −s2t2
...

...
...

...
...

0 t3 st2 s2t t4

. . . s2t 0 t3 st2 −s2t2
st2 s2t 0 t3 s2t2 − st3

t3 st2 s2t 0 st3 − t4

0 t3 st2 s2t t4

−t3 s2t 0 t3 st2 −s2t2
s3 −t3 st2 s2t 0 t3 s2t2 − st3

s3 t3 st2 s2t 0 −t4
0 0 t3 st2 s2t s4

0 s3 0 t3 st2 0
0 s2t s3 0 t3 0
0 st2 s2t s3 0 0
0 t3 st2 s2t s3 0



.

We can check KF is injective by showing it has rank n − 1 at all points (s, t) in P1.
This can be done by Gauss-Jordan elimination. Consider t = 1; the case s = 1 is similar.
Send the first row to the last position, and use the −t3 = −1 along the diagonal as pivots
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to make their rows and columns zero. This process reduces KF to

KF ∼



1
1

. . .

1
1
0 1 + s3P1 s+ s3P2 s2 + s3P3 s3P4 −1 + s3P5 s3(n−6)

0 0 1 s s2 s4 0
0 s3 0 1 s 0 0
0 s2 s3 0 1 0 0
0 s s2 s3 0 0 0
0 1 s s2 s3 0 0
0 s2 s3 1 s s3 − s2 s4 − 1



,

where P1, . . . , P5 are polynomials in s. Thus, it suffices to show that

1 + s3P1 s+ s3P2 s2 + s3P3 s3P4 −1 + s3P5 s3(n−6)

0 1 s s2 s4 0
s3 0 1 s 0 0
s2 s3 0 1 0 0
s s2 s3 0 0 0
1 s s2 s3 0 0
s2 s3 1 s s3 − s2 s4 − 1


has rank 6 for all s, which can be done directly by computing its 6×6 minors. Therefore,
TX |C ∼= O(n− 3)2 ⊕O(n− 2)n−3.

□

Corollary 6.2. Let X ⊂ Pn be a general quartic hypersurface. If e = 2 and n ≥ 6; or e = 3
and n ≥ 5; or e ≥ 4, then X contains a degree e ≤ n rational curve with balanced restricted
tangent bundle.

7. Higher-degree curves

Theorem 7.1. Let X ⊂ Pn be a general degree d ≥ 4 hypersurface containing a degree e ≤ n
rational normal curve C. If e ≥ 2d− 2, then the restricted tangent bundle TX |C is balanced.

Proof. By Proposition 3.2 and induction on n, it suffices to prove the theorem for e = n.
By [CR19, Corollary 3.8], the normal bundle NC/X is balanced, and for n ≥ 2d− 2 it has

the form

NC/X
∼= O(n+ 2− d)2d−4 ⊕O(n+ 3− d)n−2d+2.
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It is induced by a map ψF : O(n + 2)n−1 → O(dn) having 2d − 4 column relations with
degree d and n− 2d+ 2 columns relations with degree d− 1. To obtain such a ψF , we start
with the entry sdn−n−2 and increase the powers of t by d− 1 for the first n− 2d+ 2 entries,
and then increase it by d for the remaining ones. That is, we use the following ψF :

ψF = (sdn−n−2, s(dn−n−2)−(d−1)td−1, s(dn−n−2)−2(d−1)t2(d−1), · · · ,
s(dn−n−2)−(n−2d+1)(d−1)t(n−2d+1)(d−1), s(2d−4)dt(dn−n−2)−(2d−4)d, s(2d−3)dt(dn−n−2)−(2d−3)d, · · · ,

s2dt(dn−n−2)−2d, sdt(dn−n−2)−d, tdn−n−2).

We know this ψF is indeed induced by a degree d polynomial F by Proposition 2.6. It is
not difficult to obtain examples of F for a given ψF . Hence, this same polynomial induces
the map on tangent bundles δ : O(n+ 1)n → O(dn):

δF = ψF ◦ β = (sdn−n−2t,−sdn−n−1 + s(dn−n−2)−(d−1)td,

− s(dn−n−2)−(d−1)+1td−1 + s(dn−n−2)−2(d−1)t2(d−1)+1, · · · ,
− s(dn−n−2)−(n−2d+1)(d−1)+1t(n−2d+1)(d−1) + s(2d−4)dt(dn−n−2)−(2d−4)d+1,

− s(2d−4)d+1t(dn−n−2)−(2d−4)d + s(2d−3)dt(dn−n−2)−(2d−3)d+1, · · · ,
− s2d+1t(dn−n−2)−2d + sdt(dn−n−2)−d+1,−sd+1t(dn−n−2)−d + tdn−n−1,−stdn−n−2).

Call the n entries of δF by C1, . . . , Cn. We will compute the kernel of δF by finding n− 1
independent relations between these entries. There are n− 2d + 1 relations of degree d− 1
of the form

• −td−1Ci + sd−1Ci+1 = 0 for 2 ≤ i ≤ n− 2d+ 2;

and d− 4 relations of degree d given by

• −tdCi + sdCi+1 = 0 for n− 2d+ 4 ≤ i ≤ n− d− 1.

We also have d “alternating relations” of degree d− 1. The first four end with

• sitd−1−iCn + si+1td−2−iCn−1 + · · ·+ sd−2tCn−(d−2−i) + sd−1Cn−(d−1−i) + · · ·
for 0 ≤ i ≤ 3, and repeat the sequence of coefficients 0, td−1, std−2, . . . , sd−2t for the remaining
entries. We repeat this sequence as it is until C2, whose coefficient will depend on n mod d.
The coefficient of C1 might differ from the sequence: if the next term in the sequence is 0,
then use sd−1 instead; otherwise, use the expected coefficient. For example, if n ≡ 0 mod d,
then the relation ending with td−1 is:

(td−1Cn + std−2Cn−1 + · · ·+ sd−1Cn−d+1)

+ (0 · Cn−d + td−1Cn−d−1 + std−2Cn−d−2 + · · ·+ sd−2tCn−2d+1)

+ (0 · Cn−2d + td−1Cn−2d−1 + · · ·+ sd−2tCn−3d+1) + · · ·
+ (0 · Cd + td−1Cd−1 + · · ·+ sd−2tC1) = 0.

The next relation, ending with s4td−5Cn, ends with

• (s4td−5Cn+s
5td−6Cn−1+· · ·+sd−2tCn−(d−6)+s

d−1Cn−(d−5))+0·Cn−d+4+(td−1Cn−d+3+
std−2Cn−d+2 + · · ·+ sd−1Cn−2d+4) + 0 · Cn−2d+3 + (std−2Cn−2d+2 + · · ·
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and then they start repeating the sequence 0, td−1, . . . , sd−2t as for the four ones above.
Notice it skips the coefficient td−1 that would be in Cn−2d+2.

The remaining d− 5 alternating relations end with sitd−1−iCn for 5 ≤ i ≤ d− 1. They are
similar to the relation above, but they end with

• (sitd−1−iCn + si+1td−2−iCn−1 + · · ·+ sd−2tCn−(d−2−i) + sd−1Cn−(d−1−i)) + 0 ·Cn−d+i +
(td−1Cn−d+i−1 + std−2Cn−d+i−2 + · · ·+ sd−1Cn−2d+i) + · · ·

for 5 ≤ i ≤ d− 1 and then they start repeating the sequence 0, td−1, . . . , sd−2t as for the five
ones above. The reason we divide them into these three groups is due to the (2d−4) column
relations of degree d followed by the n− 2d+2 relations of degree d− 1 of ψF , which divide
ψF into two parts.
We also have the degree d relation

• (sd − td)C1 + sd−1tC2 = 0.

And finally, an additional alternating relation of degree d. It ends at Cn−2d+4 with the
sequence of coefficients:

• sdCn−2d+4 − tdCn−2d+3 + (s2td−2 − std−1)Cn−2d+2 + (s3td−3 − s2td−2)Cn−2d+1 + · · · +
(sd−2t2 − sd−3t3)Cn−3d+6 + (−sd−2t2)Cn−3d+5 + · · ·

then, for the remaining entries, we repeat the sequence of coefficients td, std−1 − td, s2td−2 −
std−1, . . . , sd−2t2 − sd−3t3,−sd−2t2. As with the other alternating relations, the sequence has
d terms, then the coefficient of C1 will depend on n mod d.

These give us all the relations we need. They form the columns of the matrix KF , which
we show here for the case n ≡ 0 mod d:
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

0 sd−2t sd−1 td−1 std−2 s2td−3 s3td−4 s4td−5 sd−5t4 sd−4t3 sd−td s3td−3−s2td−2

−td−1 sd−3t2 sd−2t 0 td−1 std−2 std−2 s3td−4 sd−6t5 sd−5t4 sd−1t s2td−2−std−1

sd−1
... sd−3t2 sd−2t 0 td−1 td−1 std−2 ··· sd−7t6 sd−6t5 0 std−1−td
...

... sd−3t2 sd−2t 0 0 td−1 sd−8t7 sd−7t6 0 td

td−1
...

... sd−3t2 sd−2t sd−2t 0 sd−9t8 sd−8t7 0
...

0 td−1
...

... sd−3t2 sd−3t2 sd−2t
... sd−10t9 sd−9t8 0

...

sd−2t 0 td−1
...

...
... sd−3t2 sd−11t10 sd−10t9

... −sd−2t2

...
... sd−2t 0 td−1

...
...

...
...

...
...

...

std−2
... sd−2t 0 td−1 td−1

...
...

...
... sd−1t−td

td−1 std−2
... sd−2t 0 0 td−1 s8td−9 s9td−10 td

0 td−1 std−2
... sd−2t sd−2t 0 s7td−8 s8td−9 −sd−2t2

sd−2t 0 td−1 std−2
...

... sd−2t
... s6td−7 s7td−8

...

−td−1 sd−3t2 sd−2t 0 td−1 std−2 std−2
...

... s6td−7 s2td−2−std−1

sd−1 sd−4t3 sd−3t2 sd−2t 0 0 td−1 std−2 sd−7t6
... −td

sd−5t4 sd−4t3 sd−3t2 sd−2t sd−1 0 td−1 sd−8t7 sd−7t6 sd −td
sd−6t5 sd−5t4 sd−4t3 sd−3t2 sd−2t sd−1 0 sd−9t8 sd−8t7 0 sd

...
...

...
...

...
...

...
...

...
...

...
td−1 std−2 s2td−3 s3td−4 s4td−5 s5td−6 s6td−7 sd−2t sd−1 0 −td
0 td−1 std−2 s2td−3 s3td−4 s4td−5 s5td−6 sd−3t2 sd−2t 0 sd

sd−1 0 td−1 std−2 s2td−3 s3td−4 s4td−5 sd−4t3 sd−3t2 0 0
...

...
...

...
...

...
... ···

...
...

...
...

s2td−3 s3td−4 s4td−5 s5td−6 s6td−7 s7td−8 s8td−9 0 td−1 0 0
std−2 s2td−3 s3td−4 s4td−5 s5td−6 s6td−7 s7td−8 sd−1 0 0 0
td−1 std−2 s2td−3 s3td−4 s4td−5 s5td−6 s6td−7 ··· sd−2t sd−1 0 0



.

Now, we are left with showing that KF : O(n+2−d)n−d+1⊕O(n+1−d)d−2 → O(n+1)n

defines an injective map. We will show KF has maximum rank n−1 at all points (s, t) ∈ P1.
Let t = 1; the case s = 1 is similar. We do it by Gauss-Jordan elimination. Move the first
row to the last position, and use the −td−1 and the −td along the diagonals to make their
rows into zero. This shows that KF is equivalent to the matrix



1
...

1
1
...

1
sd−1P1 1+sd−1P2 s+sd−1P3 s2+sd−1P4 s3+sd−1P5 s4+sd−1P6 s5+sd−1P7 ··· sd−3+sd−1Pd−1 s

d−2+sd−1Pd s
(d−1)M

sd−1 0 1 s s2 s3 s4 sd−4 sd−3 0
...

...
...

...
...

...
... ···

...
...

...
s2 s3 s4 s5 s6 s7 s8 0 0
s s2 s3 s4 s5 s6 s7 sd−1 0 0
1 s s2 s3 s4 s5 s6 ··· sd−2 sd−1 0

sd−2 sd−1 1 s s2 s3 s4 sd−5 sd−4 sd−1


.
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Thus, we only need that the matrix
sd−1P1 1+sd−1P2 s+sd−1P3 s2+sd−1P4 s3+sd−1P5 s4+sd−1P6 s5+sd−1P7 ··· sd−3+sd−1Pd−1 s

d−2+sd−1Pd s
(d−1)M

sd−1 0 1 s s2 s3 s4 sd−4 sd−3 0
...

...
...

...
...

...
... ···

...
...

...
s2 s3 s4 s5 s6 s7 s8 0 0
s s2 s3 s4 s5 s6 s7 sd−1 0 0
1 s s2 s3 s4 s5 s6 ··· sd−2 sd−1 0

sd−2 sd−1 1 s s2 s3 s4 sd−5 sd−4 sd−1


has rank d + 1. This can be shown by using the diagonal of 1’s and induction. Therefore,
we get TX |C ∼= O(n+ 2− d)n−d+1 ⊕O(n+ 1− d)d−2. □

By Corollary 3.11 and Theorem 7.1, we have shown so far that a general Fano hypersurface
X ⊂ Pn of degree d ≥ 3 contains rational curves of degree e with balanced restricted tangent
bundle for every n−1

n+1−d < e ≤ max{2d− 2, n}. By Lemma 2.14, we can glue a rational curve
of degree e1 with balanced restricted tangent bundle to a curve of degree e2 with perfectly
balanced restricted tangent bundle to obtain a degree e1 + e2 rational curve with balanced
restricted tangent bundle. This allows us to extend our result for all degrees e.

Theorem 7.2. Let X ⊂ Pn be a general degree d ≥ 3 Fano hypersurface. Then X contains
degree e rational curves with balanced restricted tangent bundle for every degree e > n−1

n+1−d .

Proof. First, notice that:

• 2d− 2 ≥
⌊

n−1
n+1−d

⌋
+ (n− 1) for n+3

2
≤ d ≤ n, and

• n ≥
⌊

n−1
n+1−d

⌋
+ (n− 1) for d < n+3

2
.

Then, max{2d−2, n} ≥
⌊

n−1
n+1−d

⌋
+(n−1). Hence, X contains rational curves with balanced

restricted tangent bundle for every degree
⌊

n−1
n+1−d

⌋
< e ≤

⌊
n−1
n+1−d

⌋
+ (n− 1).

Now, let C1 be a rational curve in X of degree n − 1 with perfectly balanced restricted
tangent bundle TX |C1

∼= O(n+1−d)n−1 and C2 be a rational curve of degree e with balanced
restricted tangent bundle TX |C2 . Since they are balanced, they are both free, then C1 ∪ C2

smooths into a degree e+(n−1) rational curve C. By Lemma 2.14, the general deformation
of C has balanced restricted tangent bundle. By gluing m curves C1, we get curves C of
degrees e+m(n−1) for every integerm ≥ 0. Since we have every n−1

n+1−d < e ≤ n−1
n+1−d+(n−1),

this gives us all degrees e > n−1
n+1−d . □
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France (N.S.) 28-29 (1987), p. 138.

[Ram90] L. Ramella. “La stratification du schéma de Hilbert des courbes rationnelles de
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